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EXECUTIVE SUMMARY 

Many vital lifelines, such as transportation bridges, roads, utilities, and communication 

lines have suffered significant damage due to surface fault displacement associated with large 

earthquakes. Prime examples of significant lifeline disruptions are provided by the 1999 Turkey 

(M7.4 Kocaeli and M7.2 Duzce), 1999 Taiwan (M7.6 Chi-Chi), and the 2008 China (M7.9 

Wenchuan) earthquakes. It is possible to reduce lifeline structural damage and the associated 

business and social disruption where potential surface fault rupture is unavoidable if fault 

displacement hazards can be incorporated in the design of lifeline infrastructure. Incorporating 

fault displacement hazards in structural design requires quantitative estimates of fault 

displacement hazards. General methods have been developed in recent years to analyze fault 

displacement hazards using a probabilistic approach. Probabilistic fault displacement hazard 

analyses (PFDHA) rely on regression relations that are functions of the accuracy of fault 

mapping, the complexity of the mapped fault traces, the foundation footprint size of structures 

under consideration, and surface fault displacement data measured around mapped faults. 

Application of these methods and regressions suggests that location uncertainty in surface 

rupture plays an important role, and the treatment of location uncertainty constitutes an essential 

part of PFDHA. There are two components of location uncertainty: uncertainty associated with 

the accuracy of existing mapped fault traces (epistemic uncertainty), and natural variability in the 

location of possible/potential surface rupture from future earthquakes around a previously 

existing, precisely located earthquake fault (aleatory variability). Separating aleatory variability 

from epistemic uncertainty is the main objective of this study.  

We demonstrate a GIS-based approach to develop necessary data to quantify location 

uncertainty associated with existing fault maps. We choose the published Alquist-Priolo (AP) 

Earthquake Fault Zone maps as our existing fault maps because these AP maps are widely 

distributed and routinely referenced in engineering practice in California. Improved surface fault 

traces are obtained by careful interpretation of surface fault features using high-resolution 

LiDAR digital elevation models (DEM) and other imagery. A statistically robust dataset is 

developed for the AP maps by systematically measuring the distances between improved fault 

traces and existing AP fault traces. Summary statistics of this dataset indicate that the locations 

of surface ruptures for accurately mapped, approximately mapped, concealed, and inferred fault 

traces have standard deviations of 23 m, 36 m, 44 m, and 45 m, respectively. The likely extent of 

occurrence of future surface rupture can be estimated for a chosen probability level from these 

simple statistics. For example, there is about 95% probability that surface rupture from future 

earthquakes would occur within about 46 m (i.e., two standard deviations) on either side of an 

accurately mapped fault if we assume a normal distribution of epistemic location uncertainty.   

To better understand whether and how aleatory variability can be quantified, we analyze 

trenches documented in paleoseismic literature, particularly trenches exposing evidence for 

paleoseismic events. In addition, we re-analyze numerous trench logs from decades of fault 

investigations for research and development projects throughout California. We measure the total 

width of surface faulting revealed in these trenches and determine distances from the most recent 

event to prior events when such information is available. We compile the measured data to 

quantify the natural variability part of surface rupture location uncertainty. We are unable to 

define a statistical distribution for aleatory location uncertainty with reasonable confidence due 

to data limitation. However, we estimate its upper and lower bound standard deviations to be 

approximately 14 m and 37 m, respectively, on either side of a mapped fault.   
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We modify the numerical algorithms in our PFDHA code to treat aleatory variability and 

epistemic uncertainty separately. A simple example shows the strong effect of location 

uncertainty on the estimated probabilistic rupture displacement. Large uncertainties for poorly 

mapped faults correspond to wide displacement profiles across mapped faults. Improving fault 

mapping using publically available LiDAR DEMs and other imagery can reduce epistemic 

uncertainty. We demonstrate that such precise mapping efforts can reduce the width of an 

estimated displacement profile by 67% to 69% to the lower bound aleatory variability and 16% 

to 19% to the upper bound aleatory uncertainty for the concealed and inferred categories, 

respectively. For the accurately and approximately located fault trace categories, the estimated 

displacement zone width is reduced by 37% and 60%, respectively, to the lower bound aleatory 

variability. The upper bound aleatory variability has a standard deviation similar to that of the 

approximately mapped fault trace category and larger than the standard deviation of the 

accurately mapped fault trace category. We hope to narrow the estimates of aleatory location 

variability with additional trench data, particularly data from trenches that expose evidence of 

multiple paleoseismic events. 
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INTRODUCTION 

Surface fault displacement associated with large earthquakes has caused significant 

damage to community infrastructure. As a direct result of the extensive damage to homes, 

commercial buildings, and other structures due to surface rupture associated with the 1971 M6.6 

San Fernando earthquake, the State of California established the Alquist-Priolo (AP) Earthquake 

Fault Zoning Act to mitigate hazards of surface faulting to structures for human occupancy 

(http://www.consrv.ca.gov/cgs/rghm/ap/Pages/main.aspx). Destructive damage to vital lifeline 

infrastructure caused by surface rupture occurred in most recent large earthquakes, including the 

1999 Chi-Chi M7.6 earthquake in Taiwan (Kawashima, 2002; Lien, 1999), the 1999 M7.2 

Kocaeli and M7.2 Duzce earthquakes in Turkey (Pamuk et al., 2005), and the 2008 Wenchuan 

M7.9 earthquake in China (Xu et al., 2008; Liu, 2008).  

It is possible to reduce lifeline structural damage and associated business and social 

disruption if fault displacement hazards can be incorporated in structural design. For example, 

the Trans-Alaska Pipeline was designed to accommodate large surface fault displacement and 

consequently survived approximately 5.5 meters of fault displacement produced by the M7.9 

Denali Earthquake (Hall et al., 2003). Incorporating fault displacement hazards requires 

quantitative estimates of the hazards. Although federal, state, and local governments regulate the 

construction of buildings, lifelines and other critical infrastructure on active faults, there are no 

standards for the quantitative evaluation of fault displacement, or for structural design that 

incorporates fault displacement hazards. Improving our understanding and estimates of 

displacement hazards at lifeline fault crossings will contribute to reduction of earthquake losses 

associated with damage to these lifeline structures. 

Youngs et al. (2003) established a general methodology for probabilistic fault 

displacement hazard analysis (PFDHA) and developed probability distributions for normal 

faults. Petersen et al. (2011) extended the Youngs et al. (2003) earthquake approach to strike-slip 

faults and developed equations to account for mapping accuracy and fault complexity 

parameters, as well as the footprint size of structures to be placed at the site of interest. 

Numerous large historical earthquakes show that surface ruptures are not always located on the 

fault traces mapped prior to the earthquake. In some cases, there is considerable uncertainty in 

rupture location. In the Petersen et al. (2011) methodology, location uncertainty is incorporated 

and characterized by a probability distribution of measured distances between the locations of 

the surface ruptures of large historical earthquakes and the mapped locations of the 

corresponding earthquake faults. That study used hundreds of observations comparing locations 

of mapped faults to the rupture traces from nine global strike-slip earthquakes ranging from 

M6.5 to M7.6. Separate data sets were obtained and regressed for the four categories of mapping 

accuracy used in the AP fault maps, namely, “accurately located,” “approximately located,” 

“inferred,” and “concealed” fault traces. The inferred and concealed fault traces were further 

categorized as “simple” and “complex” traces, based on whether or not the fault has a geometric 

complexity, such as a step over. The location uncertainty data were assumed to follow a normal 

distribution centered at the mapped earthquake fault. Table 1 shows the summary statistics of 

location uncertainty data from historical earthquakes. In all tables in this report, σ is standard 

deviation and COV is coefficient of variation. In hazard calculations, location uncertainty is 

integrated to two standard deviations on either side of the fault. Consequently, the calculated 

displacement for a given hazard level at a given location is a bell-shaped profile that is 

http://www.consrv.ca.gov/cgs/rghm/ap/Pages/main.aspx
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perpendicular to the fault strike and centered on the mapped fault trace. Figure 1 shows the 

strong effect of location uncertainty on the calculated hazard. As indicated in Table 1, accurately 

mapped traces have a standard deviation of about 27 m. However, the inferred traces have 

standard deviations almost three times as large. This higher uncertainty translates into increased 

hazard at distances beyond 100 m (Figure 1a). Complex fault traces that are inferred or 

concealed have even larger uncertainty, with a standard deviation of about 116 m. This large 

uncertainty translates into significant displacements at distances of a few hundred meters from 

the mapped fault. Figure 1(b) shows that for the 10% probability of exceedance level, 

displacements greater than 20 cm occur at about 150 m fault distance for concealed or inferred 

simple traces while they occur at nearly 300 m for inferred or concealed complex traces.    

In previous projects, we applied the Petersen et al. (2011) methodology and regression 

relations to the Hayward fault (Chen et al., 2009) and to the ShakeOut Scenario on the southern 

San Andreas fault (Chen and Petersen, 2011). These applications incorporated detailed fault 

traces and produced probabilistic fault displacement hazard maps that are superimposed on the 

AP Earthquake Fault Zone Maps. As an example, Figure 2 shows a fault displacement hazard 

map for an area including the Highway 580 and 238 interchange along the Hayward fault. This 

map shows that the lateral extent of the potential surface fault displacement depends largely on 

fault complexity and mapping quality. In general, the likelihood of fault displacement decreases 

as distance from the mapped fault trace increases. The narrowest zone of predicted displacement 

is along the stretch where the Hayward fault has a single, accurately located trace. Larger width 

of the zone corresponds to greater fault trace complexity and larger uncertainty in mapped fault 

trace. Figure 2 suggests that location uncertainty plays an important role, and the treatment of 

location uncertainty constitutes an essential part of PFDHA. There are two components in 

location uncertainty: uncertainty associated with the accuracy of existing mapped fault traces 

(epistemic uncertainty), and natural variability in the location of possible/potential surface 

rupture around a previously existing, accurately located earthquake fault (aleatory variability).  

