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ABSTRACT

The rigid sliding-block analysis introduced by Newmark in 1965 has become a popular
method for assessing the stability of slopes during earthquakes. Estimates of sliding
displacement calculated using this methodology serve as an index of seismic performance and
are used for mapping seismic landslide hazard potential. The original approach of rigorously
integrating ground acceleration time-histories to compute estimates of sliding displacement has
been replaced by the use of simple, empirical models that predict displacement as a function of a
slope’s yield acceleration and one or more measures of ground shaking. To have confidence in
these models, the displacement computed by these models must be compared with observations
of landslides from previous earthquakes.

Seven different empirical models were evaluated by comparing predicted displacements
with an inventory of observed landslides from the 1994 Northridge, California earthquake. Using
a comprehensive set of ground motion data and shear strength properties from the Northridge
earthquake, sliding displacements were calculated within a geographic information system (GIS)
and the accuracy of each model was computed. The influence of factors such as landslide size,
geologic unit, slope angle, and material strength on the prediction of landslides was also
evaluated. The results indicate that the accuracy of the predictive models depends less on the
model used and more on the uncertainty in the model parameters, specifically the assigned shear
strength values. Because current approaches do not take into account the spatial variability of
strength within individual geologic units, the accuracy of the predictive models is controlled by
the distribution of slope angles within observed and predicted landslide cells. Assigning overly
conservative (low) shear strength values results in a higher percentage of landslides accurately
identified, but also results in a large over-estimation of the seismic landslide hazard.

NON-TECHNICAL SUMMARY

The methods used to predict the occurrence of earthquake-induced landslide integrate
ground shaking, topographic, and geologic/strength information to generate estimates of
downslope movement. These models are based predominantly on numerical simulation, and thus
require comparison with the observed locations of landslides during previous earthquakes. This
study evaluates seven different models by comparing their estimates of movement with observed
landslides from the 1994 Northridge earthquake. The results indicate that, in general, many of
the models do equally as well, and that the accuracy of the models depends mostly on the
assigned strengths to the geologic units.
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Chapter 1

Introduction

11 RESEARCH SIGNIFICANCE

Earthquakes pose a dangerous and costly threat to many people around the world.
As the devastating March 11, 2011 earthquake in Japan (M,, = 9.0) has so tragically
demonstrated, earthquake-induced hazards such as tsunamis often represent a greater
threat to life and property than the ground shaking that occurs during an earthquake.
Earthquake-induced landslides are another significant seismic hazard that can damage
and destroy life and property, disrupt transmission lines, block roads and hamper relief
efforts. The areas that are most susceptible to earthquake-induced landslides are
mountainous regions that are in close proximity to active tectonic plate boundaries. In the
United States this describes portions of coastal California, as well as large portions of the
Pacific Northwest.

To be resilient to the effects of earthquake-induced landslides requires significant
hazard planning on the part of communities and local governments. Hazard planning

efforts are supported by research on the causes of seismic slope failures and how to



predict them in the future. Current research on studying earthquake-induced landslides
from previous earthquakes typically involves the use of aerial photography and/or
satellite imagery to identify the landslides that occurred during the earthquake, and an
analysis of the geologic, hydrologic or other factors that may have contributed to the
landsliding. Assuming that future landslides will occur under the same conditions as past
events, these observations can be used to develop criteria for assessing potential seismic
landslide hazards.

For planning purposes, regional maps of seismic landslide hazard potential are
most useful. A seismic landslide hazard map delineates zones where earthquake-induced
landslides are a concern and where additional investigation is required before developing
the land. Current hazard mapping efforts for earthquake-induced landslides use estimates
of sliding displacement to evaluate the potential for ground failure. In these procedures,
slopes that are predicted to develop significant, permanent, downslope displacements
during an earthquake are deemed seismically unstable. The use of a Geographic
Information System (GIS) to create seismic landslide hazard maps has become
widespread because it has the capabilities to collect, store, manipulate, display and
analyze large amounts of spatially-referenced data quickly.

Mapping seismic landslide hazards requires an assessment of (1) the strength of
the slope, (2) the expected level of ground shaking, and (3) a prediction of displacement.
To have confidence in the developed methodology, it is important to validate the
procedures against observations from previous earthquakes. The goal of this research is
to validate the performance of some recently developed seismic landslide hazard
mapping methodologies against observations of landsliding within six quadrangles in Los
Angeles, California that were shaken by the 1994 Northridge earthquake. More than

11,000 triggered landslides were documented following the Northridge earthquake, the



majority of them occurring in the Santa Susana Mountains to the northwest of the
earthquake epicenter. The results of this research can be used to improve current methods
for creating seismic landslide hazard maps, and to identify elements of the mapping

procedure that warrant further evaluation.

1.2 SCOPE OF RESEARCH

This thesis focuses on comparing the results from current seismic landslide hazard
mapping procedures with observed landslides from the Northridge earthquake and
assessing the model parameters that affect estimates of sliding displacement. Seven
different displacement prediction models are used to predict displacements as a function
of topography (slope angle), geology (material strength), and ground shaking estimates.
These displacements are compared with locations of observed landslides from the 1994
Northridge earthquake. Several methods are used to assess and compare the accuracy of
each model. The influence of the model parameters (slope angle, material strength) on the
results is also evaluated in an effort to identify potential improvements in the modeling
procedures.

Chapter 1 briefly discusses the significance of this research, and provides the
scope and organization of this thesis.

Chapter 2 provides background information on seismic slope stability, common
procedures used to assess the performance of slopes during earthquake shaking, and
previous work conducted in seismic landslide hazard mapping.

Chapter 3 summarizes the procedures used in this research to calculate sliding
block displacements, the data used by the different displacement prediction equations,
and the proposed methods for comparing predicted displacements with observed
landslides from the 1994 Northridge earthquake. This includes a cell-by-cell approach

that assesses the accuracy of each model based on their ability to match predicted



landslide cells with observed landslide cells, and a landslide-by-landslide approach that
assesses the accuracy of each model based on their ability to identify at least 50% of an
observed landslide.

Chapter 4 presents and discusses the maps of sliding displacement developed for
this study, and summarizes statistics on the accuracy of each displacement prediction
equation using the methods described in Chapter 3. In addition, the influence of factors
such as landslide size, geologic unit, slope angle, and material shear strength on the
results is evaluated.

Chapter 5 discusses the significance of the results and provides conclusions and

recommendations for future work in mapping earthquake-induced landslides.



Chapter 2

Evaluation of Earthquake-Induced
Landslides

2.1 INTRODUCTION

A landslide or slope failure refers to the downslope movement of soil and rock
materials under the influence of gravity, caused by a destabilizing force or condition.
Heavy rainfall and earthquake shaking are common natural causes for landslides. During
an earthquake, sliding is expected when the strength of the slope materials is exceeded by
a combination of the static stresses and the stresses imparted by the ground shaking. The
best way to limit the risk of damage and prevent loss of life due to earthquake-induced
landslides is to conduct seismic slope stability analyses and identify those slopes that
represent the greatest seismic hazard. This chapter covers background information on
seismic slope stability analyses, procedures for seismic landslide hazard mapping, and
previous research in this area conducted by others.

Current methods to assess the performance of slopes during earthquakes are
generally based on either finite element modeling or limit equilibrium analysis

(Jibson, 2010). Dynamic finite element modeling is computationally intensive, requiring



a sufficient amount of high-quality data and intimate knowledge of the nonlinear stress-
strain-strength characteristics of the soil, as well as specification of a suite of input
acceleration-time histories. The goal of the analyses is to predict the level of deformation
that will occur under the expected seismic loading. Due to the time and effort involved,
this approach is typically reserved for critical projects such as earth dams.

A simpler alternative to finite element modeling is limit equilibrium analysis. The
limit equilibrium approach is commonly used for static slope stability analyses. This
approach considers the shear stresses along a failure surface and computes a factor of
safety based on the available shear strength and the shear stresses required for
equilibrium. The minimum factor of safety for a slope is estimated by trial and error for a
large number of assumed failure surfaces. The limit equilibrium approach can be
modified to consider seismic stability, and in this case is called pseudostatic slope
stability analysis.

A pseudostatic slope stability analysis is a limit equilibrium analysis that models
earthquake shaking as a destabilizing, horizontal static force. This concept is illustrated in

Figure 2.1.

-

Figure 2.1: Pseudostatic force acting on a given failure surface



The destabilizing force, F, is given by:

F = kw (2.1)

where k is the seismic coefficient, W is the weight of the sliding mass, and t represents
the mobilized shear strength of the soil along the failure surface (Kramer, 1996). A factor
of safety is computed as the ratio of resisting forces (available shear strength) to driving
forces (gravity + pseudostatic force).

The pseudostatic approach greatly simplifies the earthquake shaking problem and
is not a very accurate representation of the complex, dynamic inertial forces that actually
exist during earthquake shaking (Jibson, 2010). Other challenges are the selection of an
appropriate seismic coefficient (k), which is typically selected to be some fraction of the
expected peak ground acceleration, and the value of an acceptable factor of safety. The
limit equilibrium analysis only shows a slope to be stable (FS < 1.0) or unstable
(FS > 1.0) with no indication of the likelihood or consequences of instability.

Representing a compromise between the overly simplistic pseudostatic analysis
and the more complex finite element analysis, permanent displacement analysis has
become widely used in the earthquake engineering community to assess the seismic
performance of slopes. This approach recognizes that the pseudostatic stability of a slope
varies throughout earthquake shaking because ground accelerations vary, and that
permanent displacements will accumulate during periods of instability (FS < 1.0).
Calculated displacements do not necessarily correspond to observed movements in the
field, but they do represent an index of the seismic performance and can be used to

determine relative seismic hazard levels. Permanent displacement analysis is the basis for



the seismic landslide hazard mapping procedures used in this study and is discussed in

more detail in the following sections.

2.2 PERMANENT DISPLACEMENT ANALYSIS

Permanent-displacement analysis (Newmark, 1965) models a potential landslide
as a rigid block resting on an inclined plane (Figure 2.2). If a dynamic force exerted on
the block exceeds the shear resistance at the sliding interface, the block displaces

downslope. The base acceleration required to generate a force that overcomes the shear
resistance and initiates sliding is known as the critical or yield acceleration (k,). The

application of k,, results in a factor of safety FS = 1.0.
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Figure 2.2: Sliding block model used in permanent displacement analysis

Provided with an earthquake acceleration-time history, any portion of the record
that exceeds the yield acceleration contributes to the accumulation of permanent
displacements. The movement of the block relative to the inclined plane can be obtained
by integrating the relative acceleration (i.e. the difference between the acceleration

and k,,) twice; this procedure is illustrated in Figure 2.3. Every time the yield acceleration

is exceeded, the amount of relative sliding displacement induced is related to both the



amount by which the yield acceleration is exceeded, and the length of time spent sliding.
Thus, the total relative displacement is influenced by the amplitude, frequency content

and duration of shaking (Kramer, 1996).
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Figure 2.3: Demonstration of sliding block displacement calculation for a yield acceleration
(ky= a. in figure) of 0.20 g (Jibson et al., 2000)

An important assumption of the original sliding block analysis is that the
displaced mass is a rigid-plastic body; the block itself does not deform and no permanent
displacements are experienced until the yield acceleration is exceeded. In reality, though,
landslide masses do not behave as rigid-plastic bodies and they deform internally during
earthquake shaking. The internal deformations represent the dynamic response of the

sliding mass during earthquake shaking. As an earthquake ground motion propagates



through a slope, different parts of the slope move differently and in different directions.
These differences are typically small for thin failure masses, and more considerable for
thick failure masses (Kramer, 1997). The dynamic response of a potential landslide mass
can be accounted for by performing a more rigorous decoupled sliding block analysis. In
this two-step process, the spatially varying ground acceleration distribution within the
sliding mass is computed (assuming no sliding) and used to calculate an average
acceleration-time history. This average acceleration at any instant during ground shaking
represents the inertial force associated with the ground acceleration distribution within
the sliding mass. The resulting average acceleration time-history is then input into a rigid-
block analysis to compute permanent displacement (Jibson, 2010). Decoupled analysis
has been shown to accurately predict field behavior, but requires an estimate of the
dynamic response of the sliding mass.

Decoupled sliding block analysis is required for deeper sliding masses because
the dynamic response of the sliding mass is of significance. Rigid sliding block analysis
ignores the dynamic response of the sliding mass, and thus it is most applicable to thin,
veneer slope failures. This failure mode is common in natural slopes (Keefer, 1984).

In its original application, conducting a rigorous permanent displacement analysis
requires an estimate of the yield acceleration of the slope and an acceleration-time history
(or suite of time histories) that represents the expected earthquake shaking at the site.
More recent applications use empirical predictive models that compute displacements as
a function of the yield acceleration and one or more ground motion parameters
(e.g. Jibson (2007), Saygili and Rathje (2008), Rathje and Saygili (2009)). Typical
procedures for calculating the yield acceleration, selecting appropriate ground motion

data and calculating permanent displacements are discussed in the following sections.
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2.2.1 Yield acceleration

For a given slope and an assumed failure surface, such as the one considered in
Figure 2.1, the critical or yield acceleration can be estimated by iteratively performing a
pseudostatic analysis to determine the seismic coefficient that results in a factor of safety
of FS= 1.0. The seismic coefficient multiplied by g is equivalent to the yield
acceleration. Selection of the critical slip surface geometry that results in the lowest
seismic coefficient is a trial and error process. However, most failures in natural slopes
are shallow and have small thickness to length ratios (Keefer, 1984, 2002). In these cases

an infinite slope model can be used to approximate the slip surface geometry.

Figure 2.4: Infinite slope model under static conditions

!

