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Abstract 

 
The goal of this research project was to seek ways to improve the accuracy of 

aftershock forecasts issued within 1-2 hours of a strong crustal earthquake anywhere in 
the U.S. A dataset of 61 earthquakes with M≥5.0 in California from 1971 to 2009 was 
analyzed.  The aftershock sequences were described using the Reasenberg and Jones 
(1989) version of Omori’s law, for which three parameters are determined: b, which is 
the b value from the Gutenberg-Richter recurrence relation for the aftershock sequence; 
p, which is the exponent of the Omori's Law temporal decay; and a, which is a constant 
based on the aftershock activity rate at t=0.95.  Correlations of the a, b and p parameters 
with hypocentral depth, stress drop, focal mechanism, and surface faulting were 
investigated.  The most robust statistical result is that on average thrust earthquakes 
generate more prodigious aftershock sequences than strike-slip earthquakes.  The 
presence or absence of surface rupture may exert some control on the average Omori-
Law parameters of aftershock patterns, but the effect is not very statistically significant.  
There is no correlation between any of the Omori-Law parameters and hypocentral depth 
or stress drop.  No seasonal pattern is seen for any of the Omori-Law parameters, which 
suggests that rainfall does not play a controlling the generation of aftershock activity 
following a strong earthquake.  The depth range where most aftershocks take place seems 
to be more controlled by where in California the mainshock takes place than by the focal 
mechanism or the presence or absence of surface faulting of the mainshock.  The 
analyses detailed in this report suggest that source parameters that are available within an 
hour or two of a strong mainshock in California provide very little indication of what 
kind of aftershock sequence will follow the mainshock. 
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Introduction 
 

The goal of this research project was to seek ways to improve the accuracy of 
aftershock forecasts issued within 1-2 hours of a strong crustal earthquake anywhere in 
the U.S.  While forecasting future mainshocks is a very uncertain process for which there 
is no proven method at the present time, statistical forecasts of the probabilities of future 
aftershocks after a large earthquake is, in theory, possible with some reliability (e.g., 
Reasenberg and Jones, 1989). Unfortunately, there is a wide range in the behavior of 
earthquake aftershock sequences from one mainshock to another.  Some earthquakes are 
profuse in the number of aftershocks that they generate, while other earthquakes are 
relatively aftershock-poor.  Some mainshocks are followed by strong aftershocks, while 
others are not.  This wide range in aftershock activity causes large uncertainties in the 
initial aftershock forecasts that are issued immediately following the occurrence of a 
strong earthquake.  This is unfortunate because the greatest aftershock hazard occurs in 
the first 24-48 hours after a mainshock.  The time of greatest uncertainty in forecasting 
expected aftershock rates coincides with the time when search-and-rescue efforts must 
take place if the mainshock was damaging to local population centers.  Clearly, 
improving the accuracy of aftershock forecasts issued within 1-2 hours of a strong 
earthquake is an important goal that can help save lives and prevent injuries. 

 
At the present time there is a paucity of investigations into why some earthquakes 

generate a large number of aftershocks and other earthquakes do not.  The rate-and-state 
theory developed by Dieterich (1994) predicts that the average rate of aftershock decay is 
a function of the mainshock recurrence time and of the stressing history.  However, for 
most faults the mainshock recurrence times and stress histories are not well known, and 
so testing Dieterich’s ideas with observational data from real earthquakes is still quite 
difficult.  Do rates of aftershock activity depend on the stress drop of the mainshock?  Do 
they depend on the local deformation rate as measured geodetically? Is there a 
dependence of aftershock generation on focal depth for earthquakes that are confined to 
the crust?  The research described in this report addresses these questions about possible 
factors that may control the generation of aftershocks using dataset of aftershock 
sequences of M≥5.0 earthquakes from California. 