However, in these previous projects we lacked the necessary data to separate these two 

components of location uncertainty.    

Separately quantifying location uncertainty and location variability of surface rupture is 

the main topic of this project. The uncertainty due to mapping can be removed or reduced by 

detailed studies using Light Detection and Ranging (LiDAR)-based geographic information 

system (GIS) analysis, large scale mapping, and/or trenching studies. LiDAR is a laser-based 

technology with very high positional accuracy and sub-meter resolution, and it is capable of 

vegetation filtering. Hazard maps, such as Figure 2, can be used to illustrate where detailed fault 

studies are most valuable to estimate the extent of the area that is subject to significant surface 

fault displacement. On the other hand, the natural variability associated with rupture location 

cannot be removed or reduced. However, it can be quantified based on analyses of geological 

data collected from paleoseismic and other studies. Quantification of natural variability in 

rupture location enables its explicit inclusion in PFDHA, resulting in better understanding and 

constraint of estimated fault displacement hazards. It provides a quantitative assessment of the 

essential part of fault displacement hazard that needs to be incorporated in the design of 

important lifelines and other structures no matter how much our understanding about the 

earthquake fault improves. Separate treatment of aleatory variability and epistemic uncertainty in 

PFDHA also allows an estimate of the amount of design displacement that can be reduced by 

precise fault location, enabling a risk-informed approach and cost effective measure in design. 
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This project has three objectives: (1) evaluate data needs for reducing mapping uncertainty 

(epistemic uncertainty) using published AP fault maps as examples; (2) identify and collect 

necessary data to quantify natural variability (aleatory variability) in surface fault rupture 

location; and (3) develop numerical algorithms to treat aleatory variability and epistemic 

uncertainty separately in PFDHA. 

Quantifying surface fault rupture location uncertainty relies on statistical analyses of 

available data. In this study, we developed three groups of surface fault trace interpretations with 

varying levels of detail and compared these improved fault locations with AP fault maps to 

develop necessary data. The first group relies on the recent imagery-based fault studies of Perez 

et al. (2011) and Treiman et al. (2010). These studies made use of custom-processed sub-meter 

resolution (0.5 m) LiDAR digital elevation models (DEM), standard aerial photography, and 

digital multi-spectral imagery. These authors tailored imagery specifically for active fault 

mapping using an advanced digital image processing technology that integrates MASTER and 

LiDAR via data fusion to combine their most useful characteristics for fault interpretation. The 

second and third groups of surface fault interpretations were based entirely on one-meter 

resolution LiDAR DEMs published by OpenTopography (http://www.opentopography.org/). 

Compared to the first data group, fault mapping for the second and third data groups is less 

detailed, but it sampled many major strike-slip faults in California at localities where surface 

fault features are easily observed and well constrained on LiDAR DEMs.   

Location variability data were compiled based on examination of paleoseismic trenches 

that have identified paleoseismic events, and re-analyses of trench logs from decades of fault 

investigations for research and development projects in California. This dataset includes 163 

trenches located on the following faults (numbers in the parentheses indicate number of trenches 

examined on each fault): Calaveras (14), Concord (3), Elsinore (7), Fish Lake Valley (1), 

Hayward (38), Rodgers Creek (8), San Andreas (22), San Jacinto (67), and Simi – Santa Rosa 

(3). 

Fault location uncertainty data were analyzed statistically and our existing PFDHA 

computer code was modified to account separately for natural variability and mapping 

uncertainty in rupture location. The modified code follows the standard approach used in the 

Probabilistic Seismic Hazard Analyses (PSHA) for ground motion hazards for treating epistemic 

uncertainty and aleatory variability. A simple example is used to illustrate the significance of 

newly developed data in probabilistic fault displacement estimation. 

 

SURFACE FAULT RUPTURE LOCATION UNCERTAINTY 

Traditionally, active faults are mapped by geologists using field methods and aerial 

photographs or other remote sensing imagery. They record the locations and extents of fault-

related geomorphic and stratigraphic features onto a base map. Thus the accuracy of a mapped 

fault trace depends on quality of the base map, clarity of fault-related features, ability of the 

geologist to identify these features, availability of reference topography and landmarks, and 

ability of the geologist to accurately mark the recognized features on the base map.  

 

http://www.opentopography.org/
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Maps produced according the National Map Accuracy Standards 

(http://egsc.usgs.gov/isb/pubs/factsheets/fs17199.html) often include feature location uncertainty 

specified by the map maker. For example, the USGS 7.5-minute quadrangle topographic maps 

(standard mapping scale of 1:24,000 or 1 cm equals 240 meters) have an inherent feature 

location uncertainty of about 15 m. Feature location uncertainty may be larger in certain terrains 

and for maps produced before modern positioning techniques, such as Global Positioning System 

(GPS), became available. In addition, features drawn on the base map have uncertainty that is 

often unknown.  

Figure 3 shows the locations where the three groups of epistemic location uncertainty 

data were collected. The first data group was developed based on extremely detailed mapping of 

surface faulting-related geomorphic features in two small sections along the southern San 

Andreas fault near the cities of Indio (about 4 km long) and Yucaipa (about 5-km long) (Treiman 

et al., 2010), and along a 26-km section in the Antelope Valley near Palmdale (Perez et al., 

2011). It is reasonable to assume that all fault branches/splays that have surface expressions in 

the subject areas are mapped in this group of data. Fault mapping for the second group is less 

detailed and more selective. The second group of data was sampled from an 82-km section along 

the southern San Andreas fault in the Carrizo Plain from about 12 km northwest of highway 58 

to about 12 km southeast of highway 33, and from a 64-km section long the Garlock fault staring 

at about 8 km northeast of Koehn Lake. Although the resulting fault maps in this data group may 

not form a complete set of surface fault traces interpretable from the LiDAR DEMs, all 

significant traces in the mapped section were carefully examined, especially those that are in the 

vicinity of previously mapped AP traces. The third data group was mapped specifically for the 

current project. In developing the third data group, we sampled many strike-slip faults in 

California that have published LiDAR DEMs, but only at localities where fault-related features 

are easily identified.  

Data Acquisition Methodology 

We relied on LiDAR DEMs and other digital imaging techniques to map surface fault 

ruptures and to demonstrate how location uncertainty associated with previously mapped fault 

traces can be quantified. In addition to having very high positional accuracy and meter or sub-

meter resolution, these digital imaging techniques have the capability to “strip off” vegetation to 

reveal fault-related features expressed on the ground surface. Faults mapped directly on 

geographically referenced digital imagery can be recorded directly within the GIS, eliminating 

inaccuracy introduced by transferring features drawn manually on a base map that is often not 

geographically referenced. Fault traces based on interpretation of this imagery in GIS are 

referred to as “interpreted fault traces.”  

We chose the fault traces of the published AP Earthquake Fault Zone Maps (1:24,000) as 

previously mapped fault traces and compared them to interpreted fault traces to estimate the 

uncertainty due solely to mapping inaccuracy. Figure 4 is an example from the Superstition Hills 

fault showing a 25 – 30 meter discrepancy (d) between the mapped trace of the fault (an AP fault 

trace) compared to a fault scarp shown in the LiDAR-derived hillshade relief image. The mapped 

fault trace was compiled using traditional methods such as photogrammetry, without the benefit 

of GPS. The fault scarp shown in this example is a well recognized feature that experienced 

surface slip or trigger slip from three historical earthquakes: the 1968 M6.6 Borrego Mountain 

earthquake, the 1979 M6.5 El Centro earthquake, and the 1987 M6.6 Superstition Hills 

http://egsc.usgs.gov/isb/pubs/factsheets/fs17199.html
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earthquake. The inaccuracy of the mapped trace, therefore, is due solely to base map resolution 

and difficulties in transferring a feature that is well recognized in the field to a base map with 

limited resolution. For faults that do not have historical surface rupture or other easily 

recognizable surface features, the accuracy of mapped fault location may also be limited by the 

ability of the geologist to precisely locate the feature in the field. We assessed this uncertainty by 

comparing the features located on the LiDAR image to the mapped fault traces.  

 Our sampling strategy focused on associating each mapped fault segment (defined here 

as an individual line segment drawn by a geologist) with the nearest geomorphic fault feature 

visible on the LiDAR. This approach operates under the assumption that the feature was 

originally mapped by the geologist based on the geomorphic expression of the fault, which 

should also be visible, and perhaps even better expressed, in the LiDAR image. While this 

uncertainty analysis may not be needed for newer fault maps generated from LiDAR data, 

uncertainty estimates are important because there are a large number of faults that do not have 

LiDAR coverage, or that lie outside the relatively narrow (km scale) footprint of LiDAR 

coverage. Finally, because geologic mapping of active faults typically is compiled at similar 

scales in other regions and using similar methods, this assessment should be applicable to other 

regions of the country and perhaps extended in a general way to other types of faulting, where 

this kind of analysis has not yet been performed.  