The geometry of the infinite slope model is shown in Figure 2.4. In this figure ¢
is the effective cohesion, ¢’ is the effective friction angle, y is the material unit weight, a
is the slope angle, t is the slope-normal thickness of the rigid block, m is the proportion
of the block thickness that is saturated, W is the weight of the sliding block, and 7 and o
are the shear and normal stresses acting on the slip surface, respectively (Jibson et al.,

2000).
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If one considers earthquake shaking to occur parallel to a slope (Newmark, 1965),
the yield acceleration can be expressed as a simple function of the static factory of safety,

the acceleration of gravity and the slope angle:
k, = (FS—1)g - sina (2.2)

A somewhat different equation results if the ground acceleration is assumed to be
horizontal rather than parallel to the slope, but the differences in the computed values of
k, are small (Saygili, 2008). Based on the slope geometry and the soil properties
represented in Figure 2.4, the static factor of safety for an infinite slope model is
computed as:

FS= —S—4 2001 o) (2.3)

ytsina tana

For regional applications of the infinite slope model, slope angles are derived
from a Digital Elevation Model (DEM), and nominal values for unit weight, saturation
and block thickness are typically assumed. The main source of uncertainty in calculating
the static factor of safety (and thus the yield acceleration) is the assigned material shear
strength properties.

Shear strength is typically assigned using Mohr-Coulomb strength parameters ¢’
and ¢’ obtained from direct shear or triaxial tests. For unsaturated materials (m = 0), this
represents total stress conditions. For saturated materials (m > 0), the changes in pore
pressures generated during earthquake shaking are generally ignored such that the
strength is assigned using ¢', ¢', and the effective stresses before shaking. This is

generally conservative, however, because non-liquefiable sands are typically dense and
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negative pore pressures are generated due to dilatancy, resulting in higher temporary
strengths. Using ¢’ and ¢’ to assign strengths is not appropriate for liquefiable (loose)
sands, but the sliding block analysis is not applicable to these soils. For clay sites, an
undrained strength (s,,) is assigned and ¢ = 0.

Shear strength data are compiled and assigned based on geologic units. Variability
within a geologic unit is typically ignored due to practical constraints. After values of ¢’
and ¢’ are assigned, yield accelerations can be calculated and combined with ground

shaking information to compute estimates of sliding displacement.

2.2.2 Ground Motions

To conduct a rigorous sliding-block displacement analysis, ground acceleration-
time histories are required. The selection of appropriate acceleration-time histories is
often guided by the results of a probabilistic seismic hazard analysis (PSHA). PSHA
takes into account all possible earthquake scenarios (i.e., magnitude and distance) around
a particular site to compute the probability of exceedance of a specified ground motion
level across multiple spectral periods. These “hazard curves” are used to develop a target
acceleration response spectrum based on a design hazard level, typically a 10% or 2%
probability of exceedance in 50 years.

Using a public database of available ground motion recordings from previous
earthquakes, and one of a handful of widely available software programs, time histories
are selected to fit the PSHA-derived target response spectrum. For a given hazard level,
there are magnitude and distance combinations that contribute more to that hazard — this
information can be acquired by performing what is known as a deaggregation of the
hazard. Ground motions are not only selected based on how well they match the target
response spectrum, but also based on how well they match the magnitude and distance

from the deaggregation. Because of the large aleatory variability in earthquake ground
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motions, it is recommended that a suite of motions be considered when fitting a PSHA-
derived target.

Given an estimate of the yield acceleration and a suite of ground motions, a
sliding displacement can be calculated for each ground motion. Displacement is
computed by double integrating the difference between the acceleration-time history and
the yield acceleration. This integration initiates when the acceleration exceeds the yield
acceleration, and continues until the relative velocity between the ground and sliding
block becomes zero. The average displacement from the suite of ground motions is often

used as the expected displacement.

2.2.3 Displacement Prediction Equations

Conducting a rigorous sliding-block analysis is relatively straightforward, but for
a large, regional hazard analysis it can be impractical to try and select multiple, unique
acceleration-time histories for the conditions to be modeled. Double integrating all of
these time histories multiple times for every slope is also time consuming. A simpler
approach is to use an empirical regression equation which is based on displacements
computed for a large database of ground motions and k,, values. Because the magnitude
of predicted displacement is sensitive to the characteristics of earthquake ground motions
(i.e. intensity, frequency content, duration), researchers have developed models that
estimate displacements as a function of yield acceleration and one or more ground motion

(GM) parameters, using the form:

InD = f(k,, GM parameters) (2.4)

Peak ground acceleration (PGA) is the most commonly used measure of ground

shaking intensity, and the ratio of yield acceleration to PGA (k,/PGA) is used in recent
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predictive models developed by Saygili and Rathje (2008), Rathje and Saygili (2009),

and Jibson (2007). The ratio of k,/PGA is a useful parameter to incorporate in a
predictive model because k,/PGA > 1.0 indicates that the peak ground acceleration does
not exceed the yield acceleration and that there is zero displacement. One of the
limitations of using PGA to characterize a ground motion is that it only measures a single
point in the acceleration-time history, and therefore does not provide information on the
frequency content or duration of the motion. Therefore additional parameters are required
to characterize the ground motion. Peak ground velocity (PGV) can be obtained by
integrating the acceleration-time history over time, and has been shown to correlate to
earthquake damage better than PGA (Wu et al. 2003).

A more comprehensive measure of shaking intensity was developed by Arias
(1970) and is related to the integral over time of squared accelerations in a strong-motion

record:
lo =5 [la(®))?dt (2.5)

where 1, is Arias intensity in units of velocity (m/s) and a(t) is ground acceleration as a
function of time. Jibson (1993, 2007) and Jibson et al. (1998, 2000) developed models
that relate displacement to yield acceleration and I,;, and Arias intensity is one of several
ground motion parameters used by Saygili and Rathje (2008). Other ground motion
parameters that have been used include the natural period of the sliding mass (Ts) and the
spectral acceleration at select periods (Bray and Travasarou, 2007).

Displacement prediction equations essentially provide the same information as a
rigorous sliding block analysis, but require less time and effort. The median calculated
displacement is also more stable than a value derived from a single acceleration-time

history or a small suite of time histories. The different predictive models are generally
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judged based on their ability to reduce the standard deviation of the prediction, which, for

a given k,, and ground motion level, can result in a range of expected displacements

greater than one order of magnitude (Saygili and Rathje, 2008).

2.3 SEISMIC LANDSLIDE HAZARD MAPS

Permanent-displacement models are commonly used to create seismic landslide
hazard maps. These maps are used for emergency-preparedness and long-term land use
planning, among other things. Areas of relative seismic landslide hazard (low, moderate,
high, etc.) are typically demarcated based on specified thresholds of allowable
displacement, or on a specified annual probability of exceedance. Creating regional
hazard maps involves manipulating large sets of detailed spatial data within a Geographic
Information System (GIS).

The use of GIS was recommended by Holden and Real (1990) as the most cost
effective way to prepare regional-scale hazard maps, and it has since defined the state of
practice. The increased availability of high-quality GIS data combined with powerful
analytical tools has made it a robust research platform. The two most common types of
GIS data are vector and raster data. Vector data are stored as points (pairs of X, y
coordinates), lines (a sequence of points), or polygons (a closed set of lines). This type of
data is well-suited for locating discrete values or boundaries between data sets. Raster
data represent continuous areas and are characterized by raster cells (i.e. a grid).

When geographically-referenced layers of slope angle, soil shear strength, and
earthquake ground shaking are imported into a GIS as raster data, estimates of yield
acceleration and sliding displacement can be computed and assigned to each raster cell.
The typical resolution of raster data used in seismic landslide hazard mapping is 10

meters, which means that a 100-km? area can be characterized by one million unique
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cells (and thus one million unique values of yield acceleration and displacement). In
order to turn maps of yield acceleration or displacement into maps of seismic landslide
hazard, thresholds must be established that relate ranges of yield acceleration or
displacement values to different hazard levels. These thresholds depend on many factors
that are project-specific.

The two organizations that do the most work mapping earthquake-induced
landslides within the United States are the California Geological Survey (CGS) and the
United States Geological Survey (USGS). Each organization has adopted a different
approach to seismic landslide hazard mapping, although both are based on displacements

predicted for a rigid sliding block.

2.3.1 CGS Approach

Following the 1989 Loma Prieta (M,, = 6.9) earthquake outside of San Francisco,
the Seismic Hazards Mapping Act of 1990 was adopted by the California legislature
(Public Resources Code, Section 2690-2699.6). The Seismic Hazards Mapping Act
directs the California Geological Survey (CGS) to delineate Seismic Hazard Zones for
strong ground shaking, soil liquefaction, and landslides. In accordance with the Seismic
Hazards Mapping Act, CGS published in 1997 a special publication entitled Guidelines
for Evaluating and Mitigating Seismic Hazards in California that provides guidelines for
identifying hazard zones where detailed investigations are required. The report was
updated and re-issued in 2008.

The methodology adopted by CGS for creating earthquake-induced landslide
hazard potential maps is based on a procedure proposed by McCrink and Real (1996).
The procedure is based on developing yield acceleration thresholds that represent
different levels of rigid sliding block displacement. The yield acceleration thresholds are

based on the expected ground shaking within a given quadrangle. A single earthquake
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strong-motion record is selected to be representative of the ground motion hazard for a
particular quadrangle. Selection of the strong-motion record is based on the value of PGA
that has a 10% probability of exceedance in 50 years, and the magnitude and distance
combination that contributes most to the ground motion hazard (obtained from the
deaggregation). The selected strong-motion record is used to -calculate sliding

displacement for a range of yield acceleration values, the relationship between

displacement and k,, is plotted (Figure 2.5), and the thresholds identified.

Figure 2.5: Plot of sliding displacement as a function of yield acceleration for a selected
strong-motion record (Saygili, 2008)

As shown in Table 2.2, CGS has defined different displacement levels that
represent different landslide hazard levels. Using the sliding displacement-yield
acceleration plot, yield acceleration thresholds are identified that represent the landslide

hazard levels for the selected ground motion.
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Table 2.2: Landslide hazard displacement thresholds used by CGS

Landslide Hazard | Sliding Displacement (cm)
Very Low <5cm
Low 5cm<D<15cm
Moderate 15cm <D <30cm
High D>30cm

The resulting yield acceleration thresholds are compared (within a GIS) with the
gridded vyield acceleration values computed throughout the quadrangle from the infinite
slope model (i.e. equations 2.2 and 2.3) and used to assign an appropriate landslide
hazard level. In equation 2.3, the CGS procedures assume unsaturated slope conditions
(m = 0) and no shear strength contribution from cohesion (¢’ = 0). These assumptions
are based on the results from McCrink and Real (1996) and McCrink (2001) that showed
ignoring cohesion and setting m = 0 resulted in the best comparison with observed
landslides from the Loma Prieta earthquake.

All cells that correspond to a sliding displacement of 5 cm or greater (i.e. Low,
Moderate, High hazard levels) are defined as landslide hazard zones. In addition, CGS
breaks down the results for each quadrangle in a hazard potential matrix, which shows
how the assigned hazard levels vary with slope angle and friction angle. An example of a
hazard potential matrix published for the Oat Mountain quadrangle in Los Angeles
County is provided in Table 2.3. The shaded groups are included in the hazard zone map

for the quadrangle.
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Table 2.3: Hazard potential matrix for earthquake-induced landslides in the Oat Mountain
7.5-minute quadrangle (CDMG, 1997b)

2.3.2 USGS Approach

The approach used by the USGS is based on a study conducted by Jibson et al.
(1998, 2000) regarding the earthquake-induced landslides from the 1994 Northridge
earthquake. Similar to the approach used by CGS, gridded yield acceleration values are
calculated within a GIS using an infinite slope model and equations 2.2 and 2.3.
However, unlike the CGS approach, values of cohesion are considered in the calculation
(c" #0). The ground motion hazard is also characterized differently. Rather than
selecting a single representative strong-motion record and rigorously computing
displacements for a range of yield acceleration values, a displacement prediction model is
used to calculate displacements as a function of gridded yield acceleration values and
gridded values of some ground motion parameters, commonly either peak ground
acceleration (PGA) or Arias intensity (I,). Values of ground shaking intensity that have a
2% and 10% probability of exceedance are considered.

After displacements are calculated for the two ground motion hazard levels,
ranges of displacement are assigned to different landslide hazard categories, as shown in
Table 2.4. In addition, each hazard category is assigned a probability of landsliding based

on an equation developed by Jibson et al. (1998, 2000) that calculates the probability of
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landsliding as a function of predicted displacement. This procedure was recently used to

produce landslide hazard maps for Anchorage, Alaska (Jibson and Michael, 2009).

Table 2.4: Landslide hazard displacement thresholds and associated probabilities of landsliding
used by USGS

Hazard Category | Displacement (cm) | Probability of Landsliding (%0)
Low 0-1 0-2
Moderate 1-5 2-15
High 5-15 15-32
Very High > 15 > 32

2.4 PREVIOUS VALIDATION STUDIES

For the sliding block analysis to be useful in evaluating the potential for
earthquake-induced landslides, values of calculated vyield acceleration and/or
displacement must be quantitatively correlated with observations of landslides from
previous earthquakes. This comparison can be made within the GIS framework. Similar
to the information for slope angle, shear strength, and ground motion data that are used as
input into displacement prediction models, locations of observed landslides are also
imported into a GIS as raster data. A cell that falls within a mapped landslide area is
assigned a numerical value that identifies it as part of that particular landslide;
non-landslide cells are assigned “null” values. Values of yield acceleration or
displacement can be compared with locations of landslide cells, and different predictive
models or sets of model parameters can be assessed based on how well they predict the
locations of the landslides. Two of the most comprehensive validation exercises for
mapping earthquake-induced landslide hazards were performed by Jibson et al. (2000) for

1994 Northridge earthquake and McCrink (2001) for the 1989 Loma Prieta earthquake.
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Both studies compiled information using a GIS platform and created regional maps of

predicted displacements to compare with maps of known earthquake-induced landslides.

2.4.1 Jibson et al. (2000)

Jibson et al. (2000) considered six quadrangles in the Santa Susana Mountains
north of Los Angeles, California that were shaken by the 1994 Northridge earthquake.
This was the first earthquake for which a comprehensive data set of slope and soil
information, ground shaking, and observed landsliding was available to permit a detailed
regional analysis. The study area covered nearly 1,000 square kilometers, and more than
7,000 landslides were documented within that area, covering approximately 16 square
kilometers or 1.6% of the six quadrangles. All data used in the study were imported into a
GIS platform and converted to layers of gridded raster data at 10-meter cell spacing.