 
 
Aftershock Data Set 
 
 A dataset of 61 earthquakes with M≥5.0 in California from 1971 to 2009 was 
selected as the database for this study (Table 1).  The earthquake dataset was confined to 
California because there is a long history of dense earthquake monitoring in the state, 
meaning that there is almost 40 years of well-recorded aftershock sequences within the 
state.  Reasenberg and Jones (1989) have already determined the Omori-Law parameters 
for a number of aftershock sequences in California, and they made their dataset available 
to us for this study (L. Jones, 2010).  For each earthquake in Table 1 for which no Omori-
Law parameters were in the Reasenberg and Jones dataset, aftershocks were extracted 
from either the Northern California Data Center or the Southern California Data Center, 
and these extracted aftershocks were analyzed for their Omori-Law parameters.  In 
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addition, a literature search was carried out to find source parameters such as focal 
mechanism, stress drop, rupture area, and directivity for as many of the earthquakes in 
Table 1 as possible.  Table 2 lists those literature references from which the source 
parameters for the earthquakes in Table 1 were taken. 
 

The parameterization of Omori’s Law that was used in this study is that of 
Reasenberg and Jones (1989).  Their formulation of Omori's Law gives the relationship 
for the activity rate λ at or above magnitude M at time t after a mainshock as 
 

log10(λ(t,M)) = a + b(Mm-M) - p log10(t + 0.05)         (1) 
 
where Mm is the mainshock magnitude, b is the b value from the Gutenberg-Richter 
recurrence relation for the aftershock sequence, p is the exponent of the Omori's Law 
temporal decay, a is a constant based on the aftershock activity rate at t=0.95, and M is 
the minimum magnitude for which the aftershock rate is being computed.  Note that the a 
parameter in Equation (1) is somewhat different from a in the standard Gutenberg-
Richter relation. 
 
 Also shown in Table 1 is a column labeled N1 is another way to describe the 
aftershock activity of a mainshock.  N1 is the number of aftershocks of M≥2.0 that are 
computed for the first day after the mainshock, as calculated using the Omori-Law 
parameters a, b and p for that aftershock sequence. 
 
 The parameters a, b and p in Table 1 were investigated to see if there are any 
mutual dependencies among those parameters.  While they are distinct parameters in 
Equation (1), it is possible that that these parameters might not be independent in 
observed aftershock sequences.  Figure 1 shows correlation plots of a, b and p.  In Figure 
1 it can be seen that the parameter p does not correlate with either a or b, but that there is 
some inverse correlation of a and b.  Thus, for the observed aftershock sequences 
analyzed in this study, a and b are not totally independent of each other. 
 
 
Analyses of Aftershock Parameters 
 
 A number of analyses were carried out to look for correlations of the Omori-Law 
aftershock parameters of Table 1 with commonly reported source parameters of 
mainshocks, especially those source parameters that can be determined within a short 
period of time (minutes to a couple of hours) of the occurrence of a mainshock.  The goal 
of this work is to look for those parameters (or combinations of parameters) that may 
indicate which mainshocks will have more active aftershock sequences and which will 
have less active aftershock sequences.  In this study, this analysis is carried out by 
looking for correlations of the a, b and p parameters with a number of different 
mainshock parameters. 
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Correlation with Focal Depth 
 
 One correlation that was carried out was of the Omori-Law parameters and focal 
depth (Figure 2).  It is well known that earthquakes with deeper hypocenters (deeper than 
about 50 km) have much less active aftershock sequences than earthquakes with 
shallower hypocenters.  This analysis looks to see if there is depth dependence of any of 
the Omori-Law parameters with focal depth for the crustal earthquakes in California.  In 
Figure 2, no clear focal depth dependence is seen for any of the Omori-Law parameters.  
Visually, there appears to be a slight decrease in b value with focal depth, but this is not 
statistically significant. 
 
Correlation with Stress Drop 
 
 Another correlation that was carried out was of the Omori-Law parameters and 
static stress drop (Figure 3).  The stress drops in Figure 3 were compiled from a list of 
stress-drop determination provided by Robert Darragh of Pacific Engineering and 
Analysis.  Only a subset of the earthquakes in Table 1 have stress drop determinations in 
the Darragh dataset.  In Figure 3, no clear stress-drop dependence is seen for any of the 
Omori-Law parameters. 
 