We developed an efficient approach to sample the interpreted fault traces at a constant 

interval (25 m) and to measure distances from sample points to various types of previously 

mapped fault traces (accurately located, approximately located, inferred, and concealed) in the 

GIS. Figure 5 illustrates sample points (dots) along the interpreted fault traces (green curves) 

generated using the ArcGIS editing tool, “Densify,” and their association with previously 

mapped fault traces (identified by color of sample points). The associations were made based on 

visual inspection of relative location and fault orientation. In Figure 5, red dots are associated 

with accurately located mapped fault traces (red curves), blue dots are associated with 

approximately located mapped fault traces (blue long dashed curves), etc. Rupture distance is 

measured as closest distance from a sample point (dot) to the nearest corresponding (associated) 

mapped trace using the ArcGIS analysis tool, “Near.” In many cases, imagery-based mapping 

reveals fault traces that were not mapped previously. These traces are categorized as “previously 

unmapped” (black dots).  

First Group of Location Uncertainty Data 

In a research project sponsored by NASA’s Earth Science Applications on Disaster 

Management, the California Geological Survey (CGS) evaluated the potential of integrated 

MASTER and high resolution LiDAR data in overcoming inherent limitations of conventional 

active fault mapping, which is based on aerial photo interpretation and field observations (Perez 

et al., 2011). MASTER is multispectral imagery with 50 spectral bands ranging from visible to 

thermal regions of the electromagnetic spectrum. In the Perez et al. (2011) study, MASTER and 

custom-processed LiDAR were integrated via data transformation/fusion, and the resulting 

images were utilized to interpret active faults through recognition of fault features associated 

with different distinctive properties related to geology, drainage, vegetation, hydrology, thermal 

characteristics, and topography. This study produced much improved and more complete fault 

interpretations in the 26-km section along the southern San Andreas fault zone, in the Antelope 

Valley near Palmdale (location is marked by number 1 on Figure 3). Detailed fault 
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interpretations were made independently by two CGS fault specialists, William Bryant and Jerry 

Treiman. Figure 6 shows the fault traces interpreted by William Bryant (green), the various 

categories of previously mapped fault traces using the same color scheme as in Figure 5, and the 

shaded relief imagery derived from custom-processed, 0.5 m resolution LiDAR DEMs. Table 2 

presents summary statistics of fault location uncertainty data. No imagery-based interpreted fault 

traces were associated with inferred type of previously mapped fault traces. Summary statistics 

from each fault expert are presented. The last portion of the table presents a summary of overall 

statistics by weighing the results of the two experts equally.  

In research sponsored by the USGS, Treiman et al. (2010) compared the effectiveness of 

shaded relief imagery derived from high-resolution LiDAR DEMs to standard aerial 

photography and to digital multi-spectral imagery for identifying and mapping active faults in 

moderately to sparsely vegetated terrain. This research produced detailed maps of surface 

faulting-related geomorphic features along the southern San Andreas fault near the cities of Indio 

(about 4 km long) and Yucaipa (about 5-km long). These two areas have contrasting terrain and 

vegetation conditions. The Indio area has very little vegetation so that the surface morphology 

and characteristics are visible in most image types, although some parts have been significantly 

modified by human activity. The Yucaipa area has more vegetation that masks many of the finer 

fault features. Faults in this area lie largely within uplifted terrain with greater local relief than 

the Indio area. Figure 7 shows fault traces (green curves) interpreted based on LiDAR and other 

imagery in the Indio and Yucaipa study areas. Also shown in this figure are various categories of 

previously mapped fault traces and shaded relief imagery derived from custom-processed, 0.5 m 

resolution LiDAR DEMs. Location of the Indio study area is marked by number 2 in Figure 3, 

and the Yucaipa area by number 3. Table 3 presents basic statistics of fault location uncertainty 

data. No interpreted fault traces were associated with the inferred type of previously mapped 

fault traces in this study area.   

Second Group of Location Uncertainty Data 

Locations for this group of data are identified by numbers 4 (Carrizo Plain) and 5 

(Garlock) in Figure 3. The section along the southern San Andreas fault (Carrizo Plain) covers 

10 7.5-minute quadrangles of the previously published AP maps, including (from north to south) 

Las Yeguas Ranch, Simmler, McKittrick Summit, Painted Rock, Panorama Hills, Wells Ranch, 

Elkhorn Hills, Maricopa, Ballinger Canyon, and Santiago Creek. The section along the Garlock 

fault covers 8 quadrangles of the previously published AP maps, including (from west to east): 

Garlock, El Paso Peaks, Klinker Mtn., Cuddeback Lake NW ¼, Spangler Hills East, Searles 

Lake SE¼, Wingate Pass SW1/4, and Wingate Pass SE¼. 

Although, the resulting fault maps in this data group do not represent a complete set of 

surface fault traces interpretable from the LiDAR images, all significant traces in the mapped 

section of the southern San Andreas fault were carefully examined, especially those in the 

vicinity of previously mapped AP traces. Table 4 presents basic statistics of fault location 

uncertainty data. There are data associated with all four types of previously mapped fault traces 

in the mapped areas.   

Third Group of Location Uncertainty Data 

Table 5 lists quadrangle names of previously published AP maps along the various 

sections of each of the sampled faults in the third data group. Table 6 presents basic statistics of 



7 
 

fault location uncertainty for each fault. This data group shows that San Andreas fault has large 

location uncertainty compared to other faults sampled in this study, despite being the best known 

and most thoroughly studied fault. We note that the large location uncertainty in the AP maps 

reflects the way the AP maps for the San Andreas fault were prepared. They were compiled in 

1974 from existing maps without CGS technical review; errors therefore reflect limited air 

photos and poor quality base maps available before 1974. Later, post 1974, AP maps would be 

expected to have lower positional errors due to better base maps, more available air photos, and 

more rigorous CGS review and mapping. 

Summary of Location Uncertainty Data Statistics 

Table 7 summarizes statistics of data combining all faults from all three data groups. 

There are a few notable differences between our newly established dataset and our previous fault 

location uncertainty dataset established based on surface rupture of historical earthquakes 

(compare Table 7 with Table 1). The new dataset has much smaller scatter for all categories of 

previously mapped fault traces as shown by smaller standard deviations and COVs. The two 

datasets have similar mean values for accurately and approximately mapped categories, and the 

new dataset has smaller mean values compared to the previous dataset for the concealed and 

inferred categories.   

Previously Unmapped Traces 

A notable portion of the interpreted fault traces based on LiDAR and other imagery 

cannot be associated with any previously mapped fault traces (distinctively different location or 

orientation). These traces are grouped into a new category and are referred to here as “previously 

unmapped traces.” We made an effort to estimate the occurrence probability of these previously 

unmapped traces only for the 26-km section along the southern San Andreas fault in the 

Antelope Valley near Palmdale (location marked by number 1 in Figure 3). Imagery-based fault 

interpretation is comprehensive and complete in this area. The other two areas in the first data 

group (Indio and Yucaipa) are very small and the data are too sparse to be meaningful. The 2
nd

 

and 3
rd

 data groups were not used because LiDAR-based fault interpretation is selective and not 

complete.   

To assess the likelihood of faults that were missed by previous mapping efforts, we 

followed the methodology of assessing the occurrence of off-fault rupture displacement used in 

previous studies (Youngs et al., 2003 and Petersen et al., 2011). We digitized regions on both 

sides of the fault to the maximum extent of previously unmapped fault traces. The probability of 

finding previously unmapped traces was assessed by calculating the number of cells that contain 

previously unmapped traces and the total number of cells. Following our previous approach 

(Petersen et al., 2011) for off-fault rupture, a range of cell sizes from 25 to 200 m was used to 

better represent the range of areas upon which structures may be built.  

Figure 8 illustrates occurrence probability as a function of distance to the nearest 

previously mapped fault for various cell sizes and for fault interpretations by different fault 

experts (William Bryant - legends starting with letter B, and Jerry Treiman - legend starting with 

letter T). Some observations from this figure are as expected. For example, occurrence 

probability increases with increasing cell size because the larger the cell size the more likely a 

previously unmapped fault trace is encountered. In general, occurrence probability decreases 

with increasing fault distance. Interpretations from different experts can be very different, 
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resulting in very different occurrence probability estimates. This result reflects the challenge of 

fault mapping, and significant uncertainty exists even with much improved modern imagining 

technology. It is premature to consider the previously unmapped category in PFDHA because of 

limited data. However, this exercise illustrates that there is always a probability that some 

surface faults are left unrecognized and unmapped.    

 

SURFACE RUPTURE LOCATION VARIABILITY 

To address the aleatory variability in the location of surface rupture, we quantified width 

of surface faulting over multiple earthquakes associated with a mapped or primary fault trace. 

We assess how the width of faulting might vary from earthquake to earthquake. Because few 

faults have ruptured multiple times historically, and those that have are typically not well-

documented in terms of high quality mapping, there is very little observational data regarding the 

aleatory uncertainty of surface rupture location through time. However, one source of such 

information is in the geologic record and found in paleoseismic trenching studies, where 

geologists have trenched across fault zones and have documented the width of faulting and 

locations of past surface ruptures over multiple seismic cycles. We examined data from 

paleoseismic trenching studies to ascertain whether or not such studies could shed light on the 

aleatory variability of surface rupture locations.   

Data Availability 

In California numerous paleoseismic studies have documented the occurrence of surface 

faulting in subsurface faulting investigations, typically by digging trenches across fault zones. 