Jibson et al. (2000) calculated values of yield acceleration for each 10-meter cell
using equations 2.2 and 2.3 from an infinite slope model. Slope angles were calculated
from Digital Elevation Models (DEM) that were derived from scanned U.S. Geological
Survey contour plates, and soil shear strength parameters (c’, ¢") were determined based
on the results of direct-shear tests from local geotechnical consultants on samples of
geologic units in the region. Before calculating displacements, shear strengths were
increased incrementally until all cells were statically stable (FS > 1.0). Importance was
placed on keeping relative strength differences between geologic units intact. The values

of ¢’ and ¢’ used by Jibson et al. (2000) are shown in Table 2.5.
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Table 2.5: Shear strengths assigned by Jibson et al. (2000) to geologic units in the study area®

Unit name (description) Oat Mountain  Santa Susana Simi Valley = Newhall Val Verde  Piru ¢'(°) c (kPa)
Artificial fill af af af af af 34 16.8
Artificial cut and fill acf 34 16.8
Rockfall deposits rf 34 16.8
Spoil from quarries Qsp 34 16.8
Alluvium ( young) Qay 34 16.8
Pond deposits Qp Ql 34 16.8
Flood plain deposits Qfp 34 16.8
Alluvium Qal Qal Qal Qal (1,2) Qal Qal 34 16.8
Older alluvium Qao Qao Qao Qao Qao Qao 34 16.8
Slope wash Qsw Qsw Qsw 34 19.2
Caliche Qc Qc? 34 16.8
Landslide deposits Qls Qls Qls Qls Qls Qls 30 24.0
Terrace deposits Qt Qt Qt Qt Qt Qt 34 16.8
Fan and terrace deposits Oft of of 34 16.8
Pacoima Fm. (ss/cg) Qpa 34 19.2
Older terrace deposits Qto Qto 34 16.8
Old fanglomerate Qfo 34 16.8
Saugus Fm. QTs Qs Qs Qs Qs Qs 34 19.2
Upper Member (silty breccia) QTsu 34 21.6
Lower Member/Sunshine Ranch Fm. QTsm Qsm Qsm 34 21.6
Saugus ( Pelona Schist clasts) Qsp Qsp 34 19.2
Saugus (San Francisquito clasts) Qss Qss 34 19.2
Pico Fm. Tp QTp QTp Tp Tp 32 24.0
Pico Fm. (?) Tp? 34 24.0
Pico Fm. (ss/cq) Tpc QTpc Tpc Tpc Tpc 34 24.0
Pico Fm. (silt) Tps QTps Tps Tps Tps 30 24.0
Towsley Fm. (ss/shale) Tw Tw 34 26.3
Towsley Fm. (shale) Tws Tws Tws Tws Tws 30 26.3
Towsley Fm. (ss) Twc Twc Twc Twc Twc 34 26.3
Hasley Conglomerate Twhc Twhc 34 24.0
Castaic Fm. (ss) Tcs Tcs 34 19.2
Mint Canyon Fm. (ss) Tmc 34 19.2
Mint Canyon Fm. (ss/clay) Tmcl 32 19.2
Modelo Fm. (shale) ™ ™™ m ™™ 31 26.3
Modelo Fm. (shale/mud ) Tml Tml Tml 31 26.3
Modelo Fm. ( porc. shale) Tm2 Tm2 Tm2 Tm2 31 26.3
Modelo Fm. (ss) Tm3 Tm3 Tm3 Tm3 34 26.3
Modelo Fm. (shale) Tm4 Tm4 Tm4 Tm4 31 26.3
Modelo Fm. (shale) Tm5 31 26.3
Modelo Fm. (diatom. shale) Tmd Tmd 31 26.3
Modelo Fm. (shale) Tms Tms 31 26.3
Modelo Fm. (cg/ss) Tmc 34 26.3
Topanga Fm. (ss) Tt Tt Tt 34 26.3
Topanga Fm. ( basalt) Tth Ti 34 335
Topanga Fm. (shale) Ttl 31 28.7
Topanga Fm. (ss) Tt2 34 26.3
Topanga Fm. (shale) Tt3 31 28.7
Topanga Fm. (ss) Tt4 34 26.3
Conejo Volcanics (andesite/basalt) Tco 40 40.7
Conejo Volcanics (andesite) Tcoa 40 43.1
Conejo Volcanics ( basalt) Tcob 40 38.3
Rincon Shale T 30 19.2
Vaqueros Fm. (silt, ss) Tv Tv 33 28.7
Sespe Fm. (ss, cg) Ts Ts Ts 33 26.3
Llajas Fm. (ss, silt, clay, cg) TI TI TI 33 28.7
Llajas Fm. (calc. ss, hard ) Tlc Tlc 36 43.1
Santa Susana Fm. (clay shale) Tss Tss 30 335
Simi Conglomerate Tsc 34 40.7
Simi Conglomerate (cg) Tscl 34 40.7
Simi Conglomerate (shale) Tsc2 30 335
Simi Conglomerate (ss) Tsc3 34 38.3
Chatsworth Fm. (ss) Kc Kc 40 479

a " effective angle of internal friction; c': effective cohesion intercept; ss: sandstone; cg: conglomerate; 1 kPa = 20.885 Ib/ft’.
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Rigid sliding block displacements for the Jibson et al. (2000) study were
calculated using the following displacement prediction equation, derived from a database

of 555 acceleration-time histories from 13 worldwide earthquakes:

logD = 1.521 logl, — 1.993 logk, — 1.546 (2.6)

where D is displacement in centimeters, I, is Arias intensity in meters per second, and k,,
is yield acceleration in units of g. The equation was regressed on two predictor variables:
yield acceleration values (which ranged from 0.02 to 0.40 g), and Arias intensity values
calculated for each acceleration-time history. To calculate displacements for the
Northridge earthquake, a ground shaking grid from the earthquake was prepared. For
each of the 189 strong-motion recordings of the main shock, the average Arias intensity
from the two horizontal components was computed and plotted at the location of the
strong motion station. A simple kriging algorithm was then used to interpolate values of
I, to each 10-meter cell across the six quadrangles. Figure 2.6 shows the contours of
Arias intensity throughout the study area based on calculated and interpolated values.
Values range from less than 1 m/s in the northwest corner to greater than 5 m/s in the

southeast corner, which is closest to the Northridge earthquake epicenter.
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Figure 2.6: Contours of Arias intensity (I,) in meters per second in six quadrangles studied by
Jibson et al. (2000) and shaken by the 1994 Northridge earthquake (Jibson et al., 2000)

Maps of predicted displacement (Figure 2.7) were then compared with maps of
observed landslides (Figure 2.8). Observed landslides were digitized by Harp and Jibson
(1995, 1996) using high-resolution aerial photographs taken by the U.S. Air Force the
morning of the earthquake and converted to 10-meter raster grids. Landslide source areas
were defined by Jibson et al. (2000) as those grid cells having elevations above the
median elevation for each landslide, so that the upper half of each landslide was
considered a source area.

Figure 2.7 shows the displacements predicted in a section of the Oat Mountain
quadrangle using the procedure described above. The largest displacements, represented
by the darker red areas, are concentrated along steeper ridges north of Interstate 5.
Figure 2.8 shows the observed landslides triggered by the Northridge earthquake over the
same area. These landslides are also concentrated to the north of Interstate 5, although

they appear to represent a larger area than the large-displacement cells from Figure 2.7.
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Figure 2.7: Predicted displacements in part of the Oat Mountain quadrangle (Jibson et al., 2000)

Figure 2.8: Landslides triggered in part of the Oat Mountain quadrangle (Jibson et al., 2000)
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To quantitatively assess the accuracy of computed sliding displacements in
predicting earthquake-induced landslides, Jibson et al. (2000) evaluated a probability of
failure (Pr) for different displacement levels. Probability of failure was defined as the
proportion of cells occupied by landslide source cells for a specified range of
displacement. For example, for a displacement bin centered around 10 cm, only the cells
with predicted displacements within that bin are considered. The number of landslide
source cells within the identified 10 cm cells is divided by the total number of 10 cm cells

to compute P;. Figure 2.9 shows the data derived from the analysis and the equation that

was fit to the data.

(Probability of failure)
o
2

o
o
TR A A |

0.10

Proportion of landslide cells, P(f)

0,05 P(f) = 0.335[1-exp(-0.048D, )]

0.00 T T T T T T
0 5 10 15 20 25 30

Newmark displacement, D, (cm)

Figure 2.9: Proportion of landslide source cells as a function of displacement (Jibson et al., 2000)
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Figure 2.9 shows that the probability of failure never exceeds about 34% even at
very large displacements, suggesting that no more than 34% of high landslide hazard
areas are likely to experience failure during an earthquake. Jibson et al. (2000) used this
equation to create hazard maps showing the probability of slope failure as a function of

predicted displacement.

2.4.2 McCrink (2001)

Earthquake-induced landslides from the 1989 Loma Prieta earthquake near San
Francisco, California were used to validate a seismic hazard mapping procedure
developed by McCrink (2001). This procedure was adopted by the California Geological
Survey for preparing seismic hazard zone maps throughout California. The validation
exercise was conducted using data collected from a quadrangle in the Santa Cruz
Mountains. The data were combined within a GIS platform and converted to layers of
gridded raster data at 10-meter cell spacing.

Values of yield acceleration were calculated for each cell using equations 2.2 and
2.3 for an infinite slope model, just as Jibson et al. (2000) had done. Geologic material
strength values were compiled from laboratory test results found in reports on file with
the Santa Cruz County Planning Department. To characterize the expected ground
shaking within the quadrangle, a single representative strong-motion record from the
Loma Prieta earthquake was used. The selected record was from the Corralitos station,
and produced a peak horizontal ground acceleration (PGA) of 0.64g during the Loma
Prieta earthquake. This record was used to compute sliding displacements for a range of

typical yield accelerations, and different k,-displacement thresholds were established

(Figure 2.10).
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Figure 2.10: Yield acceleration versus sliding displacement for the Corralitos strong-motion
record from the 1989 Loma Prieta earthquake (McCrink, 2001)

After a relationship between yield acceleration and predicted displacement was
established for the expected ground shaking in the quadrangle, McCrink (2001) calibrated
the mapping procedure to find the optimal set of model parameters that would maximize
the number of landslides captured, while minimizing the area included in the hazard
zone. Values of ¢’, ¢', the thickness of the failure mass (t), and the saturation thickness
(m) were varied in the analyses. Different combinations of displacement thresholds at 2,
5, 10, 15, 20 and 30 cm were also considered.

McCrink (2001) established an efficiency parameter to quantitatively compare the
accuracy of different parameter sets. Efficiency was defined as the difference between the
percentage of landslides accurately identified (GFC = % Ground Failure Capture) and the
percentage of the entire quadrangle identified as a seismic hazard zone (QC = %
Quadrangle Covered). Using this efficiency parameter (Efficiency = %GFC - %QC)
rather than just using % GFC to judge the accuracy of different parameter sets prevented

the identification of the optimal parameters based on a scenario where a 100% of the
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landslides were accurately identified (i.e. GFC = 100%) because 100% of the quadrangle
was covered by landslide zones (i.e. QC = 100% and efficiency is zero).

Figure 2.11 shows the plot of efficiency (i.e. percent difference) and % GFC
calculated for each parameter set by McCrink (2001). Instead of selecting the optimum
parameter set (i.e. the maximum efficiency), McCrink (2001) decided to compromise on
efficiency to include more ground failures. The chosen best parameter set is indicated on
the plot, capturing approximately 84% of the Loma Prieta slope failures within the
quadrangle, while covering approximately 50% of the quadrangle with landslide hazard
zones (i.e. an efficiency of 34%). The set of parameters that corresponded with these
results was mean friction angle, no cohesion (¢’ = 0), unsaturated slope conditions
(m =0), and a displacement threshold of 5 centimeters (low, moderate and high

landslide potential).
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Figure 2.11: Plot of efficiency versus ground failure capture for different combinations of model
parameters (McCrink, 2001)
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McCrink (2001) also summarized the results in a landslide potential matrix
(Figure 2.12), which shows how the different hazard potential levels for the chosen
parameter set are distributed as a function of geologic strength group and slope angle.
Very Low (VL) hazard potential corresponds to displacements less than 5 cm, Low (L) to
between 5 and 15 cm, Moderate (M) to between 15 and 30 cm, and High (H) to greater
than 30 cm. The shaded areas represent the hazard potential levels (L, M, H) included in

the seismic hazard zone (i.e. all areas with displacements greater than 5 cm).

Geologic SLOPE CATEGORY
mater?al | Il n v v Vi vil Vil X X Xl
group |0-4% 5-9% 10-20% 21-27% 28-31% 32-37% 38-42% 43-50% 51-58% 59-63% >63%
A vL VL VL VL VL vL VL VL L M H
B VL vL VL VL L L M H H H H
c VL VL VL L M H H H H H H
D L M H H H H H H H H
: Capture Effici :
Param:lir&g:ﬁd, i uﬁmﬁffﬁ%ms captured = 84.2%
c=0 2 of quadrangle covered (H, M, and L) = 50.3%
H = N/A GFC - QC = 33.9%
Displacement / Landslide potential criteria = 5, 15, and 30 cm

Figure 2.12: Landslide potential matrix for the chosen best parameter set for Laurel quadrangle
(McCrink, 2001)
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2.5 SUMMARY

Permanent displacement analysis has become a common procedure for evaluating
the seismic performance of slopes. Appropriate for modeling shallow, infinite slope
failures, the results of a rigid-block permanent displacement analysis can be used to
develop maps of seismic landslide susceptibility or hazard. The magnitude of predicted
displacement is sensitive to variations in yield acceleration, and to the intensity,
frequency content and duration of the expected earthquake ground motions. Recent
research has led to the development of empirical predictive models that estimate
displacements as a function of one or more ground motion parameters. These models
provide a simple, powerful tool for conducting large-scale, regional analyses.

Comprehensive validation exercises have been performed for some of the early
procedures adopted for the evaluation of earthquake-induced landslides. As research
continues to yield advances in predictive modeling, these efforts must be validated

against past earthquakes and compared with previous methodologies.
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Chapter 3

Validation Approach for the
Northridge Earthquake

3.1 INTRODUCTION

This chapter describes the validation exercises performed in this study. The
validation is based on comparing locations of observed landslides induced by a previous
earthquake with sliding-block displacements predicted by various empirical models. Six
quadrangles located in the Santa Susana Mountains north of Los Angeles, California are
selected as the study area for this exercise. This study area was chosen based on the
availability of a comprehensive landslide inventory from the 1994 Northridge earthquake.