The static stress-drop values in Figure 3 from R. Darragh were all determined 
using a common method.  A literature search for published static stress drops revealed 
that stress-drop values found by different investigators for the same earthquakes are 
significantly different than those used in Figure 3.  This reflects the different methods 
that are used to make static stress-drop estimates as well as uncertainties in the input 
parameters for stress-drop calculations.  For example, for the 1987 M 6.6 Superstition 
Hills earthquake in Southern California, Darragh reports a static stress drop of .41 MPa.  
Moghaddam et al. (2010) report three different static stress-drop values for this 
earthquake using three different methods: 4.8 MPa (PEER-NGA determination), 9.5 MPa 
(based on point-source modeling) and 8.5 MPa (based on finite fault modeling).  
Mohammadioun and Serva (2001) report a stress drop of 1.0 MPa for this event.  
Estimates of the static stress drop for this single earthquake from different investigators 
vary by more than one order of magnitude.  Thus, the lack of correlation of any of the 
Omori-Law parameters with static stress drop may reflect large uncertainties in the static 
stress-drop determinations. 
 
Correlation with Time of Year 
 
 California has a strongly seasonal rainfall pattern, with virtually all of its rainfall 
occurring in the fall, winter or early spring.  Little or no rainfall is experienced in the 
state during the late spring, summer and early fall.  Variations in the water contained in 
faults and underground pores can influence seismicity (Costain et al., 1987), and so it 
might be expected that seismicity parameters would show a seasonal variation.  This 
analysis looks for seasonal variations in the Omori-Law parameters that would reflect a 
response of aftershocks to the seasonal variations in the groundwater that is contained in 
fault zones. 
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Figure 4 shows the monthly values of a, b and p for the dataset of Table 1.  The 

data are plotted versus the month of the mainshock in Figure 4, and the primary 
aftershock activity following each mainshock can extend into one or two months 
following the mainshock.  No seasonal pattern is seen in Figure 4 for any of the Omori-
Law parameters, which suggests that rainfall does not play a controlling role in the 
generation of aftershock activity following a strong earthquake. 
 
Correlation with Focal Mechanism 
 
 Most strong earthquakes in California have strike-slip focal mechanisms on 
vertical or near-vertical faults, and almost all of the rest of the strong earthquakes have 
thrust focal mechanisms or oblique focal mechanisms with combined thrust and strike-
slip components.  For the correlation analysis in this study, the focal mechanisms of the 
earthquakes in Table 1 were divided into two classes.  For each earthquake, the fault 
plane of the event was determined from surface faulting, the spatial locations of its 
aftershocks, or from the predominant orientation of the active faults in the vicinity of the 
event.  Focal mechanisms with rakes between -45° (+315°) and +45° or between +135° 
and +225° were classified as strike-slip earthquakes.  The remaining events were 
classified as thrust earthquakes if their rake is between +45° and +135° and as normal 
earthquakes if their rake is between +225° and +315° (-45°).  The thrust and normal 
earthquakes were lumped into a single classification denoted “not strike-slip” in this 
study.  In most cases, the rake of an earthquake put it unquestionably into the strike-slip 
or the not strike-slip classification.  Searches of the literature and of the internet were 
carried out to find the focal mechanism of each mainshock in this study. 
 

Figure 5 displays the distributions of the a, b and p parameters for the strike-slip 
and not strike-slip classes of earthquakes.  Also shown in Figure 5 is the mean value of 
each of the Omori-Law parameters for each earthquake classification.  The mean values 
of the p values for the two earthquake classifications are equal, and the mean values for 
the two earthquake classifications are close to each other for the b values.  On the other 
hand, the mean a value for the strike-slip earthquakes is much more negative than that for 
the not strike-slip earthquakes.  The difference in the mean a values of the strike-slip and 
not strike-slip earthquakes is statistically significant at the 95% confidence level.  For a 
given b value, an aftershock sequence with a less negative value of a has a higher rate of 
activity than an aftershock sequence with a more negative value of a.  This analysis 
indicates that on average strike-slip mainshocks generate less active aftershock sequences 
than mainshocks with a strong thrust or normal component of slip. 
 
 
Correlation with Surface Faulting 
 
 Many strong earthquakes in California are associated with surface faulting, 
primarily those with strike-slip focal mechanisms.  An analysis was carried out to see if 
there is any systematic difference in the Omori-Law parameters for those earthquakes 
that had surface faulting and those earthquakes for which no surface faulting was 
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observed.  The results of this analysis are shown in Figure 6.  The earthquake data used in 
Figure 6 exclude events from the Cape Mendocino area, because many of the earthquakes 
in that area had offshore ruptures for which the presence or absence of surface faulting 
could not be determined. 
 