These studies come in two general varieties. The first type of study is research oriented, aimed at 

deriving characteristics of fault behavior such as earthquake recurrence and slip rates. These 

studies are typically published in scientific journals, but also are done sometimes as part of a 

detailed investigation by a consulting geologist as part of a seismic hazard study, such as for a 

critical facility (e.g., power plants, dams). The second type of study is usually done in order to 

identify the locations of faults with the potential to cause surface rupture at a project site. In 

California, these types of studies are commonly done in order to comply with the AP Act, which 

stipulates that within Earthquake Fault Zones defined by the State of California, site 

investigations must be done in order to identify active fault traces and to avoid construction over 

identified active faults to mitigate surface rupture hazards. For this project, we examined both 

types of studies, drawing on published scientific investigations as well as studies done for 

compliance with the AP Act. For the latter, we relied on the CGS database of site investigations, 

which includes scanned consulting reports, maps, and logs for investigations submitted to CGS 

as part of the AP Act. 

Compilation of Paleoseismic Data 

Data were entered into a spreadsheet dataset (Appendix A), which records such attributes 

as Fault Name, Site Name, Site Latitude, Site Longitude, Mapped Trace Category (from the AP 

Zone map), Trench Number, and Comments. The Citation for each site is tagged either by author 

name and date (for published scientific studies) or indicated as an AP site. Specific types of data 

we wish to compile are the following data fields: 
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Trench Length:  Length of trench in meters. The length of the trench is recorded because some 

trenching studies are more extensive than others. Because of this, trench length is important in 

that there may be a higher probability that a short trench with limited exposure will miss faulting 

beyond the limits of the trench. Conversely, the longer the trench, the less likely that faulting 

away from the primary fault is missed.  

Maximum Width of Faulting: Maximum width of faulting observed in trench, in meters.  

Half Trench Length and Zone Half Width:  Many trenches are asymmetrically located on one 

side of the fault, because of natural and man-made obstacles or property lines. This limitation 

introduces a potential bias when assessing the total width of faulting in that some observations 

are complete for only one side of the fault zone, while other studies assess the total width of 

faulting in a more symmetrical way. The “Half Trench Length” and “Zone Half Width” 

categories account for this bias by taking the cases where the trench is asymmetrically located 

across the fault and only measuring the width of faulting on the side with the greatest length of 

trench. Half Trench Length is the length of trench on one side of the fault and Zone Half Width is 

the width of faulting observed for that side. For trenches located more or less symmetrically 

around the fault, we measure the side of the fault with the most secondary faulting away from the 

principal or mapped fault.   

Event:  Number of identified paleoseismic events or a letter or letters designating a particular 

paleoseismic event in a series of events identified from multiple trenches at the same site. 

Event Zone Width:  Width of a single event, in meters, measured along the length of the trench. 

MRE Trace to Event Distance:  For paleoseismic studies with multiple identified events, this 

measures the distance from the most recent event (MRE) trace (effectively the surface trace) to 

an earlier event (designated by the Event identifier). In cases where there are multiple fault 

traces, this is taken as the largest distance between traces of the MRE and older event. 

Location Variability Data Analysis and Statistics 

The location variability dataset includes a total of 163 trenches. Geographic locations of 

trenches are shown in Figure 3. We analyzed aleatory uncertainty using 3 data fields in Appendix 

A: zone half width, event zone width, and MRE trace to event distance.  

If a particular trench reveals the entire rupture width of an earthquake fault at the trench 

location, zone half width would be an upper bound of aleatory uncertainty. It is apparent in our 

dataset (Appendix A) that trench length and revealed rupture zone width are correlated: longer 

trenches reveal wider rupture zones. However, it is reasonable to assume that zone half width is a 

good representation of the actual width of the rupture zone on one side of the mapped fault. This 

is because investigators often dig a trench long enough to reveal the full rupture widths at the 

trench site and would not stop digging in the middle of an apparent rupture zone. Therefore, in 

our data analysis, zone half widths from all trenches were used to drive statistics for an upper 

bound estimate of aleatory location variability without consideration of trench length. The 

summary statistics are listed in Table 8.  

The second parameter that we can infer from the trench data is an approximate lower 

bound estimate of aleatory location uncertainty. We relied on 53 trenches with identified 
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paleoseismic events to estimate this parameter. All except one of the trenches with identified 

paleoseismic events are research trenches. As indicated previously, most researches do not dig 

trenches wider than necessary to identify all likely paleoseismic events. Based on this 

understanding, three groups of data are combined: (1) zone half width from 15 trenches with 

zone half width data and with only one identified event; (2) trench length divided by the number 

of identified events for the 31 trenches with more than one identified events (i.e., the average 

distance of an event to the nearest neighboring event); and (3) distance between the most recent 

event trace to prior event trace. Summary statistics for the lower bound estimate of aleatory 

location uncertainty are also summarized in Table 8.    

Table 8 also provides summary statistics for event zone width. This parameter is not 

currently factored in the PFDHA methodology. However, it indicates that, on the average, one 

should expect the surface rupture zone from a single earthquake event to be 1 meter to over 5 

meters wide.  

Data Limitations 

The ability to use paleoseismic data to address the aleatory variability in surface rupture 

depends on the amount of exposure within a trench both in the lateral sense, away from the 

primary fault trace, and in a vertical sense, because fault rupture may vary in location from 

earthquake to earthquake. This variability would be visible only in trenches with stratigraphy that 

is older than a series of earthquakes. These limitations apply to the paleoseismic data in this 

compilation in that, collectively, the amount of lateral and vertical trench exposure varies widely 

from study to study. For the AP type studies, the lateral extent of trench exposure is often limited 

by the dimensions of the property, or the area a property owner wants “cleared” for a structure. 

Many studies are limited to a trench that is long enough to encompass the footprint of a building, 

plus the recommended setback (typically 50 feet from the nearest active fault). In terms of depth, 

the AP Act requires that buildings be set back from active faults, which are faults that have 

experienced surface displacement within the past 11,000 years. Because of this requirement, we 

can generally assume that paleoseismic data compiled for this study have adequate exposure in 

terms of depth. This observation is particularly true for studies on the most active faults. All of 

these faults have likely experienced multiple surface rupturing earthquakes during the Holocene. 

Evidence for faulting can be found in more detailed paleoseismic studies at other locations on the 

fault, or surface rupturing can be assumed because of a high (>5 mm/yr) slip rate. However, the 

assumption that AP type studies have adequate depth resolution may be incorrect because many 

studies, particularly older studies, lack absolute dating control and vary widely in quality. In this 

study, we did not assess dating controls, nor did we try to assess the quality of the study. 

We also found research-level type studies to be problematic because, while most studies 

are focused on developing long records of earthquakes and have excellent depth resolution, they 

also tend to be limited in terms of lateral extent. In other words, it appears that once a researcher 

finds a location amenable to identifying and dating earthquakes, areas away from that trace of the 

fault receive less attention, making it difficult to have high confidence that the study captures the 

variability in rupture location at greater distances from the fault. 

Finally, we note that this compilation is a limited set of data for strike-slip faults only, 

compiled to explore the possibility of addressing aleatory variability in fault rupture location. 

The AP site database and geologic literature may have much more data that could be used to 
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expand this dataset and make the results much more statistically robust. However, the 

examination of these records, as we found during the course of this project, is time-consuming 

and not easily automated, as site investigations need to be reviewed on a case by case basis in 

order to compile correct data. A parameter that may give a better indication of aleatory location 

variability is distance from a well identified event to all previous events that are equally well 

identified. However, that information isn’t recorded in any previous trench study. The only way 

to obtain such measurements is to re-examination all original drawings of trench sections that 

have multiple well identified paleoseismic events. We also note there are other types of data, 

such as shallow geophysical data, that may be useful in addressing fault rupture location 

variability. These types of studies may also provide useful data for future improvements to this 

compilation. 

 

IMPLEMENTATION OF RUPTURE LOCATION UNCERTAINTY AND VARIABILTY 

IN PFDHA 

In our previous studies (Petersen et al., 2011; Chen and Petersen, 2011), location 

uncertainty includes both epistemic uncertainty and natural variability, and the uncertainty data 

were assumed to follow a normal distribution. The probability density function of this normal 

distribution is integrated in the PFDHA calculation. Here we re-examine the distribution of 

location uncertainty and variability data obtained from this study, and then explore the ways to 

implement a probabilistic framework following the standard approaches in PSHA.   

The newly acquired data were tested for normality using normal quantile-quantile plots, 

which relate ranked observations on the vertical axis against the quantile of the normal 

distribution. A linear relationship suggests that the data come from a normal distribution. The 

intercept on the vertical axis gives an estimate of the population mean and the slope is an 

estimate of the standard deviation. 

Assuming surface ruptures are equally likely to occur on either side of a mapped fault, 

the location uncertainty data were randomly assigned a positive or a negative sign to have the 

uncertainty centered on the mapped fault. Figure 9 shows the normal quantile-quantile plots for 

the accurately mapped fault trace category for individual faults or fault segments. In general, 

well sampled faults or fault segments show better normality than poorly sampled ones. Well 

sampled data include both sets of data along the southern San Andreas fault in the Antelope 

Valley area, both sets of Garlock data, and data on the southern San Andreas fault near the 

Carrizo Plain. The normal quantile-quantile plot that combines all accurately mapped data shows 

that a normal distribution is a good approximation for data within about 2.5 standard deviations 

(Figure 10). Statistical distribution of all data for the accurately mapped category was further 

examined by comparing the cumulative data distribution with the theoretical normal cumulative 

distribution (Figure 11a). Also shown in Figure 11a is an alternative double exponential 

distribution. Clearly, this dataset follows a normal distribution instead of a double exponential 

distribution. This result is also demonstrated by the exceedance plots of the two distributions. 