The workflow and data used in this study is similar to the validation exercise
performed by Jibson et al. (2000). This chapter describes the data and assumptions used
to calculate yield accelerations, the different empirical models used to calculate sliding
displacements, the ground motion information for the study area, and the procedures used
for mapping and assessing the accuracy of the results. Results are presented in the next

chapter. All data in this study were converted to 10-meter raster grids and all
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computations were performed using ArcGIS© 9.3 software developed by the

Environmental Systems Research Institute (ESRI).

3.2 NORTHRIDGE EARTHQUAKE STUDY AREA

Six quadrangles located in the Santa Susana Mountains north of Los Angeles,
California were used for the validation study. These six quadrangles — Piru, Val Verde,
Newhall, Simi Valley, Santa Susana, and Oat Mountain — are the same quadrangles that
Jibson et al. (2000) evaluated previously. The locations of the quadrangles are shown in
Figure 3.1. These quadrangles were studied by Jibson et al. (2000) because of the dense
concentration of landslides triggered during the 1994 Northridge earthquake, and because
the study area was large enough to encompass significant variations in ground shaking. A
map of the instrumental intensity of the Northridge earthquake (related to Modified
Mercalli Intensities, MMI) produced by the USGS (Figure 3.2) shows that the study area
is located just to the northwest of the earthquake epicenter in an area that experienced
severe and violent shaking. Peak ground accelerations in the study area ranged from 0.2
to 0.9 g, and are discussed further in subsequent sections of this chapter.

The Northridge earthquake was the first earthquake for which all of the data sets
necessary to conduct a detailed, regional seismic landslide hazard analysis were
available. This includes (1) a comprehensive inventory of triggered landslides (Harp and
Jibson 1995), (2) about 200 strong-motion records of the main shock recorded throughout
the region, (3) detailed geologic maps, (4) extensive soil shear strength data, and (5) high

resolution digital elevation models (Jibson et al. 2000).
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Figure 3.1: Location of study area (Map obtained from the California Geologic Survey Seismic
Hazard Zonation Program website available at http://www.conservation.ca.gov/cgs/shzp)

Figure 3.2: Map of instrumental intensity for the 1994 Northridge earthquake. The blue box
represents the six quadrangles used in this study (Map created in Google Earth using data from
the USGS ShakeMaps website available at http://earthquake.usgs.gov/earthquakes/shakemap/)
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3.3 CALCULATING YIELD ACCELERATION

The first step of the validation exercise is calculating yield accelerations for the
slopes within the study area. Similar to the procedures used by CGS and USGS, an
infinite slope model is used to approximate conditions in the field and the pseudostatic

force is assumed to act parallel to the slope (Figure 3.3).

Figure 3.3: Infinite slope conditions for calculating yield acceleration

The equation for yield acceleration was derived in Chapter 2 for infinite slope conditions,

and is shown again below:

k, = (FS—1)g - sina (3.1)
_ cr tan @/ . Yw
FS = ytsina + tana (1 m )/) (32)

where k,, is the yield acceleration, g is the acceleration due to gravity, FS is the static
factor of safety, a is the slope angle, ¢’ is the effective cohesion, ¢’ is the effective
friction angle, t is the slope-normal thickness of the rigid block, y is the material unit
weight, y,, is the unit weight of water, and m is the proportion of the block thickness that

is saturated. For this study the contribution of pore water pressure is considered

36



negligible (m = 0) because almost all of the failures in the Northridge earthquake
occurred in dry conditions (Jibson et al. 2000). In addition, to be consistent with previous
research (Jibson et al. 2000) a unit weight of 15.7 kN/m* and a sliding-mass thickness of
2.4 m are assigned to represent a typical slope failure from the Northridge earthquake.
The yield acceleration then becomes only a function of the shear strength parameters
(¢, ¢") and the slope angle. These parameters for the quadrangles studied are discussed

next.

3.3.1 Slope Angle

Maps of slope angle are computed for each quadrangle based on 10-meter
resolution digital elevation models (DEM) provided by the USGS. The DEMs had been
created from high-resolution scans of USGS contour plates. Slope angles (in degrees) are
derived using a simple algorithm within ArcGIS© that computes the maximum
difference in elevation between a given cell and neighboring cells. Figure 3.4 shows the
digital elevation model and the calculated slope angles for the Oat Mountain quadrangle.
The southern portion of the quad is very flat with most slopes less than 15°, while most
of the hills to the north are between 25° and 45°. Some of the peaks visible in the DEM
correspond to slope angles greater than 45°.

The distributions of slope angles within each quadrangle are compared in
Figure 3.5. The Piru and Val Verde quadrangles in the northwest of the study area
contain the greatest concentration of steep terrain; nearly 25% of the slopes in the Piru
quadrangle are greater than 35°. In contrast, less than 3% of the slopes in the Newhall and
Simi Valley quadrangles are steeper than 35°. The slope angle distributions of the
neighboring Santa Susana and Oat Mountain quadrangles are very similar with about

10% of the slopes greater than 35°.
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Figure 3.4: (a) Digital elevation model with hillshading and (b) map of slope angle values for the Oat Mountain quadrangle.
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Figure 3.5: Distribution of slope angles for the (a) Piru, (b) Val Verde, (c) Newhall,
(d) Simi Valley, (e) Santa Susana and (f) Oat Mountain quadrangles

Jibson et al. (2000) noted that slope angles greater than about 60° are generally
under-represented in the dataset because of the difficulty in representing steep slopes on a
contour plate. Other research on the use of digital elevation models has shown that
practical applications of GIS-based models that rely on slope angle as a parameter can
assume standard deviations of + 3° to 4° (Haneberg, 2006). Despite these observations,
DEM’s are generally not a significant source of uncertainty when compared with the

difficulties of estimating ground motions or assigning material properties.
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3.3.2 Shear Strength Properties

Shear strength properties are developed based on assigning values of (¢, ¢') to
mapped geologic units. The spatial distribution of geologic units across all six
quadrangles is based on 1:24,000-scale geologic maps of Yerkes and Campbell (1995a-d,
1997a-b). The geologic map for the Oat Mountain quadrangle is shown in Figure 3.6. The
legend identifies each geologic unit by the unit symbol; descriptions of these units are
included later in this section. Comparing the geologic map with the digital elevation
model in Figure 3.3, the low-lying areas in the northeast corner and bottom portion of the
quadrangle consist of predominately Quaternary alluvial materials (Qal/Qay/Qp, Qao),
and a large portion of the steeper, mountainous areas consist of Tertiary materials from
the Modelo, Towsley and Pico formations (Tm, Tw, Tps respectively). The geologic
maps for all six quadrangles are given in Appendix A (Figures A-1 through A-6).

Representative shear strengths were assigned to these geologic units based on the
median values of (c¢’, ¢") published by the California Geological Survey (CGS) in their
Seismic Hazard Reports for each quadrangle (CDMG 1997, 1997b, 1997c, CGS 2002,
2002b). Shear strength data were gathered by CGS primarily from geotechnical reports
prepared by consultants on file with local government permitting departments. If shear
test data were limited, test results from adjacent quadrangles were used to augment the
data. CGS grouped geologic units together on the basis of average friction angle (¢') and
lithologic character. Each strength group was then assigned a single representative value
of ¢’ for use in stability analyses. CGS does not consider cohesion in their stability
analyses (¢’ = 0) but mean and median values of ¢'were published in their reports. Shear
strength groupings published by CGS for the Oat Mountain quadrangle are shown in

Figure 3.6 as an example of the strength data used in this study.
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Figure 3.6: Map of geologic units within the Oat Mountain quadrangle, based on the geologic

map of Yerkes and Campbell (1993, 1995).
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Figure 3.7: Shear strength groups published in the CGS Seismic Hazard Report for Oat Mountain
(CDMG, 1997b), available online at http://gmw.consrv.ca.gov/shmp/html/eval_rpts_so.html

The higher strength groups generally consist of well-cemented Tertiary rock units
composed of sandstone and siltstone, limestone, shale and conglomerate. The lower
strength groups predominately consist of loosely-consolidated quaternary deposits and
previously identified landslide materials. For some geologic units CGS distinguishes
between the strength under favorable bedding and adverse bedding conditions. This
distinction depends on the angle of material bedding with respect to a horizontal plane
(known as dip) and slope geometry. If the dip direction of a formation and the slope
direction are roughly the same, adverse bedding conditions exist because a landslide can
slip along the bedding surface. Orthogonal dip and slope directions are considered
favorable bedding conditions. In general, CGS assumes that favorable bedding conditions

are representative of coarse-grained (higher strength) lithologies, and adverse bedding
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conditions are representative of fine-grained (lower strength) lithologies (CDMG,
1997b). In consultation with Dr. Randall Jibson from the USGS, only favorable bedding
conditions were considered when selecting the appropriate shear strength values for this
study because of the difficulty in identifying adverse bedding conditions on a regional
scale (Jibson, personal communication).

The mapped shear strength groups for the Oat Mountain quadrangle are shown in
Figure 3.8. The darkest shade of grey represents the strongest shear strength group
(Group 1). The pink areas represent the previous landslide deposits (Group 4). Maps of
shear strength groups for all six quadrangles are given in Appendix A (Figures A-7

through A-12).
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Figure 3.8: Map of shear strength groups within the Oat Mountain quadrangle based on
the map of geologic units (Figure 3.6) and the shear strength values in Table 3.1

44



A summary of geologic units and assigned shear strengths for each quadrangle is
provided in Table 3.1. Values for cohesion (c') range from 12 to 35 kPa, and values for
friction angle (¢') range from 12° for previous landslide deposits (QIs) to 39° for the
well-cemented tertiary units. The strength values in Table 3.1 are generally lower than
those assigned by Jibson et al. (2000), and in some cases significantly lower. Values of
c'assigned by Jibson et al. (2000) ranged from approximately 17 to 48 kPa and values of
¢' ranged from 30° to 40°. Jibson et al. (2000) started with median strengths compiled
from direct-shear test results provided by local geotechnical consultants, and increased
them incrementally until all slopes less than 60° were modeled as statically stable prior to
earthquake shaking. This constraint resulted in large strengths being assigned to many
geologic units in an effort to ensure that most steep slopes were statically stable. Jibson et
al. (2000) believed that keeping intact the relative strength differences between geologic
units was more important than the absolute values. However, this approach then
overestimates the strength for an entire geologic unit if it contains some steep slopes.
Because the strength of a material in an area with a steep slope is most likely stronger
than the average value for that geologic unit, increasing the strength of the entire geologic
unit results in overestimating the strength of the flatter slopes within that geologic unit.
Therefore, for this study the median strength values were used throughout a geologic unit
even if those strength parameters resulted in the steepest slopes being statically unstable
within that unit.

In contrast, the approach used by CGS is to ignore any contribution from cohesion
(¢’ = 0) in their stability analyses. For the same values of friction angle and slope angle,
this results in a smaller yield acceleration (i.e. higher landslide susceptibility) and can be
overly conservative. The influence of the assigned shear strength parameters on the yield

acceleration is further explored in the next section.
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Table 3-1: Shear strengths assigned in this study to geologic units in the six quadrangles of the study area

Unit Name (description) Type Piru Val Verde Newhall Simi Valley Santa Susana Oat Mountain
4' () c'(kPa) 4 () c'(kPa) 4' () c'(kPa) 4' () c'(kPa) 4'(°) ¢ (kPa) 4'(°) c'(kPa)

Artificial fill af 31 144 32 124 31 144 28 144 28 19.6

Artificial cut and fill acf 28 19.6

Rockfall deposits rf 28 19.6

Alluvium (young) Qay 28 19.6

Pond deposits Qp 28 19.6

Flood plain deposits Qfp 31 144

Alluvium Qal 31 144 32 124 31 144 28 144 28 144 28 19.6

Older alluvium Qao 25 347 32 124 31 144 28 144 28 14.4 28 19.6

Slope wash Qsw 31 144 28 144 32 133

Caliche Qc 31 144 28 19.6

Landslide deposits Qls 12 141 13 15.6 25 12.0 23 225 23 225 25 223

Terrace deposits Qt 31 144 32 124 31 144 28 14.4 28 14.4 28 19.6

Fan and terrace deposits QfiQft 31 144 32 124 28 14.4

Pacoima Fm. (ss/cg) Qpa 31 144

Older terrace deposits Qto 31 144 28 19.6

Old fanglomerate Qfo 31 144

Saugus Fm. Qs 31 144 32 124 31 144 35 120 35 120 32 133

Upper Member (silty breccia) Qsu 32 133

Lower Member/Sunshine Ranct Qsm 35 120 35 12.0 32 133

Saugus (Pelona Schist clasts) Qsp 32 124 31 144

Saugus (San Francisquito clasts) Qss 32 124 31 144

Pico Fm. Tp 31 144 32 124 35 120 35 120 32 133

Pico Fm. (ss/cg) Tpc 31 144 32 124 31 144 35 120 32 133

Pico Fm. (silt) Tps 25 347 28 20.1 31 144 23 19.2 28 19.6

Towsley Fm. (ss/shale) Tw 35 120 32 133

Towsley Fm. (shale) Tws 31 144 28 20.1 37 148 23 19.2 28 19.6

Towsley Fm. (ss) Twc 31 144 32 124 37 148 35 120 32 133

Hasley Conglomerate Twhc 31 144 32 124

Castaic Fm. (ss) Tcs 28 20.1 37 148

Mint Canyon Fm. (ss) Tmc 37 148

Mint Canyon Fm. (ss/clay) Tmcl 37 148

Modelo Fm. (shale) Tm 31 144 35 120 35 120 39 313

Modelo Fm. (shale/mud) Tml 25 347 35 120 39 313

Modelo Fm. (porc. shale) Tm2 31 144 35 120 35 120 39 313

Modelo Fm. (ss) Tm3 31 144 35 120 35 120 39 313

Modelo Fm. (shale) Tmé 31 144 35 120 35 120 39 313

Modelo Fm. (shale) Tm5 31 144

Modelo Fm. (diatom. shale) Tmd 35 120 39 313

Modelo Fm. (shale) Tms 28 20.1 39 313

Modelo Fm. (cg/ss) Tmc 28 20.1

Topanga Fm. (ss) Tt 35 120 35 120 39 313

Topanga Fm. (basalt) Ttb 28 144 39 313

Topanga Fm. (shale) Ttl 39 313

Topanga Fm. (ss) Tt2 39 313

Topanga Fm. (shale) Tt3 39 313

Topanga Fm. (ss) Tt 39 313

Conejo Volcanics (andesite/basalt ~ Tco 38 287

Conejo Volcanics (andesite) Tcoa 38 287

Conejo Volcanics (basalt) Tcob 38 287

Rincon Shale Tm 31 144

Vaqueros Fm. (silt, ss) Tv 35 120

Sespe Fm. (ss, cg) Ts 34 138 35 120 35 120

Llajas Fm. (ss, silt, clay, cg) TI 35 120 35 120 39 313

Llajas Fm. (calc. ss, hard) Tlc 35 120 39 313

Santa Susana Fm. (clay shale) Tss 35 120 39 313

Simi Conglomerate Tsc 35 120

Simi Conglomerate (cg) Tscl 39 313

Simi Conglomerate (shale) Tsc2 39 313

Simi Conglomerate (ss) Tsc3 39 313

Chatsworth Fm. (ss) Kc 38 287 39 313

a ¢': effective angle of internal friction; c': effective cohesion intercept; ss: sandstone; cg: conglomerate; 1 kPa= 20.885 Ib/ft>.
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3.3.3 Maps of Yield Acceleration