The distributions of the a, b and p parameters for earthquakes with and without 
surface faulting show some differences in Figure 6.  Specifically, earthquakes with no 
surface faulting tend to have a higher b value, a lower p value and a lower a value on 
average than those earthquakes for which surface faulting was observed.  On the other 
hand, none of these differences is significant at the 95% confidence interval, and only the 
difference in the mean b values is significant at the 90% confidence interval. 
 
Depth Distributions of Aftershocks 
 
 One other analysis that was carried out was to examine the depth distributions of a 
number of well-recorded aftershock sequences that followed large mainshocks.  The goal 
of this analysis was to see if aftershock depth distributions are controlled by the focal 
mechanism of the mainshock or by the presence or absence of surface faulting.  Figure 7 
shows box plots of the depth distributions of 12 well-recorded aftershock sequences.  
Curiously, in Figure 7 it can be seen that the presence or absence of surface faulting does 
not control the depth range where the majority of the aftershocks take place following a 
mainshock.  Most of the aftershocks of the 1979 Imperial Valley earthquake and the 2004 
Parkfield earthquake were below 5 km, even though both of these earthquakes had 
surface faulting.  On the other hand, the Joshua Tree and Big Bear earthquakes both had 
most of their aftershocks at depths of about 5 km or less, even though no surface faulting 
was found for either event.  Perhaps the most systematic pattern that can be discerned in 
Figure 7 is that the predominant aftershock depth range appears to be a function of where 
in California the mainshock takes place.  The earthquakes in the Mojave Desert (Joshua 
Tree, Big Bear, Landers and Hector Mine) all have aftershock sequences that take place 
primarily within 6 km of the earth’s surface.  On the other hand, the three earthquake 
sequences from central California (San Simeon, Loma Prieta and Coalinga) had 
aftershocks sequences that were primarily between about 4 km and 12 km depth.  The 
1971 San Fernando earthquake and the 1994 Northridge earthquake, both thrust events 
that are approximately on conjugate fault planes, have very similar aftershock depth 
distributions.  Curiously, the 1979 Imperial Valley earthquake, which ruptured to the 
surface, had most of its aftershocks take place at focal depths greater than about 8 km.  
Surface rupture appears to be a surprisingly poor indicator of the depth range where most 
aftershocks take place. 
 
 
Discussion and Conclusions 
 

The analyses detailed in the previous subsections of this report suggest that source 
parameters that are available with an hour or two of a strong mainshock in California 
provide very little indication of what kind of aftershock sequence will follow the 
mainshock.  The most robust statistical result is that thrust earthquakes generate more 
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prodigious aftershock sequences than strike-slip earthquakes.  The presence or absence of 
surface rupture may exert some control on the average Omori-Law parameters of the 
aftershock patterns, but the effect is not very statistically significant.  The depth range 
where most of the aftershocks take place seems to be more controlled by where in 
California the mainshock was centered than by the focal mechanism or the presence or 
absence of surface faulting of the mainshock.  Thus, the forecasting of aftershock activity 
immediately following a mainshock remains a rather uncertain enterprise. 
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Table 1.  Study Earthquakes        
          

Date 
Origin Time 

(hr:min) Magnitude 
Latitude 

(°N) 
Longitude 

(°E) 
Depth 

(km) b p a N1 
2/9/71 14:00 6.6 34.411 -118.401 8.4 1.040 1.240 -2.060 530 

2/24/72 15:56 5.0 36.578 -121.209 6.5 1.010 0.790 -1.700 21 
2/21/73 14:45 5.5 34.065 -119.035 17.0 0.570 0.750 -1.320 5 

11/28/74 23:01 5.2 36.916 -121.478 6.0 0.940 0.790 -2.270 5 
6/1/75 1:38 5.2 34.516 -116.496 5.8 1.000 1.070 -2.150 11 
8/1/75 20:20 5.7 39.436 -121.523 5.5 0.590 0.930 -0.780 25 

1/10/76 12:58 5.0 32.084 -115.471 12.0 0.810 0.560 -1.400 11 
5/5/78 21:03 5.2 32.211 -115.304 10.0 1.060 0.820 -2.450 9 