The data follow the normal exceedace plot (Figure 11b) better than the exponential exceedance 

plot (Figure 11c).   
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Figures 12 through 15 show data combining all faults/fault segments plotted against 

normal and double exponential models for the approximately mapped, concealed, inferred, and 

previously unmapped categories, respectively. Figure 12 reveals that a normal distribution is not 

a good approximation for the approximately mapped category data. Instead, the double 

exponential distribution shows a much better fit. For the concealed category, the data seem to 

follow normal distribution initially (to approximately 30 m or one standard deviation), then 

deviate to follow approximately the exponential distribution. In general, the data follow a double 

exponential distribution better than a normal distribution. The distributions of inferred and 

previously unmapped categories can be better characterized by double exponential distributions 

than by normal distributions, although the fit is rather poor. 

We modeled the epistemic portion of location uncertainty for the accurately mapped fault 

trace category with a normal distribution as we had done previously. However, a double 

exponential distribution seems more appropriate for other categories. Figure 16 compares the 

probability density for these two distributions. Both distributions are centered on zero (i.e., 

mapped fault). For a given standard deviation (30 m is used for the curves shown), the overall 

density charts look similar (Figure 16a). However, on a log-density scale (Figure 16b), 

exponential is linear and normal is quadratic. This difference means that the likelihood of 

outliers is different for the two models. If the application is mostly concerned with distances 

within 1 to 2 standard deviations from the mean (mapped fault), there will be little difference 

between the two models. However, for distances greater than 2 standard deviations, the two 

models can give dramatically different results, and the exponential model gives more 

conservative estimates. 

We did not attempt to determine the type of distribution for location variability data 

because of limited sample size. We continue to assume that location variability is normally 

distributed.    

Implementation in PFDHA 

In probabilistic ground motion hazard analyses, it is common to use logic trees to treat 

epistemic uncertainty. A logic tree consists of a series of branches that describe alternative 

models/or parameter values. Each branch represents an alternative credible model or parameter. 

The weights on the branches represent the judgment about the credibility of the alternative 

models. The branch weights sum to unity. Weights on the branches of logic trees reflect current 

scientific judgment in the relative merits of the alternative models. Mathematically, weights are 

probabilities.  

We modified our existing PFDHA code to allow a logic tree approach for users to decide 

whether and how to include location uncertainty. The code provides location uncertainty data 

from our previous study based on mapped surface ruptures from historical earthquakes and 

location uncertainty data from imagery-based fault interpretations obtained in this study. These 

choices result in alternative displacement profiles and hazard curves so that the mean profile and 

hazard curve can be determined by weighted average, and weights can be selected on a case-by-

case basis. Mathematically, both location variability and location uncertainty are accounted for 

by integrating a probability density function. For variability, we assume a normal distribution. 

We continue to assume that location uncertainty data from previous historical surface ruptures 

follow a normal distribution. For the newly acquired data from imagery-based fault 
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interpretations, however, we adopt a normal distribution for the accurately mapped category and 

double exponential distributions for other categories. 

Example Applications 

In this section, we present examples showing how probabilistic estimates of fault rupture 

hazards may be affected by location uncertainty and variability by examining estimated fault 

displacement at a given hazard level (10% probability of exceedance in 50 years) along a 

transect oriented normal to the mapped fault for various location uncertainty and variability cases 

(Figure 19). In all cases, we modeled a fault that ruptures with a characteristic M7 earthquake on 

average every 140 years, resulting in a rate of 0.00714 earthquake per year. We performed a 

probabilistic fault rupture hazard analysis using this single rupture source and did not examine 

the effects of a Gutenberg–Richter magnitude-frequency distribution. In all calculations, we 

assumed that the principal fault displacement can occur within 2 standard deviations of the 

mapped fault trace with standard deviations given in Table 1 for uncertainties obtained 

previously from historical surface rupture, Table 7 for uncertainties obtained from imagery-based 

study, and Table 8 for location variability. The uncertainty and variability in terms of standard 

deviations around the mapped fault are also given in parentheses in Figure 19. In these 

calculations, we considered the probability of surface rupture on the fault to be one, i.e., we did 

not allow lack of surface rupture directly along the fault. In addition, probabilistic displacements 

were calculated using 200 m × 200 m cells and a bilinear regression model and magnitude-

distance regression approach discussed in Petersen el al. (2011). 

Figure 19 shows the strong effect of different mapping accuracy categories on the 

estimated displacement. As observed in our previous studies (Petersen et al., 2011; Chen and 

Petersen, 2011), accurately mapped, approximately mapped, concealed, and inferred fault trace 

categories have increasingly greater location uncertainty determined from historical surface 

rupture data (dashed curves in Figure 19). Our calculations indicate that accurately mapped 

traces have a standard deviation of about 27 m. However, the inferred traces have standard 

deviations almost three times as large. This higher uncertainty translates into wider displacement 

profile across the fault and increased hazard at distances beyond 150 m. Similar trends are 

observed for data from imagery-based analyses. We note that standard deviation from imagery-

based analyses is consistently lower than standard deviation determined from historical surface 

ruptures for a given mapping category, resulting in narrower displacement profile. The fact that 

COV in imagery-based data is lower than the COV in data from historical surface rupture may 

indicate lesser degree of variation in the imagery-based dataset.      

As expected, displacement profiles (Figure 19) calculated for the two accurately located 

fault trace category fall between displacement profiles considering only the upper-bound and 

lower-bound aleatory variability, respectively. This reflects a rather wide range of aleatory 

variability estimates. If one uses the average of the displacement profiles for the upper and lower 

bound aleatory estimates, one obtains a displacement profile that is approximately the same as 

the displacement profiles for the accurately located fault trace category.  
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DISCUSSION AND CONCLUSIONS 

We have demonstrated approaches to develop necessary data to quantify two kinds of 

location uncertainties in surface fault rupture associated with large earthquakes for probabilistic 

fault displacement hazard analyses. These are uncertainty associated with the accuracy of 

existing fault maps (epistemic uncertainty) and natural variability in the location of potential 

surface rupture around a previously existing, accurately located earthquake fault (aleatory 

variability).   

Quantification of epistemic uncertainty in rupture location is demonstrated using a GIS-

based approach and a statistically robust dataset was developed for the published AP Earthquake 

Fault Zone maps. This dataset and its summary statistics can be utilized directly in engineering 

practices if a fault displacement hazard analysis is based on the published AP fault maps. AP 

maps have been widely distributed and routinely referenced in engineering practice in California. 

One can easily check the availability of these maps and download them from CGS website at: 

http://www.conservation.ca.gov/cgs/rghm/ap/Pages/Index.aspx. Although the epistemic data and 

statistics developed in this study apply only to the AP fault maps, the approach is applicable 

when other fault maps are used. We recommend quantification of epistemic uncertainty for other 

fault maps if probabilistic fault displacement hazard analyses rely on such maps.  

Quantification of aleatory variability in rupture location is challenging because of limited 

data and many factors affecting the interpretability of available data. We compiled a dataset by 

examining trenches that have identified paleoseismic events and by re-analyzing trench logs 

from decades of fault investigations for research and development projects in California. 

Although the data are not sufficient for establishing a meaningful statistical distribution, we were 

able to infer an upper bound and a lower bound to aleatory location variability. Our aleatory 

variability dataset can be applied to strike-slip faults in active tectonic regions similar to 

California. We note that aleatory variability may be highly dependent on local complexities in 

the fault, such as changes in strike and stepovers. It may also depend on near surface geologic 

conditions such as type of soil and surface topography. We also note that some faults may 

behave in a more predictable manner and produce earthquakes that rupture repeatedly along the 

same surface fault trace at some locations, such as at the fault scarp shown in Figure 4 along the 

Superstition Hills fault. We believe that aleatory variability is independent of surface fault trace 

mapping accuracy (e.g., the fault trace categories in the AP fault maps). However, our aleatory 

dataset shows larger scatter for concealed and inferred categories. This result may be a 

manifestation of the effect of near surface fault geometric characteristics on aleatory variability 

and, subsequently, on a geologist’s ability to recognize and accurately map the fault.    

We modified our numerical algorithms to treat aleatory variability and epistemic 

uncertainty separately. A simple example was given to demonstrate that estimated probabilistic 

fault displacement hazards can be better constrained and are likely reduced if uncertainty due to 

mapping inaccuracy is removed or reduced. A practical implication of this study is that reducing 

uncertainty in rupture location can result in more economical design. This benefit may be 

particularly true for lifelines crossing faults because detailed characteristics of potential 

displacement profiles (such as those shown in Figure 19) may significantly affect the 

performance of these lifelines during a surface rupturing earthquake.  