Values of slope angle and shear strength are used in Equations 3.1 and 3.2 to
compute yield acceleration. Yield acceleration values were computed at 10-meter grid
spacing across all six quadrangles based on the computed grids of slope angle and shear
strength. Because yield acceleration is a function of the static factor of safety (FS) and is
independent of the expected level of ground shaking, a map of yield acceleration is
essentially a map of seismic landslide susceptibility. The effect of shear strength
properties on the dynamic performance of a slope can be evaluated by comparing values
of yield acceleration. Figure 3.9 below shows the distribution of yield acceleration values
and static factors of safety across the Oat Mountain quadrangle for the cases considered
in the preceding section:

Q) CASE I Strengths used by Jibson et al. (2000)
(ii)  CASE II: Strengths used in this study (¢’ and ¢’ from Table 3.1)
(iii)  CASE Ill: CGS approach (¢’ from Table 3.1, ¢’ = 0)

100% - ®CASEI
H CASE Il
80% -— u CASE Il

100% - ECASE I
E CASE Il
80% -— u CASE Il

60% 60%

40% 40%

20% 20%

Percentage of cells in quadrangle
Percentage of cells in quadrangle

O% T T T T 1 O% T T T hed T 1

N 1 > 5 e}
7 Q- Q- Q- Q- Q-
0 gf\ 03« be 7

Static factor of safet
Y Yield Acceleration (units of g)

Figure 3.9: Distribution of values of a) factor of safety, and b) yield acceleration in the
Oat Mountain quadrangle for Case I, Case I, and Case Il
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The approach used by CGS (Case I1l), which ignores the contribution of cohesion
to the shear strength, results in almost 20% of the quadrangle being statically unstable
(FS < 1) and nearly 40% of the quadrangle having a yield acceleration less than 0.20. In
contrast, the large shear strength values used by Jibson et al. (2000) result in very few
(< 1%) vyield accelerations below 0.30, which implies that the landslide susceptibility
across the entire quadrangle is very low. The approach used in this study (Case Il) results
in a small percentage of the quadrangle being statically unstable (0.4%). Figure 3.10
shows a map of yield acceleration values computed for the Oat Mountain quadrangle
using the shear strength parameters in Table 3.1 (Case Il). In general, smaller yield
acceleration values are concentrated in the steeper slopes. The noticeable band of yield
accelerations greater than 0.50 surrounded by areas with much smaller yield accelerations
in the north central portion of the quadrangle corresponds to geologic unit “Tm” in the
map of geology (Figure 3.5), described as the upper Miocene Modelo Formation
(CDMG, 1997b). This geologic unit is in the highest shear strength group in the
quadrangle. Maps of yield acceleration for all six quadrangles (for Case Il) are given in
Appendix A (Figures A-13 through A-18).

A vyield acceleration value is a good indicator of a slope’s susceptibility to
landsliding, but the occurrence of a landslide is also a function of the ground motion
intensity. The sliding-block analysis combines the yield acceleration with ground shaking
information to predict the occurrence of landslides based on an estimate of the sliding
displacement. Empirical models that predict displacement as a function of yield
acceleration and one or more ground motion parameters are discussed in the following

section.
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Figure 3.10: Map of yield acceleration values computed for the Oat Mountain quadrangle
using shear strength values from Table 3.1 (Case II).
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3.4 CALCULATING PERMANENT DISPLACEMENTS

The use of displacement prediction equations is an efficient way to compute rigid
sliding-block displacements over a large area. Values of yield acceleration and ground
shaking information are combined within a GIS and values of permanent displacement
are calculated and assigned to individual cells across each quadrangle. Ground shaking is
characterized by different predictive models using a single ground motion parameter or
combinations of ground motion parameters. The predictive models used in this study and

the related ground motion parameters are discussed below.

3.4.1 Predictive Models

Seven displacement prediction equations are considered for this study and are
summarized in Table 3.2. Models J-(1,), J-( PGA), and J-( PGA, 1,) were developed by
Jibson (2007), model RS-( PGA, M) was developed by Rathje and Saygili (2009), and
models RS-( PGA, PGV), RS-(PGA, 1), and RS-(PGA, PGV, 1,) were developed by
Saygili and Rathje (2008). For convenience the models designated “RS” will be referred
to as the Rathje and Saygili (2008, 2009) models.

The models developed by Jibson (2007) were developed using a database of 2,270
strong-motion records from 30 worldwide earthquakes. The records were double-
integrated for five different yield acceleration values (0.05, 0.10, 0.20, 0.30, and 0.40 g)
to produce a large data set of displacements with corresponding yield accelerations, peak
ground accelerations, and Arias intensities. This data set was sampled to produce a final
set of 875 displacements — 175 for each of the five yield acceleration values. Based on
this final data set, Jibson (2007) modeled displacements as a function of vyield
acceleration (k,,), Arias intensity (I,), and peak ground acceleration (PGA). The standard

deviations of these three models are between 0.510 and 0.656 log (base 10) units.
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Table 3.2: Displacement prediction equations used in this study

Jibson (2007)

J-(1) logD = 2.401logl, — 3.481logk, — 3.230 (33)
k 2.341 k —1.438

J-(PGA) logD = 0.215 + log [(1 - () ] (3.4)

3-(PGA, 1) log D = 0.561log I, — 3.833 log (22 ) — 1.474 (3.5)

Rathje and Saygili (2008, 2009)

RS-(PGA, M) InD =239 -524(72) - 1878 (P%)z + 4201 (1%)3 ~29.15 (1:%)4 (3.6)

—1.56InPGA + 1.381n1,

RS-(PGA, PGV) InD = —1.56 — 4.58 (P%) — 20.84 (P%)z + 44.75 (%)3 —30.50 (%)4 (3.7)

—0.64In PGA + 1.55In PGV

RS-(PGA, I,) InD = —0.74 - 493 (2%) ~ 19.91 (P%)z + 4375 (1%)3 ~30.12 (1:%)4 (3.8)

—1.30InPGA + 1.04In PGV + 0.67In1,

RS-(PGA,PGV,15)  InD =489 — 485 (22) - 19.64 (P%)z + 4249 (%)3 ~29.06 (%)4 (3.9)

+0.72In PGA + 0.89(M — 6)

Note: D is displacement in centimeters, I, is Arias intensity in meters per second, k,, is the yield
acceleration in units of g, PGA is peak ground acceleration in units of g, PGV is peak ground velocity in
units of cm/s, and M is moment magnitude.
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The models developed by Rathje and Saygili (2008, 2009) were developed using
2,383 strong motion records downloaded from the Next Generation Attenuation (NGA)
database = of the Pacific  Earthquake  Engineering  Research  Center
(http://peer.berkeley.edu/nga). These models use combinations of ground motion
parameters that were selected based on the concept of “efficiency” developed by Cornell
and Luco (2001). Ground motion parameters that produce less variability in the
displacement prediction are considered more efficient. Saygili and Rathje (2008) found
that incorporating multiple ground motion parameters significantly increased the
efficiency (i.e. reduced the standard deviation) of the displacement prediction. The Rathje
and Sayqgili (2008, 2009) models used in this study predict displacement as a function of
yield acceleration and different combinations of peak ground acceleration (PGA), peak
ground velocity (PGV), Arias intensity (I,) and moment magnitude (M).

A comparison of the models in Table 3.2 is provided in Figure 3.11. For a given
deterministic earthquake event (M = 7 @ 5 km) at a typical rock site (Vszo = 760 m/s),
predicted displacements are plotted against a range of practical yield acceleration values.
Using ground motion prediction equations developed by Boore and Atkinson (2008) this
event produces PGA = 0.32 g and PGV = 30 cm/s. The Arias intensity for this event is
I, = 1.1 m/s using the relationship developed by Bray and Travasarou (2003). In general,

the models developed by Rathje and Saygili (2008, 2009) predict slightly larger
displacements than the models developed by Jibson (2007) in the range of k, = 0.05 to

0.25. For example, at a yield acceleration of k,, = 0.10, model J-(PGA, I,) predicts a
displacement of D = 3 cm while model RS-(PGA, 1,) predicts a displacement of D = 6
cm. As the yield acceleration approaches zero, the Jibson (2007) model predictions
increase towards very large values, while the Rathje and Saygili (2008, 2009) model

predictions do not increase as much. Additionally, as the yield acceleration approaches
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the peak ground acceleration (PGA = 0.32 g), most of the model predictions approach

zero except for the two Jibson (2007) models J-(I,) and J-(PGA, 1,) These models do not

approach zero because they do not explicitly consider whether k,, is greater than PGA.
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Figure 3.11: Comparison of displacements predicted by the displacement prediction equations in
Table 3.2 for a deterministic event (M =7 @ 5 km)
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3.4.2 Ground Motion Data

Values of peak ground acceleration (PGA in g), peak ground velocity (PGV in
cm/s), and Arias intensity (I, in m/s) are required to use the displacement prediction
models considered in this study. To calculate displacements, estimates of these ground
shaking parameters are assigned to 10-meter grid cells within the study area. Because the
goal is to evaluate the performance of these models against observations of landsliding
from the Northridge earthquake, ground shaking data from the Northridge earthquake are
required.

Ground shaking information from the Northridge earthquake is available for
download from ShakeMap®, an online mapping tool developed by the USGS that rapidly
assesses the extent and intensity of ground shaking following an earthquake. Ground
motion estimates are based on strong motion recordings and predicted ground motions
derived from empirical ground motion prediction equations (GMPE). Using a reported
earthquake magnitude and location, the GMPE calculates values of ground shaking for a
grid of hypothetical rock sites. If a grid point falls at an instrumented strong-motion site,
the recorded motion is used instead of the predicted motion. For grid points close to an
instrumented strong-motion site, ShakeMap® uses both the recorded motion and the
predicted motion to develop an estimate of ground shaking. Additionally, ShakeMap®
corrects ground motions for site amplification using estimates of shear-wave velocity
(Vs30) and amplification estimates used in GMPEs.

ShakeMap® uses different attenuation relationships for different ground motion
parameters. For PGA, the Boore et al. (1997) GMPE is used, and for PGV, the Joyner and
Boore (1988) GMPE is used. Estimates of Arias intensity are not currently generated by
ShakeMap®. However, for this project Dr. David Wald of the USGS developed a map of

1, for the Northridge earthquake using values of 1, computed from the recorded motions
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combined with the empirical attenuation relationship developed by Travasarou et al.
(2003). The output from ShakeMap® is a finely sampled grid (1.5-km spacing) of
latitude and longitude pairs with associated ground motion estimates at each point. PGA,
PGV, and I, data from the Northridge earthquake were downloaded in ASCII file format
and converted into 10-meter raster grids within ArcGIS© using a simple kriging
interpolation algorithm.

Figure 3.12 shows a map of peak ground acceleration (PGA) produced by
ShakeMap® following the Northridge earthquake. The approximate location of the study
area is shown by the larger blue rectangle (dashed line). The smaller black rectangle
represents the surface projection of the fault (Wald et al. 1996), and the black star
represents the earthquake epicenter. The majority of strong-motion recording stations
(yellow triangles) are located in Los Angeles County, to the south and east of the
epicenter. Fewer stations are located to the northwest, near the study area. This results in
a greater reliance on ground motion prediction equations to produce estimates of ground
shaking within the study area. There can be a great deal of uncertainty involved in
creating estimates of ground shaking, particularly when using a sparse network of station
recordings. This uncertainty stems from the fact that ground motions can vary greatly

over small distances.
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Figure 3.12: ShakeMap® of peak ground acceleration (PGA) during the 1994 Northridge
earthquake. Strong motion stations are shown as yellow triangles. The black rectangle represents
the surface projection of the fault from Wald et al. (1996). Contours of PGA are shown in % g.

Figures 3.13 through 3.15 show the contours of peak ground acceleration (PGA),
peak ground velocity (PGV), and Arias intensity (I,), respectively, derived from
ShakeMap® for the six quadrangles in the study area. The values shown represent the
values used in this study. As expected, the values of PGA, PGV, and I, increase towards
the southeast, closest to the earthquake epicenter. VValues of PGA range from about 0.2 g
in the northwest corner of the Piru quadrangle to about 0.9 g in the southern portion of
the Santa Susana quadrangle; values of PGV range from about 20 cm/s in Piru up to
about 140 cm/s in the southeast corner of Oat Mountain; and values of I, range from
about 1 m/s in Piru to more than 10 m/s in some portions of Oat Mountain. Compared

with the I, values used by Jibson et al. (2000), the values in Figure 3.13 are larger.
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However, the values in Figure 3.13 are considered better estimates of I, from the

Northridge earthquake because of the robust methodology used by ShakeMap®.