8/13/78 22:54 5.1 34.347 -119.696 12.7 1.200 1.120 -2.220 32 
10/4/78 16:42 5.8 37.514 -118.683 16.0 0.800 1.380 -1.440 40 

1/1/79 23:14 5.0 33.944 -118.681 11.3 0.870 1.170 -1.330 19 
3/15/79 21:07 5.2 34.327 -116.445 9.3 0.990 1.010 -1.390 60 

8/6/79 17:05 5.9 37.110 -121.511 6.3 0.950 1.040 -2.550 14 
10/15/79 23:16 6.6 32.614 -115.318 12.0 1.000 1.490 -2.010 389 

1/24/80 19:00 5.9 37.826 -121.786 11.0 0.900 1.080 -2.170 22 
2/25/80 10:47 5.5 33.001 -116.513 19.4 0.950 1.100 -2.390 9 

9/7/80 4:37 5.7 37.994 -118.402 10.5 0.900 0.960 -1.670 46 
4/26/81 12:09 5.7 33.099 -115.632 18.8 0.990 1.340 -2.070 39 

9/4/81 15:50 5.3 33.671 -119.111 11.5 0.770 0.900 -1.460 12 
10/25/82 22:26 5.4 36.319 -120.516 11.9 0.790 0.950 -1.830 7 

1/7/83 1:38 5.7 37.656 -118.929 7.0 0.890 1.080 -1.190 127 
1/23/84 5:40 5.2 36.353 -121.909 7.2 0.500 1.320 -1.220 2 
4/24/84 21:15 6.2 37.314 -121.657 8.0 1.010 0.870 -3.250 10 
5/28/84 14:50 6.2 37.503 -118.806 14.8 1.179 0.732 -3.772 15 
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6/10/84 3:28 6.3 32.200 -115.122 9.0 1.096 1.206 -2.479 172 
11/9/84 10:27 7.2 41.084 -124.616 19.0 0.953 1.176 -3.675 19 

11/23/84 18:08 6.2 37.470 -118.597 9.2 0.960 1.080 -1.710 210 
8/4/85 12:01 5.8 36.151 -120.049 11.0 1.040 0.940 -2.410 35 

1/26/86 19:20 5.7 36.809 -121.288 8.4 1.100 1.080 -2.930 14 
3/31/86 11:55 5.7 37.467 -121.692 8.0 1.150 0.910 -3.140 13 
7/13/86 9:20 5.9 33.999 -116.609 10.4 0.930 1.170 -1.590 109 
7/13/86 13:47 5.5 32.972 -117.873 6.0 1.340 0.750 -2.580 129 
7/21/86 14:42 6.5 37.543 -118.444 6.0 0.920 1.190 -1.770 234 

2/7/87 3:45 5.4 32.393 -115.311 5.6 0.670 1.510 -1.410 19 
5/3/87 23:42 6.7 36.232 -120.312 10.0 1.200 1.300 -2.600 30 

7/31/87 23:56 5.5 40.409 -124.407 7.4 0.930 1.046 -1.345 1057 
10/1/87 14:42 6.0 34.061 -118.079 9.5 1.020 1.200 -2.300 19 
6/10/88 23:06 5.4 34.943 -118.743 6.8 1.190 1.440 -3.530 1 
9/11/88 3:14 6.6 40.504 -125.130 10.0 1.070 1.220 -2.900 5 
12/3/88 11:38 4.9 34.141 -118.133 13.3 0.940 0.511 -4.123 2 

11/25/91 1:54 6.2 33.090 -115.792 10.6 0.847 1.265 -1.798 57 
11/25/91 13:15 6.6 33.015 -115.852 2.0 1.096 1.290 -2.937 127 
10/19/93 0:04 7.0 37.036 -121.880 11.0 0.923 0.936 -1.954 456 