 

http://www.conservation.ca.gov/cgs/rghm/ap/Pages/Index.aspx
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TABLES AND FIGURES 

 

Table 1. Summary statistics for location uncertainty determined by Petersen et al. (2011) based on surface ruptures 

from historic earthquakes  

Type of Mapped Trace mean (m) one-sided σ COV two-sided σ 

Accurate 18.5 19.5 1.1 26.9 

Approximate 25.2 35.9 1.4 43.8 

Concealed 39.4 52.4 1.3 65.5 

Inferred 45.1 57.0 1.3 72.7 

All 30.6 43.1 1.4 52.9 

       
 
 
Table 2. Summary statistics of fault location uncertainty for data group 1 (Antelope area) 

 

Fault traces in Antelope mapped by William Bryant 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 10.6 8.2 13.5 1053 

Approximate 19.0 20.9 28.2 2018 

Concealed 40.4 31.6 51.3 298 

Inferred - - - - 

All-Data 18.3 20.8 27.7 3369 

All-Type 23.3 20.2 30.9 3 

Unmapped 172.3 170.5 45.1 573 

Fault traces in Antelope mapped by Jerry Treiman 

 Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 13.5 10.9 17.3 1590 

Approximate 26.6 25.9 37.1 3142 

Concealed 39.9 30.3 50.1 557 

Inferred - - - - 

All-Data 24.0 24.4 34.2 5289 

All-Type 26.7 22.3 34.8 3 

Unmapped 190.8 139.2 236.1 2916 

Statistics for Fault Traces in Antelope (average of Bryant and Treiman) 

 Mean (m) One-Sided σ Two-Sided σ - 

Accurate 12.1 9.6 15.4 - 

Approximate 22.8 23.4 32.6 - 

Concealed 40.2 30.9 50.7 - 

Inferred - - - - 

All-Data 21.2 22.6 30.9 - 

All-Type 25.0 21.3 32.8 - 

Unmapped 181.5 154.8 238.6 - 
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Table 3. Summary statistics of fault location uncertainty for data group 1 (Indio and Yucaipa areas)  

 

Fault traces in the Indio Study Area 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 20.8 18.6 27.9 503 

Approximate 65.3 42.1 77.7 68 

Concealed - - - - 

Inferred - - - - 

All-Data 26.1 26.9 37.5 571 

All-Type 43.0 30.4 52.7 2 

Unmapped 131.5 68.7 45.1 53 

Fault traces in Yucaipa Study Area 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 16.1 12.0 20.0 186 

Approximate 18.7 18.3 26.2 444 

Concealed 23.0 18.5 29.5 114 

Inferred - - - - 

All-Data 18.7 17.1 25.3 744 

All-Type 19.2 16.3 25.2 3 

Unmapped 80.1 39.4 89.3 83 
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Table 4. Summary statistics of fault location uncertainty for data group 2  

 

Southern San Andreas Fault - Carrizo Plain 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 18.5 12.9 22.6 4654 

Approximate 29.6 26.6 39.9 2368 

Concealed 28.1 22.8 36.2 31 

Inferred 72.2 53.8 90.1 182 

All-Data 23.5 22.4 32.5 7235 

All-Type 37.1 29.0 47.1 4 

Unmapped 186.6 153.2 45.1 1681 

Garlock Fault - Central and East 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 13.9 11.9 18.3 4345 

Approximate 31.1 24.4 39.6 725 

Concealed 21.6 15.1 26.3 350 

Inferred 17.7 12.5 21.7 521 

All-Data 16.8 15.3 22.8 5941 

All-Type 21.1 16.0 26.5 4 

Unmapped 147.7 216.2 261.9 1838 
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Table 5. Quadrangles of the previously published AP maps along sections of faults sampled in data group 3 

 
Southern San Andreas Fault  

Holland Canyon  Elkhorn Hills 

La Panza NE Maricopa 

Las Yeguas Ranch  LaLiebre Ranch 

McKittrick Summit  Telegraph Peak  

Painted Rock San Bernardino North 

Panorama Hills  Morongo Valley SE1/4 

Well Ranch   

Northern San Andreas Fault  

Point Arena Cherry Peak 

Fort Ross  Bickmore Canyon  

Montara Mountain San Benito 

Mindego Hill,  Topo Valley    

Castle Rock Ridge Rock Spring Peak 

Paicine  

Hayward-Rodgers Creek Fault  

Healdsburg Sears Point 

Cotati Lick Observatory 

Glen Ellen  

San Jacinto Fault  

Brawley NW Clark Lake NE 

Fonts Point  

Elsinore 

Arroyo Taplado Earthquake Valley 

Monument Peak  

Garlock 

Mojave NE1/4 Wingate Pass SE 

Klinker Mtn Quail Mountains SW 

Spangler Hills East Quail Mountains SE 

Searles Lake SE Leach Lake SW 

Wingate Pass SW Leach Lake SE 

Ash Hill Fault 

Maturango Peak SE Revenue Canyon 

Maturango Peak NE Panamint Springs 

Lenwood Fault 

Old Woman Springs Grand View Mine 

Fry Mountains  

Panamint Fault 

Hidden Spring Manly Fall 

Copper Queen Canyon Wingate Pass 

Sourdough Spring Quail Mountains SW1 

  



22 
 

 
Table 6. Summary statistics of fault location uncertainty for data group 3  

 

Southern San Andreas Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 25.4 15.2 29.6 1734 

Approximate 55.0 34.0 64.6 137 

Concealed 31.4 2.8 31.5 11 

Inferred - - - - 

All-Data 27.6 18.9 33.4 1882 

All-Type 37.3 17.3 41.1 3 

Unmapped 483.7 209.8 527.3 149 

Northern San Andreas Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 28.2 19.8 34.4 678 

Approximate 17.1 14.3 22.3 65 

Concealed 42.5 17.6 46.0 30 

Inferred - - - - 

All-Data 27.8 19.8 34.1 773 

All-Type 29.3 17.2 34.0 3 

Unmapped - - - - 

Hayward-Rodgers Creek Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 21.6 16.2 27.0 155 

Approximate 34.4 24.3 42.1 110 

Concealed 76.2 9.8 76.9 6 

Inferred 21.1 18.1 27.8 48 

All-Data 27.0 21.5 34.5 319 

All-Type 44.1 16.8 47.2 3 

Unmapped 198.9 17.7 199.7 50 

San Jacinto Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 19.2 12.4 22.9 311 

Approximate - - - - 

Concealed 24.4 11.3 26.9 39 

Inferred - - - - 

All-Data 19.8 12.4 23.4 350 

All-Type 21.8 11.9 24.8 2 

Unmapped 81.3 32.7 87.6 33 
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Table 6. Summary statistics of fault location uncertainty for data group 3 (cont.) 

 

Elsinore Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 16.0 15.0 21.9 203 

Approximate - - - - 

Concealed - - - - 

Inferred - - - - 

All-Data 16.0 15.0 21.9 203 

All-Type 16.0 15.0 21.9 1 

Unmapped 51.3 37.2 63.4 97 

Garlock Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 20.5 14.2 24.9 1781 

Approximate 36.5 18.7 41.0 124 

Concealed 27.2 13.7 30.5 54 

Inferred 29.8 27.7 40.7 144 

All-Data 22.2 16.3 27.6 2103 

All-Type 28.5 18.6 34.0 4 

Unmapped 116.9 159.7 197.9 388 

Ash Hill Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 18.5 12.3 22.2 245 

Approximate 16.4 14.5 21.9 354 

Concealed 43.6 34.4 55.5 99 

Inferred - - - - 

All-Data 21.0 20.3 29.2 698 

All-Type 26.1 20.4 33.2 3 

Unmapped 368.1 510.5 629.3 629 

Lenwood Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 19.7 15.4 25.0 179 

Approximate 20.3 18.6 27.5 139 

Concealed 40.0 7.4 40.7 22 

Inferred 16.8 13.5 - 68 

All-Data 20.5 16.7 26.5 406 

All-Type 24.2 13.7 27.8 4 

Unmapped 216.3 71.9 228.0 39 
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Table 6. Summary statistics of fault location uncertainty for data group 3 (cont.) 

 

Panamint Fault 

Type of Mapped Trace Mean (m) One-Sided σ Two-Sided σ Number of Points 

Accurate 9.8 7.6 12.4 400 

Approximate 17.6 14.2 22.6 377 

Concealed 21.7 14.5 26.1 58 

Inferred 27.1 18.5 32.8 69 

All-Data 15.1 13.3 20.1 904 

All-Type 19.1 13.7 23.5 4 

Unmapped 77.7 71.0 105.3 43 

 
 
Table 7. Summary statistics of data combining all faults of all three data groups 

 
Type of Mapped 

Trace 
Mean (m) One-Sided σ COV Two-Sided σ 

Number of 

Points 

Accurate 17.7 13.9 0.8 22.5 17951 

Approximate 25.8 25.0 1.0 35.9 10071 

Concealed 33.9 27.3 0.8 43.5 1675 

Inferred 29.8 33.9 1.1 45.1 1030 

All 21.6 20.5 0.9 29.8 31038 

Unmapped 190.4 221.8 1.2 292.3 8572 

 
 
Table 8. Summary statistics of location variability data 

 

Representation Mean (m) One-Sided σ COV Two-Sided σ 
Number of 

Data Points 

Upper Bound 17.4 32.3 1.85 36.7 125 

Lower Bound 10.0 10.1 1.01 14.2 52 

Event zone width 2.8 2.6 0.93 3.9 49 
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 (a) (b) 
Figure 1. Examples of calculated displacement hazard profiles showing displacements across a mapped fault for a hazard level of 10% probability of 

exceedance in 50 years for: (a) different mapping quality, (b) different complexity characteristics (Petersen et al., 2010).  The examples are for a M7.0 

earthquake occurring once every 140 years. 
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Figure 2.  Example of probabilistic fault displacement hazard map with 10% probability of being exceeded 

in 50 years at the Highway 580-238 interchange (Chen et al., 2009). 
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Figure 3. Locations of three groups of surface fault location uncertainty data sites (1 – Antelope, 2 – 

Indio, 3 – Yucaipa, 4 – Carrizo Plain, and 5 – Garlock) and trenches studied for fault location 

variability data. 
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Figure 4. LiDAR hillshade relief map showing the relation between location of fault scarp (shown by 

arrows) and mapped fault trace locations (in red) taken from a 1:24,000-scale Alquist-Priolo Earthquake 

Fault Zone map.  In this case, the discrepancy between the mapped fault trace and the geomorphic fault 

feature, labeled “d”, is about 30 m.  The high horizontal accuracy of the LiDAR (sub-meter) allows direct 

comparison between the mapped fault location and the location of the fault-related feature on the Earth’s 

surface.  This discrepancy is associated with the epistemic uncertainty in the 1:24,000 scale mapping. 
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Figure 5. Comparison of fault features interpreted based on LiDAR and other imagery with fault traces 

previously mapped in the Alquist-Priolo Earthquake Fault Zone Maps, illustrating equal interval sample points 

along the interpreted fault features and their association with the mapped fault traces.  Distances from sample 

points to the nearest mapped fault traces are measured and analyzed. 