Figure 3.13: Contours of peak ground acceleration (PGA) derived by ShakeMap® in the study
area during the Northridge earthquake. Contours of PGA are shown in increments of 0.1 g.

Figure 3.14: Contours of peak ground velocity (PGV) derived by ShakeMap® in the study area
during the Northridge earthquake. Contours of PGV are shown in increments of 20 cm/s.
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Figure 3.15: Contours of Arias intensity (I,) derived by ShakeMap® in the study area during the
Northridge earthquake. Contours of I, are shown in increments of 1 m/s.
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3.5 EVALUATING THE USE OF SLIDING DISPLACEMENTS TO PREDICT LANDSLIDES

For the sliding-block method to be useful in predicting earthquake-induced
landslides, modeled displacements must correspond well with landslides observed in the
field (Jibson 2010). Predictive models (and model parameters) can be validated by
comparing computed displacement values with locations of observed landsliding from
previous earthquakes. Note that the displacements from the simplified sliding block
model do not directly represent displacements that occur in the field. Rather, predicted
displacements above some threshold value are often associated with landslide occurrence.
Using the ArcGIS© platform, every 10-meter grid cell that is assigned a computed
displacement value can be compared with the field observations of landslides (i.e.
whether the cell is a landslide or non-landslide cell). Cells with larger computed
displacements should intuitively be more likely to correspond to landslide cells than cells
with smaller computed displacements. Different predictive models can be compared
based on the strength of this correspondence.

Figures 3.16 through 3.21 show the full inventory of landslides triggered by the
Northridge earthquake for each of the six quadrangles considered in this study. More than
7,000 individual landslides were digitized within the study area by Harp and Jibson
(1995, 1996). The Val Verde quadrangle contains the most observed landslides
(approximately 2,500) the Piru, Santa Susana and Oat Mountain quadrangles contain
between 1,300-1,400 landslides apiece, and the Simi Valley and Newhall quadrangles
contain around 400-450 landslides each. In general, the quadrangles with the higher

concentrations of steep slopes experienced the greatest number of landslides.
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PIRU QUADRANGLE 0 05 1 2 Km
. Landslides /

No. of Landslides: 1,293
No. of Landslide Cells: 35,575 (2.2% of quad)

Figure 3.16: Map of landslides observed during the 1994 Northridge earthquake in the
Piru quadrangle (Harp and Jibson, 1995, 1996).
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VAL VERDE QUADRANGLE 0 05 1 2Km
. Landslides /

No. of Landslides: 2,504
No. of Landslide Cells: 56,186 (3.5% of quad)

Figure 3.17: Map of landslides observed during the 1994 Northridge earthquake in the
Val Verde quadrangle (Harp and Jibson, 1995, 1996).
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NEWHALL QUADRANGLE 0 05 1 2 Km
. Landslides /

No. of Landslides: 371
No. of Landslide Cells: 5,294 (0.3% of quad)

Figure 3.18: Map of landslides observed the 1994 Northridge earthquake in the
Newhall quadrangle (Harp and Jibson, 1995, 1996).
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SIMI VALLEY QUADRANGLE 0 05 1 2 Km
. Landslides /

No. of Landslides: 482
No. of Landslide Cells: 10,773 (0.7% of quad)

Figure 3.19: Map of landslides observed during the 1994 Northridge earthquake in the
Simi Valley quadrangle (Harp and Jibson, 1995, 1996).
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SANTA SUSANA QUADRANGLE 0 05 1 2 Km
. Landslides /

No. of Landslides: 1,406
No. of Landslide Cells: 33,755 (2.1% of quad)

Figure 3.20: Map of landslides observed during the 1994 Northridge earthquake in the
Santa Susana quadrangle (Harp and Jibson, 1995, 1996).

64



OAT MOUNTAIN QUADRANGLE 0 05 1 2 Km
. Landslides /

No. of Landslides: 1,328
No. of Landslide Cells: 19,959 (1.3% of quad)

Figure 3.21: Map of landslides observed during the 1994 Northridge earthquake in the
Oat Mountain quadrangle (Harp and Jibson, 1995, 1996).

65



Recognizing that the area of an observed landslide includes the location where the
landslide initiated (upslope) and the location where the landslide stopped (downslope),
predicted displacements are correlated only with landslide source areas. Landslide source
areas are defined as those cells having elevations above the median elevation for each
landslide, so that the upper half of each landslide is considered a source area (Jibson et al.
2000). The resulting landslide source areas comprise nearly 80,000 cells (equivalent to 8
square kilometers), or roughly 0.8% of the cells within the six quadrangle study area.
Figure 3.22 shows the landslide source cells within Oat Mountain for comparison with
the full landslide inventory shown in Figure 3.21. Maps of landslide source areas for all

six quadrangles are given in Appendix A (Figures A-19 through A-24).

66



OAT MOUNTAIN QUADRANGLE 0 05 1 2 Km
. Landslides /
No. of Landslides: 1,328

No. of Landslide Source Cells: 9,445 (0.6% of quad)

Figure 3.22: Map of landslide sources observed during the 1994 Northridge earthquake
in the Oat Mountain quadrangle (Harp and Jibson, 1995, 1996).
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One approach that has been used to evaluate the accuracy of the predictive models
is to calculate the percentage of landslide source cells (i.e. the upper half of each
landslide) that are associated with predicted displacements above a threshold value. This
approach was taken by McCrink (2001), as discussed in Section 2.4. One drawback of
this approach is that it does not acknowledge the occurrence of false positives (i.e. cells
with large predicted displacements that do not correspond with landslide source cells). A
model that captures a large percentage of landslide source cells is less useful if it also
captures a large percentage of non-landslide source cells. McCrink (2001) calculated the
% Quad Cover (i.e. the percentage of cells in a quadrangle that are assigned
displacements above the threshold value) of each model as a way of penalizing those
models that captured a large percentage of landslide source cells simply because a large
percentage of the quadrangle was assigned displacements above the threshold value.
However, this metric does not take into account the scenario where a large percentage of
the quadrangle is landslide cells, in which case a large % Quad Cover is desirable.

Another approach that has been used to assess the ability of displacement
prediction equations to predict landslides is to consider the percentage of cells within a
displacement range that are associated with observed landslides. This was the approach
taken by Jibson et al. (2000), also discussed in Section 2.4. One drawback of this
approach is that it hides a significant amount of false negatives (i.e. small displacements
being predicted within observed landslide source cells).

For this study, predicted displacements are compared with locations of observed
landslide cells using a cell-by-cell approach and a landslide-by-landslide approach. The
cell-by-cell approach takes into account the percentage of landslide source cells
associated with displacements above a specified threshold value, as well as statistics on

the occurrence of false positives and false negatives. The landslide-by-landslide approach
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evaluates the ability of the different predictive models to capture a certain portion of each
individual landslide group (i.e. a group of landslide source cells from the same landslide).

Both of these approaches are discussed in further detail in the following sections.

3.5.1 Cell-by-Cell Approach

The cell-by-cell approach used in this study is similar to the approach used by
McCrink (2001). The efficiency of a model is computed as the difference between the
percentage of ground failures captured (%GFC) and the percentage of the quadrangle
covered (%QC) with predicted landslides (i.e. cells with computed displacements above a

threshold value). These parameters are computed as follows:

# of landslide source cells with D > x
% GFC = L (3.10)

total # of landslide source cells

% QC — #of cellswithD > x (3.11)

total # of cells in the quadrangle

% Efficiency = % GFC — % QC (3.12)

where D is the predicted displacement in centimeters, and x is the specified displacement
threshold in centimeters. Establishing a meaningful displacement threshold is a little
ambiguous; displacements in the range of 5 to 15 cm have typically been used in previous
studies to define failure (Jibson, 2010). For this study, modeled displacements are
compared with observed landslides for two different displacement thresholds, 5 cm and
15 cm. Any cells with predicted displacements exceeding these threshold values are
considered predicted landslide cells.

In addition to the parameters adopted from McCrink (2001), the percentage of

each quadrangle that is covered by observed landslide source cells (% LS Area) and the
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ratio of predicted landslide cells to observed landslide source cells (% QC / % LS Area)

in each quadrangle is calculated for all models, and both displacement thresholds:

# of landslide source cells

% LS Area = , (3.13)
total # of cells in a quadrangle
% QC _ #of cellswithD >x (3 14)
%LS Area  # of landslide source cells '

This ratio provides some insight into the relative performance of different models
between quadrangles where there are lots of observed landslides (e.g. the Val Verde
quadrangle in the study area) and quadrangles where there are few observed landslides
(e.g. the Newhall guadrangle in the study area). However, this metric does not consider
whether the predicted landslide cells (% QC) are coincident with the observed landslide
cells (% LS Area).

To address the occurrence of false positives and false negatives a confusion
matrix (Figure 3.23) can be used to tabulate the observed landslide and no-landslide cells
with the predicted landslide and no-landslide cells. The accurate predictions are
represented by the diagonal elements of the confusion matrix (A, D), while the erroneous
predictions are found off the diagonal (B, C). For the 2-class problem of landslide
identification, false positives are represented below the diagonal (B) and false negatives
above the diagonal (C). Total accuracy is defined as the percentage of cells accurately
placed in the landslide or no-landslide bin:

[A+D]

% ACCUTClC}/ = m

(3.15)

70



Total accuracy considers both the landslide and no-landslide cells in quantifying
accuracy, while the previously discussed metric % GFC only considers the landslide cells

(i.e. % GFC = A/[A+C]).

Predicted Outcome

Landslide No Landslide

(]
i)

0 7 A C

g S (Accurate) (False Negative)
—

]
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(@)

r— (]

< 2 B D
8 (False Positive) (Accurate)
o
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Figure 3.23: Confusion matrix used to evaluate commission error (B/[A+B]) and omission error
(C/[A+C]) for landslides in a cell-by-cell comparison of predicted and observed landslides.

The commission error for landslides is defined as the percentage of the predicted
landslide cells that are not actually landslide cells (i.e. false positives), and the omission
error for landslides is defined as the percentage of observed landslide cells that were

predicted to be no-landslide cells (i.e. false negatives):

% Commission Error = [AiB] (3.16)
% Omission Error = ﬁ (3.17)

The total accuracy and the commission and omission errors are calculated for
each predictive model and each displacement threshold, for all six quadrangles in the

study area. The results of these analyses are presented in Chapter 4.
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3.5.2 Landslide-by-Landslide Approach

Another approach used in this study is to evaluate the success of the predictive
models on a landslide-by-landslide basis rather than a cell-by-cell basis. This method
credits the predictive models for predicting a specified minimum area of each landslide.
For example, if a model captures 50% of the cells within a particular landslide, the
cell-by-cell approach will calculate a %GFC = 50%. But if the specified minimum area is
50%, the landslide-by-landslide approach will credit the model for capturing that entire
landslide (i.e. 100% success). The landslide-by-landslide approach can be used to better
understand the results of the cell-by-cell approach, rather than serve as an alternative. It
can help determine why a model captured a large or small percentage of landslide cells in
a given quadrangle; maybe the model successfully located several large landslide groups
but missed many smaller landslides, or maybe the model did not predict enough landslide
cells to capture the larger landslides, but was able to capture many of the smaller
landslides. Figure 3.24 illustrates an example of a group of observed landslide cells
(outlined in black), a little more than half of which were predicted to be landslide cells
(the orange cells). However, it could be argued that the model successfully identified the

landslide despite the location being slightly off.

B Lanosiice Predicted

= Opserved Landslide

Figure 3.24: Typical comparison between observed and predicted landslide cells.
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Each landslide source cell within the study area belongs to an individual,
numbered landslide source. The percentage of area of each landslide source that is
captured by the models can be calculated by dividing the number of predicted landslide
cells within a landslide source by the total number of landslide source cells in that
landslide source. The accuracy of the predictive models using the landslide-by-landslide
approach, described as the % LS Captured, can then be calculated as the percentage of

landslides with at least 50% of the area captured:

# of landslides with ratio of predicted to observed cells = 0.5 (3 17)
total # of landslides '

% LS Captured =

3.6 SUMMARY

Using the data and procedures outlined in this chapter, estimates of rigid sliding
displacement are calculated and compared with locations of observed landslides from the
1994 Northridge earthquake. The results of these analyses are presented and discussed in

the following chapter.
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Chapter 4

Validation Results

4.1 INTRODUCTION

This chapter presents the results of the study. Statistics on the accuracy of each
model using the cell-by-cell approach and the landslide-by-landslide approach described
in the previous chapter are tabulated herein for all six quadrangles. In addition, the
influence of landslide size, geologic unit, slope angle and material strength on the
landslide predictions is evaluated.

Because of the large study area and the number of displacement prediction models
considered in this exercise, maps of predicted displacement are not shown for all six
quadrangles. Instead, a representative region within the Oat Mountain quadrangle has
been selected to show the maps of predicted displacement for each model and the maps
comparing locations of observed landslides with predicted landslides. The location of the
representative region is shown in Figure 4.1 and is located in the northeast corner of the
Oat Mountain quadrangle. The representative region consists of geologic units from

Strength Group 2 (Tw, Tpc, Qs) and Strength Group 3 (Tps, Qal/Qay).
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Figure 4.1: Location of the representative region within the Oat Mountain quadrangle used for
comparing the results of the different displacement prediction models.