7/14/95 2:50 6.6 42.019 -125.717 11.0 1.056 1.189 -4.665 2 
8/17/95 22:26 6.1 41.661 -125.846 12.0 1.084 1.140 -3.425 10 
8/18/95 19:29 6.0 40.252 -124.286 12.0 0.932 0.983 -2.552 15 
8/18/95 22:17 6.5 41.679 -125.856 14.0 1.176 0.996 -4.465 7 
4/24/96 4:50 6.1 33.960 -116.317 11.4 1.079 0.840 -2.922 32 
4/26/96 18:06 6.7 40.335 -124.229 15.0 0.859 0.795 -1.388 439 
4/27/96 7:41 6.5 40.433 -124.566 20.0 0.970 0.946 -2.045 187 
4/27/96 11:18 6.6 40.383 -124.555 22.0 0.970 0.946 -2.045 244 
6/29/96 11:57 7.3 34.200 -116.437 5.0 1.032 1.091 -3.037 270 
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6/29/96 15:05 6.3 34.203 -116.827 5.0 0.992 1.062 -2.433 68 
5/18/97 23:20 6.4 37.166 -117.780 13.0 0.741 1.196 -0.476 569 
1/18/98 12:30 6.7 34.213 -118.537 16.0 0.830 1.090 -1.314 388 

9/2/98 15:15 7.0 40.406 -125.680 10.0 0.772 0.715 -2.522 22 
2/20/99 4:03 6.6 40.592 -125.757 10.0 0.939 0.872 -3.563 6 

10/17/03 9:46 7.1 34.594 -116.271 5.0 0.980 1.092 -2.631 233 
12/23/07 19:15 6.5 35.701 -121.101 7.6 1.364 0.922 -4.658 30 

6/16/09 2:50 7.0 41.233 -125.986 16.0 0.950 0.996 -4.155 4 
6/18/09 6:21 6.5 40.646 -126.358 12.0 0.755 1.218 -2.063 20 
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Table	  2.	  	  Literature	  sources	  used	  for	  the	  data	  shown	  in	  Figures	  2-‐7.	  
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Corbett,	  E.J.,	  and	  C.E.	  Johnson	  (1982).	  	  The	  Santa	  Barbara,	  California,	  earthquake	  of	  
13	  August	  1978,	  Bull.	  Seism.	  Soc.	  Am.	  72,	  2201-‐2226.	  
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Figure	  1.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  (top)	  a	  with	  p,	  (middle)	  p	  with	  
b,	  and	  (bottom)	  a	  with	  b.	  	  There	  is	  no	  correlation	  of	  the	  parameter	  p	  with	  a	  or	  b,	  but	  
a	  and	  b	  show	  evidence	  of	  an	  inverse	  correlation.	  
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Figure	  2.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  (top)	  b,	  (middle)	  p,	  and	  
(bottom)	  a	  with	  focal	  depth	  of	  the	  mainshock	  hypocenter.	  
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Figure	  3.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  (top)	  b,	  (middle)	  p,	  and	  
(bottom)	  a	  with	  static	  stress	  drop	  of	  the	  mainshock.	  
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Figure	  4.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  b,	  p,	  and	  a	  with	  month	  of	  the	  
year	  of	  the	  mainshock,	  with	  1=January	  through	  12=December.	  
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Figure	  5.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  (top)	  b,	  (middle)	  p,	  and	  
(bottom)	  a	  with	  focal	  mechanism	  of	  the	  mainshock.	  	  For	  each	  set	  of	  data,	  an	  arrow	  
indicates	  the	  mean	  and	  standard	  deviation.	  
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Figure	  6.	  	  Correlations	  of	  the	  Omori-‐Law	  parameters	  (top)	  b,	  (middle)	  p,	  and	  
(bottom)	  a	  with	  the	  presence	  or	  absence	  of	  surface	  faulting	  in	  the	  mainshock.	  	  For	  
each	  set	  of	  data,	  an	  arrow	  indicates	  the	  mean	  and	  standard	  deviation.	  
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Figure	  7.	  	  Box	  plots	  of	  the	  depth	  distributions	  of	  the	  aftershocks	  for	  several	  well-‐
recorded	  mainshocks	  in	  California.	  	  The	  boxes	  indicate	  the	  depth	  range	  where	  75%	  
of	  the	  aftershocks	  took	  place.	  	  For	  each	  event,	  its	  focal	  mechanism	  is	  given	  at	  
T=thrust,	  O=oblique	  slip	  or	  SS=strike-‐slip.	  	  Events	  with	  a	  *	  were	  those	  for	  which	  
surface	  faulting	  occurred.	  
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