30 
 

Figure 6. Fault traces (green) interpreted based on LiDAR and other imagery from Perez et al. (2011). Also shown are various categories of 

previously mapped fault traces (accurately located, approximately located, concealed, and inferred; see Figure 5 legends for color scheme) and 

custom-processed LiDAR DEMs. For reference, location of this segment of the San Andreas fault is marked by number 1 in Figure 3.   

30 
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Figure 7. Fault traces (green) interpreted based on LiDAR and other imagery from Treiman et al. (2010) in the  

Yucaipa (upper figure) and Indio (lower figure) study areas along the southern San Andreas fault. Also shown are 

various categories of previously mapped fault traces and custom-processed LiDAR DEMs. For reference, location of 

the Indio study area is marked by number 2 in Figure 3, and the Yucaipa area by number 3.   
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Figure 8. Existence Probability of previously unmapped traces from imagery-based fault interpretation by 

two CGS fault experts, William Bryant (legends starting with letter B) and Jerry Trainmen (legend starting 

with letter T), in a 26-km section along the southern San Andreas fault in the Antelope Valley near Palmdale 

(location marked by number 1 on Figure 3). The probability assessments were based on square grids of cell 

sizes of 25 m
2
, 50 m

2
, 100 m

2
, 150 m

2
, and 200 m

2
, respectively.   

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

P
ro

b
ab

ili
ty

 o
f 

P
re

vi
o

u
ly

 U
n

m
ap

p
e

d
 F

au
lt

Fault Distance (m)

B_g25

B_g50

B_j100

B_g150

B_g200

T_g25

T_g50

T_g100

T_g150

T_g200



33 
 

  

 
 
Figure 9. Normal quantile-quantile plot. A normal quantile-quantile plot plots the ranked observations on 

the vertical axis against the quantile of the normal distribution. A nearly straight-line relationship suggests 

that the data come from a normal distribution. The intercept on the vertical axis is an estimate of the 

population mean, μ, and the slope is an estimate of the standard deviation, σ. 
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Figure 10. Normal quantile-quantile plot combining all of the accurately mapped fault data. It shows that 

the normal distribution is a good approximation for data within 2.5 standard deviations. When centered on 

the mapped fault (zero intercept), the slope of the least-squares best-fit line is 22.5 m. This slope is the 

same as the two-sided sample standard deviation for all accurately mapped data. 
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Figure 12. Comparison of approximately mapped fault distance data combining all faults/fault 

segments: a. data cumulative distribution compared to theoretical normal and exponential 

cumulative distributions; b. exceedance plot for normal distribution; c. exceedance plot for 

exponential distribution. 
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Figure 13. Comparison of concealed fault distance data combining all faults/fault segments: a. data 

cumulative distribution compared to theoretical normal and exponential cumulative distributions; b. 

exceedance plot for normal distribution; c. exceedance plot for exponential distribution. 
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Figure 14. Comparison of inferred fault distance data combining all faults/fault segments: a. data 

cumulative distribution compared to theoretical normal and exponential cumulative distributions; b. 

exceedance plot for normal distribution; c. exceedance plot for exponential distribution. 
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Figure 15. Comparison of previously unmapped fault distance data combining all faults/fault 

segments: a. data cumulative distribution compared to theoretical normal and exponential 

cumulative distributions; b. exceedance plot for normal distribution; c. exceedance plot for 

exponential distribution. 
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Figure 16. Comparison of probability density for normal and double exponential distributions: a. 

density curve in linear scale, b. density curves in log-linear scale. A standard deviation of 30 m is 

used for both distributions. 
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Figure 17. Comparison of displacement profiles across a mapped fault for a hazard level of 10% 

probability of exceedance in 50 years for different mapping quality categories based on quantifications of 

epistemic uncertainty from this study (imagery-based) and from Petersen et la. (2011) study (based on 

historical surface ruptures). Displacement profiles are also shown consider only aleatory location 

variability. The examples are for an M7.0 earthquake occurring once every 140 years. Other assumptions 

are described in the text. 
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Appendix A: Aleatory Location Variability Dataset

Mapped 

Trace 

Category

Trench 

Number

Trench 

Length 

(m)

Maximum 

Width of 

Faulting 

(m)

"Half 

Trench" 

Length (m)

Zone "Half 

Width" (m)
Event

Event 

Zone 

Width 

(m)

MRE 

Trace to 

Event 

Distance 

(m)

Comments Citation

ACC BDT4 NW 37 12.9 19 12.9 1 (BDT4a) 11 Ackiz et al. (2009)

ACC BDT4 NW 37 2 (BDT4b) 3 6.2 Ackiz et al. (2009)

APP 3 175 114 175 114
Soil and bedrock.  Other trenches at 

site not compiled (too short)
AP sites

APP 1 137 15 137 15

Trench mostly in bedrock.  Note that 

main strand of mapped RCF not 

crossed by trench, but is a couple 

meters to the east of the east end of 

trench. Other trenches at site too 

short to be useful.

AP sites

APP 2 25 18 25 18 See previous comments. AP sites

ACC 1 76 4.5 53 4.5

Trench is mostly in bedrock, but 

fault cuts Quaternary deposits.  1 of 

2 strands at site, other strand not 

trenched (obvious trace at base of 

scarp)

AP sites

CON 1 64 1 51 1 Mapped trace is concealed AP sites

CON 1 27 4.6 13 4.6 1? 1 event? AP sites

CON 2 45 7.6 22 7.6 1 event? AP sites

CON 3 27 6 24 6 Possibly more than one event. AP sites

ACC 2 35 1.4 16 1.4 Soil and bedrock exposed. AP sites
ACC 3 40 2.1 20 2.1 AP sites
ACC 4 40 1 20 1 AP sites
ACC 5 43 10 20 10 AP sites

ACC 1 27 7 19 7
Trench extends in only one direction 

away from fault.
AP sites

ACC 1 41 7.6 25 7.6 AP sites
ACC 1 36 1 18 1 Probably creeping trace AP sites

ACC 3‐4 (compos 24 1 19 1
Single trace.  Exposure is a 

composite of three trenches
AP sites

APP 1 49 3.4 39 3.4 AP sites
APP 1 73 1 49 1 Generally flat lying alluvium AP sites
APP 3 75 3.8 45 3.8 Generally flat lying alluvium AP sites

APP 1 21.3 6.1 16 6.1 in alluvium AP sites

APP 2 16.8 4.9 10 4.9 AP sites

APP T1‐99 18.3 1 12 1
Possible creeping trace.  Material 

called "Quaternary alluvium"
AP sites

APP 1 64 7.3 61 7.3
Mostly exposes steeply dipping 

bedrock
AP sites

APP 2 27 2 20 2
Faults flat‐laying alluvium against 

steeply dipping bedrock
AP sites

ACC /2 (composi 52 1 39 1 AP sites

ACC WLA‐1 29 2 20 2 AP sites

APP 2 76 19.5 53 19.5
Width based on reported 

"deformation zone"
AP sites

APP 3 27.4 5.8 19 5.8 AP sites

APP 98‐3 60 9 60 9 Exposes Irvington gravels AP sites



Mapped 

Trace 

Category

Trench 

Number

Trench 

Length 

(m)

Maximum 

Width of 

Faulting 

(m)

"Half 

Trench" 

Length (m)

Zone "Half 

Width" (m)
Event

Event 

Zone 

Width 

(m)

MRE 

Trace to 

Event 
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(m)

Comments Citation

APP 1 32 1 22 1

Trenches expose decomposed 

bedrock.  Total trench length is 

effective length from offset 

trenches.

AP sites

APP 2 32 4 22 4

Trenches expose decomposed 

bedrock.  Total trench length is 

effective length from offset 

trenches.

AP sites

APP 2 17 3 9 3
Total trench length is effective 

length from offset trenches.
AP sites

APP 3 32 4.5 29 4.5 AP sites
APP 4 20 10.7 14 10.7 AP sites

APP 93‐3 19 11 19 11 1 3 Probable MRE identified. Reheis (1995)

APP 1 30 3.4 24 3.4 AP sites

APP 2 12 4 6 4
Trench length a composite from 

other trenches.
AP sites

ACC 1 and 2 51 6 30 6
Trace originally mapped as 

concealed?
AP sites

APP 1 and 2 120 1 100 1 AP sites

ACC SPBT‐1 25 1 14 1 Kelson et al (2000)

APP 1 44 2 12 2 AP sites

ACC 1 53 22 40 22

Weak shearing and slickenlines 

observed at max extent of faulting.  