Figure 4.2 shows the observed landslides, the calculated yield acceleration values,
and the estimates of PGA, PGV, and I, for the representative region within the Oat
Mountain quadrangle. The proximity of this area to the fault rupture from the Northridge
earthquake resulted in large ground motions, with PGA ~ 0.60 to 0.65 g, PGV ~ 75 to 85
cm/s, and I, ~ 6.5 m/s. The maps of predicted displacement shown in the following

section are based on these input data.
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Figure 4.2 (Page 1 of 2): Maps of the small representative region within the Oat Mountain quadrangle
showing (a) observed landslides, (b) calculated yield acceleration values, (c) estimates of peak ground
acceleration (PGA), (d) estimates of peak ground velocity (PGV), and (e) estimates of Arias intensity.
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Figure 4.2 (Page 2 of 2): Maps of the small representative region within the Oat Mountain quadrangle
showing (a) observed landslides, (b) calculated yield acceleration values, (c) estimates of peak ground
acceleration (PGA), (d) estimates of peak ground velocity (PGV), and (e) estimates of Arias intensity.
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4.2 MAPS OF SLIDING DISPLACEMENT

Figures 4.3(a) through 4.9(a) show sliding displacements calculated for an area
within the Oat Mountain quadrangle for all seven displacement prediction models. Larger
displacements (greater than 15 cm) are represented by the orange and dark red cells,
smaller displacements (less than 5 cm) are represented by the grey and green cells, and
moderate displacements (5-15 cm) are represented by the yellow cells. In general,
calculated displacements greater than 5 cm are concentrated along the steep ridges, and
displacements less than 5 cm are more spread out among flatter slopes. The model that
appears to predict the largest number of cells greater than 5 cm in the area shown is
model RS-(PGA, PGV, I,), while the model with the fewest number of cells greater than
5 cm in the area shown is model J-(PGA).

In parts (b) and (c) of Figures 4.3 through 4.9, the displacements that exceed the
threshold values of 15 cm and 5 cm, respectively, are shown in pink. These cells
represent the landslides predicted when using these displacement thresholds. The
locations of observed landslides are shown in blue. Generally, there are fewer observed
landslide cells than predicted landslide cells. For example, the representative region has
1,159 observed landslide cells (approximately 3% of the representative region), yet the
displacement models predict between 657 and 2,514 landslide cells (1.8 to 6.8% of the
representative region) for the 15-cm threshold, and between 1,265 and 5,778 landslide

cells (3.4 to 15.6% of the representative) for the 5-cm threshold.
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@ ModelJ - (1.)

Predicted
Displacement (cm)

<1
1-5
5-15
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> 100

(b) Results for Oat Mountain,
15-cm Threshold:

% GFC =30.7 %
% QC=29%
% Efficiency = 27.8 %

<15cm
>15cm
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(© Results for Oat Mountain,
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% GFC =43.1%
% QC=54%
% Efficiency = 37.7 %
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. Landslides

Figure 4.3: Results for Model J-(1a) in the Oat Mountain quadrangle. (a) Predicted displacements, and
(b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm) are
shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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© Results for Oat Mountain,
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% QC=24%
% Efficiency = 25.3 %
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Figure 4.4: Results for model J-(PGA) in the Oat Mountain quadrangle. (a) Predicted displacements, and
(b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm) are
shown for the representative region. %GFC = percentage of ground failures captured, %QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC)
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Figure 4.5: Results for Model J-(PGA, Ia) in the Oat Mountain quadrangle. (a) Predicted displacements, and
(b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm) are
shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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Figure 4.6: Results for Model RS-(PGA, M) in the Oat Mountain quadrangle. (a) Predicted displacements, and
(b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm) are
shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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Figure 4.7: Results for Model RS-(PGA, PGV) in the Oat Mountain quadrangle. (a) Predicted displacements,
and (b, ¢) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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Figure 4.8: Results for Model RS-(PGA, 1a) in the Oat Mountain quadrangle. (a) Predicted displacements,
and (b, ¢) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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Figure 4.9: Results for Model RS-(PGA, PGV, 1a) in the Oat Mountain quadrangle. (a) Predicted displacements,
and (b, ¢) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage
of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).
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4.3 COMPARISON OF SLIDING DISPLACEMENTS WITH OBSERVED LANDSLIDES

Visually comparing the locations of predicted landslides with the locations of
observed landslides in Figures 4.3 through 4.9, each model appears to do a good job of
locating the larger landslide groups, but the smaller landslides are harder to locate. Also,
there are areas where landsides are predicted but not observed (false positives), and areas
where landslides are observed but not predicted (false negatives). In some cases,
predicted landslide cells are immediately adjacent to observed landslide cells, indicating
that the model identified a landslide but slightly missed its location. These observations
are helpful in interpreting the results of quantitative analyses. The results of this study are

summarized in the following sections using the analyses described in Chapter 3.

4.3.1 Cell-by-cell Comparison

The percentages of ground failures captured (%GFC), the percentages of
quadrangle covered by predicted landslide cells (%QC) and the calculated efficiencies
(%GFC - %QC) of each model, for all six quadrangles, are compiled in Table 4.1 for a
displacement threshold of 15 cm, and in Table 4.2 for a displacement threshold of 5 cm.
Also shown in these tables is the percentage of quadrangle covered by observed
landslides (% LS Area) for each quadrangle, and the ratio of %QC to % LS Area. The
ratio of %QC to % LS Area is a measure of the over-prediction (or under-prediction) of
overall landslide area from the various models, without considerations of whether the
landslide locations are accurately identified.

On average the 15 cm threshold captures about 20 to 30% of the observed
landslide cells (%GFC = 18.7% to 29.1%) and the 5 cm threshold captures about 25 to
40% of the observed landslide cells. Across the different quadrangles the %GFC tends to
be largest for the Oat Mountain quadrangle (as high as 55%) and smallest for the Newhall

and Simi Valley quadrangles (as low as 10 to 15%). This result may be caused by the
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Newhall and Simi Valley quadrangles having experienced the fewest landslides (0.2%
and 0.3% LS Area, respectively). The average ratio of %QC / % LS Area is about 3 to 4
for the 15 cm threshold, and about 4 to 7 for the 5 cm threshold. The Piru and Oat
Mountain quadrangles consistently show the largest ratios of %QC to % LS Area
(generally greater than 5 to 10), while the other quadrangles show ratios generally less
than 5. Using the smaller displacement threshold increases the %GFC, but also increases

the over-prediction of landslide area.
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Table 4.1: Summary of results for all six quadrangles of the study area, for a displacement threshold of 15 cm.

J-(1a) J-(PGA) J-(PGAla) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
% GFC 32.0% 28.0% 31.6% 35.3% 32.8% 34.2% 33.1%
1. PIRU % QC 10.5% 9.4% 10.5% 11.6% 10.7% 11.1% 10.7%
% LS Area: 1.2% % Efficiency 21.5% 18.6% 21.1% 23.7% 22.2% 23.1% 22.4%
% QC/% LS Area 8.7 7.8 8.7 9.6 8.9 9.2 8.9
% GFC 21.2% 17.0% 20.2% 22.3% 24.1% 23.5% 24.1%
2. VAL VERDE % QC 3.6% 2.7% 3.3% 3.9% 4.3% 4.1% 4.3%
% LS Area: 1.7% % Efficiency 17.6% 14.3% 16.8% 18.4% 19.8% 19.4% 19.8%
% QC/% LS Area 2.1 15 1.9 2.3 2.5 2.4 2.5
% GFC 18.2% 11.2% 16.4% 20.1% 28.1% 22.6% 26.5%
3. NEWHALL % QC 0.2% 0.1% 0.2% 0.2% 0.4% 0.3% 0.4%
% LS Area: 0.2% % Efficiency 18.0% 11.1% 16.2% 19.9% 27.7% 22.2% 26.1%
% QC/% LS Area 1.4 0.7 1.1 1.5 2.4 2.0 2.3
% GFC 17.9% 16.1% 17.4% 18.7% 16.9% 18.9% 17.5%
4. SIMI VALLEY % QC 0.3% 0.3% 0.3% 0.3% 0.3% 0.4% 0.3%
% LS Area: 0.3% % Efficiency 17.6% 15.8% 17.1% 18.3% 16.6% 18.6% 17.2%
% QC/% LS Area 1.0 0.8 0.9 1.1 0.9 1.1 1.0
% GFC 23.3% 14.6% 21.4% 27.3% 30.8% 30.2% 31.0%
5. SANTA SUSANA % QC 1.2% 0.6% 1.1% 1.6% 1.9% 1.8% 1.9%
% LS Area: 1.0% % Efficiency 22.0% 14.0% 20.3% 25.8% 28.9% 28.4% 29.1%
% QC/% LS Area 1.2 0.6 1.1 15 18 17 1.8
% GFC 30.7% 16.5% 26.4% 32.1% 38.3% 38.0% 39.1%
6. OAT MOUNTAIN % QC 2.9% 1.1% 2.3% 3.2% 4.3% 4.2% 4.4%
% LS Area: 0.6% % Efficiency 27.8% 15.4% 24.1% 28.9% 34.1% 33.8% 34.7%
% QC/% LS Area 5.1 1.9 4.0 5.6 7.5 7.4 7.7
AVERAGE % GFC 25.0% 18.7% 23.5% 27.2% 28.8% 28.8% 29.1%
AVERAGE % QC 3.1% 2.3% 2.9% 3.4% 3.6% 3.6% 3.6%
AVERAGE % Efficiency 21.9% 16.4% 20.6% 23.8% 25.3% 25.2% 25.4%
AVERAGE % QC/% LS Area 3.7 2.8 3.5 41 43 4.3 4.4
Average % Ground Failures Captured, 15 cm Threshold
28.8% 28.8% 29.1%
27.2%
25.0% 23.5%
18.7%
J-(1a) J-(PGA) J-(PGA la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV, la)
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Table 4.2: Summary of results for all six quadrangles of the study area, for a displacement threshold of 5 cm.

J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
% GFC 38.6% 37.0% 37.4% 46.9% 44.2% 45.9% 44.6%
1. PIRU % QC 12.5% 12.3% 12.3% 15.6% 14.4% 14.9% 14.5%
% LS Area: 1.2% % Efficiency 26.1% 24.7% 25.2% 31.3% 29.8% 30.9% 30.1%
% QC/% LS Area 10.4 10.2 10.2 13.0 12.0 12.4 12.1
% GFC 26.6% 22.1% 24.1% 30.9% 33.3% 32.4% 33.2%
2. VAL VERDE % QC 4.9% 3.9% 4.3% 6.1% 6.8% 6.5% 6.8%
% LS Area: 1.7% % Efficiency 21.6% 18.2% 19.8% 24.8% 26.5% 25.9% 26.5%
% QC/% LS Area 2.8 2.3 2.5 3.5 3.9 3.8 3.9
% GFC 26.4% 18.6% 22.8% 33.2% 43.4% 36.7% 41.6%
3. NEWHALL % QC 0.5% 0.2% 0.3% 0.6% 1.0% 0.9% 1.0%
% LS Area: 0.2% % Efficiency 26.0% 18.4% 22.5% 32.5% 42.4% 35.9% 40.6%
% QC/% LS Area 2.8 13 1.9 4.0 6.6 5.4 6.3
% GFC 20.7% 19.3% 19.6% 23.4% 21.1% 23.7% 22.0%
4. SIMI VALLEY % QC 0.4% 0.4% 0.4% 0.5% 0.4% 0.5% 0.5%
% LS Area: 0.3% % Efficiency 20.3% 18.9% 19.2% 22.9% 20.7% 23.2% 21.5%
% QC/% LS Area 13 11 1.2 1.6 1.4 1.6 15
% GFC 35.1% 24.5% 31.0% 45.2% 48.2% 48.4% 48.7%
5. SANTA SUSANA % QC 2.3% 1.3% 1.8% 3.5% 4.0% 4.0% 4.1%
% LS Area: 1.0% % Efficiency 32.8% 23.2% 29.1% 41.7% 44.2% 44.4% 44.6%
% QC/% LS Area 2.2 13 1.8 3.4 3.9 3.9 4.0
% GFC 43.1% 27.7% 36.3% 48.6% 55.0% 54.6% 55.7%
6. OAT MOUNTAIN % QC 5.4% 2.4% 3.9% 6.9% 8.7% 8.7% 9.0%
% LS Area: 0.6% % Efficiency 37.7% 25.3% 32.4% 41.7% 46.3% 45.9% 46.7%
% QC/% LS Area 9.5 4.3 6.8 11.9 15.2 15.2 15.7
AVERAGE % GFC 32.7% 26.4% 29.7% 39.3% 41.0% 41.0% 41.3%
AVERAGE % QC 4.3% 3.4% 3.8% 5.5% 5.9% 5.9% 5.9%
AVERAGE % Efficiency 28.4% 23.1% 25.9% 33.8% 35.1% 35.1% 35.3%
AVERAGE % QC/% LS Area 5.2 4.0 4.6 6.6 7.1 7.1 7.1
Average % Ground Failures Captured, 5 cm Threshold
39.3% 41.0% 41.0% 41.3%
32.7%
29.7%
26.4%
J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
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Comparing the different displacement prediction models, Tables 4.1 and 4.2
indicate that models that predict a greater number of large displacements (and thus cover
more of the quadrangle) capture a larger percentage of ground failures. On average,
model RS-(PGA, PGV, 1,) captures the largest percentage of landslide source cells across
all six quadrangles (GFC = 29.8%, 41.3% for the 15 cm and 5 cm thresholds,
respectively) and covers the largest percentage of the six quadrangles (QC = 3.6%,
5.9%). Model J-(PGA) captures the smallest percentage of landslide source cells
(GFC = 21.0%, 26.4%) and covers the smallest percentage of the six quadrangles
(QC = 2.3%, 3.4%). For comparison, observed landslide source areas represent only 0.8%
of the area of all six quadrangles.

The models that predict displacement as a function of more than one ground
motion parameter generally capture a larger percentage of landslides than the models that
use only one ground motion parameter. The exception is model J-(PGA, I,) which
captures a slightly smaller percentage of landslides across all six quadrangles than model
J-(1,). The models developed by Rathje and Saygili (2008, 2009) that pair estimates of
PGA with estimates of PGV and/or I, (RS-(PGA,PGV), RS-(PGA,l,;), and
RS-(PGA,PGV ,1,)) all produce similar results. In fact, the results between models within
a given quadrangle are less varied than the results between quadrangles. For example,
with a 5 cm threshold the models generally capture 40 to 55% of landslide source cells in
Oat Mountain, but only 20 to 25% in Simi Valley.

Hard to see in this data are the large number of false positives that occur as a
result of over-predicting landslides. Comparing the percentage of each quad covered by
observed landslide source cells (% LS Area) with the percentage covered by predicted
landslide cells (% QC) provides some insight. In Table 4.2, model RS-(PGA, M) with a

5 cm threshold captures almost 50% of the observed landslides in the Piru quadrangle,
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but covers almost 16% of the quadrangle with predicted landslides. This is 13 times
greater than the area covered by observed landslides (% LS Area = 1.2%). Figure 4.10
illustrates this large number of false positives by showing a small area within the Piru
quadrangle where nearly 100% of the observed landslides are predicted by model RS-

(PGA, M) with a 5 cm threshold, but far more landslides are predicted than observed.