One apparent major fault at station 

1‐1.

AP sites

ACC A 35 1 27 1 AP sites

ACC 1 15 2 7 2 1 1
Lienkaemper and 

Williams (1999)

ACC 1 15 2+ 2 1
Lienkaemper and 

Williams (1999)

ACC 1 25 1 12 1 creep? 1 Kelson et al (200X)

ACC 1 25 1? 1? 0.5 Kelson et al (200X)

ACC 5 6 1.5 5 1.5 1 1.5
Fault apparently reruptures narrow 

zone, creating colluvial wedges
Kelson et al (2006)

ACC 5 6 2 1.5
Fault apparently reruptures narrow 

zone, creating colluvial wedges
Kelson et al (2006)

ACC 5 6 3 1.5
Fault apparently reruptures narrow 

zone, creating colluvial wedges
Kelson et al (2006)

ACC 5 6 4 1.5
Fault apparently reruptures narrow 

zone, creating colluvial wedges
Kelson et al (2006)

ACC 5 6 5 1.5
Fault apparently reruptures narrow 

zone, creating colluvial wedges
Kelson et al (2006)

ACC T1 and T3 33 12.5 25 12.5 T 4.5
Vaughan and Rockwell 

(1998)

ACC T1 and T3 33 P 6.5?
Vaughan and Rockwell 

(1998)

ACC T1 and T3 33 L 6.5
Vaughan and Rockwell 

(1998)

ACC T1 and T3 33 H 12.5
Vaughan and Rockwell 

(1998)

ACC 1 12 5.1 9.6 5.1 many 39 m total lateral offset Simpson et al (1998)

ACC 2 14 2 11 2 many 39 m total lateral offset Simpson et al (1998)
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ACC T5 40 2.7 39 2.7 Z 1
T5 is selected as representative 

trench for the site.
Kelson et al. (1996)

ACC T5 2.7 Y 1 1
T5 is selected as representative 

trench for the site.
Kelson et al. (1996)

ACC T5 2.7 X 2 2
T5 is selected as representative 

trench for the site.
Kelson et al. (1996)

ACC T5 2.7 W 2.4 2.7
T5 is selected as representative 

trench for the site.
Kelson et al. (1996)

ACC "main" 20 3 20 3
Individual event information 

available, but very complex
Rockwell et al (1986)

APP 1 23 9.5 17 9.5 1 9.5 Rubin and Sieh (1997)

APP 1 23 PEN 7.5 Rubin and Sieh (1997)

APP 1 20 4.5 10 4.5 1 2.8 Hitchcock et al. (2001)

APP 1 20 2 1.9 Hitchcock et al. (2001)

APP 50 2 20 2 Hitchcock et al. (2001)

ACC 04A 110 3.8 1 1

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side)

Lienkaemper and 

Williams (2008)

ACC 04A 110 2 0.6

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side)

Lienkaemper and 

Williams (2008)

ACC 04A 110 3 0.55

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side)

Lienkaemper and 

Williams (2008)

ACC 04A 110 4 3.4

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side)

Lienkaemper and 

Williams (2008)

ACC 04A 110 5 3

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)
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ACC 04A 110 6 3

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)

ACC 04A 110 7 3

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)

ACC 04A 110 8 3.2

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)

ACC 04A 110 9 ?

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)

ACC 04A 110 10 3.9

Trench 04A goes across the entire 

pond.  Entries here are only for the 

west trace, and do not include east 

strand (not sure how to correlate 

events from east to west side).  

Event zone width assumes full width 

of zone.

Lienkaemper and 

Williams (2008)

APP 1SE97 35 2 24 2 1 1 ‐ 2 Fumal et al. (2003)

APP 1SE97 35 2 1 Fumal et al. (2003)

APP 1SE97 35 3 1 ‐ 2 Fumal et al. (2003)

APP 1SE97 35 4 1 ‐ 2 Fumal et al. (2003)

APP 2 14 4 10 4 1 2 Single fissure Fumal et al. (2003)

APP 6 35 2 24 2 1 1 ‐ 2 Fumal et al. (2003)

APP 6 35 2 1 Fumal et al. (2003)

APP 6 35 3 1 ‐ 2 Fumal et al. (2003)

APP 6 35 4 1 ‐ 2 Fumal et al. (2003)

APP 1 35 2.5 17 2.5 1 1
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

APP 1 35 2 2
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

APP 1 35 3 3
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

APP 1 35 4 4
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

APP 1 35 5 5
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)
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APP 5 17.5 1 9 1 1 1
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

APP 5 17.5 2 1
Trenches 1 and 5 considered 

representative for this site.
Fumal et al. (2003)

ACC 1 & 4 369 8 221 8 Trench is a composite of T1 and T4. AP Sites

ACC 1 195 57 187 57
Site appears to be in a step over 

between mapped traces
AP Sites

ACC 1 244 98 146 98 AP Sites

APP 1, 2, 3 171 168 171 168

Composite trench spans distance 

between primary mapped trace to 

fault seen in T2.

AP Sites

APP 1 (south) 152 6 131 6

Trench spans two mapped traces.  

Measurement here splits the trench 

into two halfs.

AP Sites

APP 1 (north) 152 1 152 1

Trench spans two mapped traces.  

Measurement here splits the trench 

into two halfs.

AP Sites

ACC 1 142 6 123 6 AP Sites

ACC 1 76 17 57 17 AP Sites

APP 1 36 21 27 21 AP Sites

APP 4 43 11 38 11 AP Sites

APP 5 91 22 82 22 AP Sites

CON 1 680 20 340 20 AP Sites

CON 2 27 4 24 4 AP Sites

CON 1 253 1 242 1 AP Sites

APP 1 43 21 40 21 AP Sites

ACC 1 103 1 103 1 AP Sites

ACC 1, 2 122 81 85 81
Trench composite of T1 and T2, with 

25' of overlap removed.
AP Sites

APP 1 152 43 152 43 AP Sites

CON 1, 3 271 185 271 185
Fault zone 3 not well‐expressed in 

T3, but observed in other trenches.
AP Sites

ACC 4 91 1 77 1 AP Sites

ACC 98 36 76 36 AP Sites

ACC 4 171 1 128 1 AP Sites

ACC 1 177 1 30 1 AP Sites

ACC 1 190 58 190 58 AP Sites

ACC 2 238 17 232 17 AP Sites

ACC 1, 2, B 335 54 167 54 Trench 1, 2, composite AP Sites

ACC B 167 54 109 54 AP Sites

ACC 1 282 4.3 274 4.3 AP Sites
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APP 1 152 113 146 113 AP Sites

CON 1 73 1 67 1
Fault trace not previously mapped, 

but site is within A‐P zone
AP Sites

ACC 1 109 91 104 91 AP Sites

APP 1 15 1 10 1
Only one mapped fault trace 

trenched on property.
AP Sites

ACC 1 24 6 17 6
No scale provided, measurements 

off of site map.
AP Sites

APP 1A 73 13 57 13 AP Sites

APP 1B 80 20 80 20 AP Sites

APP T2 65 20 37 20 AP Sites

APP T3B 66 30 40 30 AP Sites

APP 1 98 1.2 90 1.2 AP Sites

APP 1 116 14 116 14 AP Sites

ACC N 73 6 62 6 AP Sites

ACC S 34 21 24 21 AP Sites

ACC TP‐3 150 105 127 105 AP Sites

APP 1 130 1 117 1 AP Sites

ACC 1 149 5.5 134 5.5 AP Sites

ACC 1 481 125 390 125

East trace not previously mapped.  

Other trenches on property, most 

are locator trenches.

AP Sites

ACC 9 82 17 68 17 AP Sites

ACC 10 46 13 23 13 AP Sites

ACC 11 27 6 13 6 AP Sites

ACC 1 16 1 15 1 AP Sites

CON A 127 3 95 3 AP Sites

CON B 35 2.4 18 2.4 AP Sites

APP 2 61 1 43 1
Fault is a secondary strand to the 

primary mapped trace located ~50 

m to the east.

AP Sites

APP A, B, C 126 6 126 6 AP Sites

CON T1 908 12 454 12
Longest trench across site, other 

trenches mostly short locator 

trenches.

AP Sites

CON T22 57 1 40 1
Additional possible folding over 25 

feet observed in trench.
AP Sites

APP 1 255 10 192 10 AP Sites

APP 2  170 22 122 10 AP Sites

APP 11 316 17 180 17 AP Sites
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ACC 1A/B 230 145
No primary fault, lots of older 

deformation mixed with younger 

deformation.

AP Sites

CON 1 570 48 285 48 AP Sites

CON 1, 2 84 51 AP Sites

CON A, B103 103 13 90 13 AP Sites

ACC 1 130 1 21 1
This site is about 100 m from nearest 

mapped trace.
AP Sites

ACC TR‐3 85 11 85 11 Only east side of fault trenched. AP Sites

APP TR‐2 61 3 30 3 AP Sites

APP TR‐2D 15 4.6 7 4.6 AP Sites

APP TR‐2E 15 4.6 7 4.6 AP Sites
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