Figure 4.10: Example of false positives for model RS-(PGA, M) with a 5 cm threshold. Observed
and predicted landslides are shown for a small area within the Piru quadrangle, overlain onto a
DEM. The area shown predominately consists of geologic units Tm4 and Qls.

The total accuracies (considering accurate identification of both landslides and
non-landslides), as well as the commission errors (false positives) and omission errors
(false negatives) for all models and all quadrangles are summarized in Tables 4.3 and 4.4
for the 15 cm and 5 cm displacement thresholds, respectively. Noticeably, all of the
accuracies are relatively high (greater than 85%), but these high accuracies are being
predominately influenced by the accurate identification of non-landslide cells, which

cover a very large percentage (> 98%) of each quadrangle. Commission errors are
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generally between 80 and 95% for all analyses. These large commission errors mean that
80 to 95% of predicted landslides are not landslides (i.e. false positives). These are
extremely large numbers, and further indicate the over-prediction of landslide area by the
models. The omission errors are generally between 45 and 85%, indicating that a large

percentage of the landslides are missed by the models.
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Table 4.3: Summary of model accuracy, commission error, and omission error for all six quadrangles of the study area, for a displacement threshold of 15 cm.
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J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, Ia) RS-(PGA,PGV,la)
1. PIRU % Accuracy 89.1% 90.1% 89.1% 88.1% 88.9% 88.5% 88.9%
' % Commission Errors 96.3% 96.4% 96.4% 96.3% 96.3% 96.3% 96.3%
% LS Area: 1.2% % Omission Errors 68.0% 72.0% 68.4% 64.7% 67.2% 65.8% 66.9%
% Accuracy 95.4% 96.2% 95.6% 95.1% 94.8% 94.9% 94.8%
2. VAL VERDE % Commission Errors 89.8% 88.9% 89.6% 90.1% 90.3% 90.2% 90.2%
% LS Area: 1.7% % Omission Errors 78.8% 83.0% 79.8% 77.7% 75.9% 76.5% 75.9%
% Accurac 99.7% 99.8% 99.7% 99.7% 99.6% 99.6% 99.6%
3. NEWHALL "o 9 o o . - . .
6 Commission Errors 87.1% 83.1% 85.3% 86.8% 88.2% 88.6% 88.4%
% LS Area: 0.2% % Omission Errors 81.8% 88.8% 83.6% 79.9% 71.9% 77.4% 73.5%
% Accuracy 99.5% 99.5% 99.5% 99.4% 99.5% 99.4% 99.5%
4. SIMI'VALLEY % Commission Errors 81.9% 79.7% 81.3% 82.3% 81.5% 82.7% 82.0%
% LS Area: 0.3% % Omission Errors 82.1% 83.9% 82.6% 81.3% 83.1% 81.1% 82.5%
% Accuracy 98.2% 98.6% 98.3% 98.0% 97.7% 97.8% 97.7%
5. SANTA SUSANA % Commission Errors 80.9% 77.0% 80.2% 81.9% 83.2% 82.7% 83.1%
% LS Area: 1.0% % Omission Errors 76.7% 85.4% 78.6% 72.7% 69.2% 69.8% 69.0%
% Accuracy 96.9% 98.5% 97.4% 96.6% 95.6% 95.6% 95.4%
6. OAT MOUNTAIN % Commission Errors 93.9% 91.5% 93.4% 94.2% 94.9% 94.8% 94.9%
% LS Area: 0.6% % Omission Errors 69.3% 83.5% 73.6% 67.9% 61.7% 62.0% 60.9%
AVERAGE % Accuracy 96.5% 97.1% 96.6% 96.2% 96.0% 96.0% 96.0%
AVERAGE % Commission Errors 88.3% 86.1% 87.7% 88.6% 89.1% 89.2% 89.2%
AVERAGE % Omission Errors 76.1% 82.8% 77.8% 74.0% 71.5% 72.1% 71.4%



Table 4.4: Summary of model accuracy, commission error, and omission error for all six quadrangles of the study area, for a displacement threshold of 5 cm.
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J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, Ia) RS-(PGA,PGV,la)
1. PIRU % Accuracy 87.2% 87.4% 87.4% 84.3% 85.5% 85.0% 85.4%
' % Commission Errors 96.3% 96.4% 96.3% 96.4% 96.3% 96.3% 96.3%
% LS Area: 1.2% % Omission Errors 61.4% 63.0% 62.6% 53.1% 55.8% 54.1% 55.4%
% Accuracy 94.3% 95.1% 94.8% 93.2% 92.6% 92.9% 92.7%
2. VAL VERDE % Commission Errors 90.6% 90.2% 90.3% 91.2% 91.5% 91.4% 91.5%
% LS Area: 1.7% % Omission Errors 73.4% 77.9% 75.9% 69.1% 66.7% 67.6% 66.8%
% Accurac 99.5% 99.7% 99.6% 99.3% 98.9% 99.1% 99.0%
3. NEWHALL . N o o o o . - .
% Commission Errors 90.7% 86.2% 88.1% 91.6% 93.4% 93.2% 93.4%
% LS Area: 0.2% % Omission Errors 73.6% 81.4% 77.2% 66.8% 56.6% 63.3% 58.4%
% Accuracy 99.4% 99.4% 99.4% 99.3% 99.4% 99.3% 99.3%
4. SIMI'VALLEY % Commission Errors 84.0% 82.5% 83.1% 85.1% 84.5% 85.6% 84.9%
% LS Area: 0.3% % Omission Errors 79.3% 80.7% 80.4% 76.6% 78.9% 76.3% 78.0%
% Accuracy 97.4% 98.2% 97.8% 96.4% 95.9% 96.0% 95.9%
5. SANTA SUSANA % Commission Errors 84.2% 81.0% 82.8% 86.8% 87.7% 87.6% 87.8%
% LS Area: 1.0% % Omission Errors 64.9% 75.5% 69.0% 54.8% 51.8% 51.6% 51.3%
% Accuracy 94.5% 97.3% 95.9% 93.1% 91.3% 91.4% 91.1%
6. OAT MOUNTAIN % Commission Errors 95.4% 93.5% 94.7% 95.9% 96.4% 96.4% 96.5%
% LS Area: 0.6% % Omission Errors 56.9% 72.3% 63.7% 51.4% 45.0% 45.4% 44.3%
AVERAGE % Accuracy 95.4% 96.2% 95.8% 94.3% 93.9% 93.9% 93.9%
AVERAGE % Commission Errors 90.2% 88.3% 89.2% 91.2% 91.6% 91.8% 91.7%
AVERAGE % Omission Errors 68.2% 75.1% 71.5% 62.0% 59.1% 59.7% 59.0%



4.3.2 Landslide-by-landslide Comparison

The percentages of landslides captured (% LS Captured) by each model for all six
quadrangles are compiled in Table 4.5 for a displacement threshold of 15 cm and in Table
4.6 for a displacement threshold of 5 cm. Referring back to Chapter 3, a landslide is
considered “captured” if at least 50% of observed landslide cells within the landslide are
predicted to be landslide cells (i.e. the predicted displacements exceed the threshold
value). The % LS Captured values range from as small as 4 to 5% in the Simi Valley
quadrangle (15 cm threshold) to as large as 45 to 55% in the Oat Mountain quadrangle
(5 cm threshold). Compared with the %GFC values determined from the cell-by-cell
analysis, the % LS Captured values are about 8 to 10 percentage points smaller. There are
a few exceptions, such as Model RS-(PGA, M) in Oat Mountain, which captured 53.3%
of the landslides (Table 4.6) versus 48.6% of landslide cells (Table 4.2). The results
between quadrangles are also more varied when using the landslide-by-landslide
approach rather than the cell-by-cell approach. For example, model RS-(PGA, PGV) with
the 5 cm threshold captures 54.1% of landslides in Oat Mountain and 8.3% of landslides
in Simi Valley when using the landslide-by-landslide approach. The same model and
threshold resulted in % GFC values of 55% and 21.1% using the cell-by-cell approach in
these two quadrangles.

Similar to the results from the cell-by-cell analysis, the models that predict
displacement as a function of more than one ground motion parameter perform better
than the models that use only one ground motion parameter. Model RS-(PGA, PGV)
captures the largest percentage of landslides (20.5%, 33.7% for the 15 cm, 5 cm
thresholds, respectively), and Model J-(PGA) captures the smallest percentage of
landslides (10.6%, 17.4%).
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Table 4.5: Summary of landslide-by-landslide analysis for all six quadrangles of the study area, for a displacement threshold of 15 cm

J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)

1. PIRU % LS Captured 27.8% 23.8% 27.4% 32.1% 28.9% 30.6% 29.2%
% LS Area: 1.2%

2. VAL VERDE % LS Captured 14.9% 10.9% 13.8% 16.0% 17.7% 17.0% 17.7%
% LS Area: 1.7%

3. NEWHALL % LS Captured 9.6% 5.5% 8.0% 10.4% 15.4% 11.5% 14.3%
% LS Area: 0.2%

4. SIMI VALLEY % LS Captured 4.7% 3.8% 4.2% 5.1% 4.2% 4.2% 4.5%
% LS Area: 0.3%

5. SANTA SUSANA % LS Captured 16.4% 8.2% 14.2% 19.3% 22.7% 21.8% 22.8%
% LS Area: 1.0%

6. OAT MOUNTAIN % LS Captured 25.2% 11.5% 20.4% 26.9% 33.9% 33.1% 34.6%
% LS Area: 0.6%

AVERAGE % LS Captured 16.4% 10.6% 14.7% 18.3% 20.5% 19.7% 20.5%

Average % Landslides Captured, 15 cm Threshold

9 0, 0,
16.4% 18.3% 20.5% 19.7% 20.5%
e 14.7%
10.6%
J-(la) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
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Table 4.6: Summary of landslide-by-landslide analysis for all six quadrangles of the study area, for a displacement threshold of 5 cm

J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
1. PIRU % LS Captured 35.1% 33.8% 34.3% 42.5% 40.9% 41.0% 43.2%
% LS Area: 1.2%
2. VAL VERDE % LS Captured 20.6% 15.8% 17.8% 26.7% 27.8% 27.6% 25.2%
% LS Area: 1.7%
3. NEWHALL % LS Captured 13.2% 10.4% 11.3% 23.4% 29.1% 26.6% 19.8%
% LS Area: 0.2%
4. SIMI VALLEY % LS Captured 7.2% 5.5% 6.2% 7.2% 8.3% 9.8% 10.0%
% LS Area: 0.3%
5. SANTA SUSANA % LS Captured 26.6% 17.4% 22.3% 42.2% 42.3% 43.2% 37.7%
% LS Area: 1.0%
6. OAT MOUNTAIN % LS Captured 39.5% 21.6% 31.7% 53.3% 54.1% 54.6% 45.9%
% LS Area: 0.6%
AVERAGE % LS Captured 23.7% 17.4% 20.6% 32.5% 33.7% 33.8% 30.3%
Average % Landslides Captured, 5 cm Threshold
o 33.7% 33.8%
32.5% 30.3%
23.7%
20.6%
17.4%
J-(1a) J-(PGA) J-(PGA,la) RS-(PGA,M) RS-(PGA,PGV) RS-(PGA, la) RS-(PGA,PGV,la)
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Because the landslide-by-landslide approach does not take into account the size of
the landslide — missing a 2-cell landslide counts the same as missing a 30-cell landslide —
a model may capture a large percentage of landslide cells and still perform poorly if the
cells it misses are all small, individual landslides. If the distribution of landslides within a
quadrangle is weighted towards smaller landslides, this could help explain why the
majority of models captured a smaller percentage of landslides versus landslide cells.

The distributions of landslides within the Oat Mountain and Simi Valley
quadrangles are plotted in Figures 4.11 and 4.12, respectively, as a function of landslide
size (i.e. number of cells in each landslide), and the percentage of each landslide captured
by Model RS-(PGA, PGV) with a displacement threshold of 5 cm. The data are also
summarized in Tables 4.7 and 4.8. The distributions of landslide size within these two
quadrangles are generally representative of the distributions across all six quadrangles,
but the results are very different. Oat Mountain contains 1,259 individual landslides,
54.1% of which are captured by Model RS-(PGA, PGV). Simi Valley contains 471
individual landslides, 8.3% of which are captured by the same model.

Figure 4.11 shows that nearly 40% of the landslides within Oat Mountain are 1 or
2-cell landslides, but it also shows that the model captured 50.6% of these small
landslides, very close to the average for the entire quadrangle (54.1%). The percentage of
landslides that were completely missed (0% cells captured) gradually decreases with
increasing landslide size, indicating that the model did a slightly better job capturing the
larger landslides, but overall the distribution is not heavily skewed one way or the other.
In comparison, Figure 4.12 shows that about 27% of the landslides within Simi Valley
are 1 or 2-cell landslides, and the model captured about 7% of these small landslides, also
very close to the average for the quadrangle (8.3%). What is surprising is that 79% of

landslides are completely missed, and most of them are larger than 2 cells in size.

98



Oat Mountain quadrangle
Model RS-(PGA,PGV)

- 40%

5 cm threshold ° "

1,259 observes landslides T3%% 3

-30% B

c

9.8% e

. (] -_—

8.5% % g

. (]

[J]
7.8% 9.3% TI% w

7.8% - 10% @

7.1% o

L7 24% g9 - 5% o

3.4% 9 ’ 3.9% -
2 1.3% 24% 8.7% | 0%
1.4% 3.1% - e
, 1.7% 4.1% 6.7% - bé\b
' 3-4 X
0 . xS
Pe 0 25% 5:10 s
rcentage of 25 50% - o“b
C 0 ! >10
75%
Captyy, 50-7 - - &
] /ands 75-1 $\5

Figure 4.11: Distribution of landslides within the Oat Mountain quadrangle as a function of
landslide size (number of cells) and the percentage of cells captured by Model RS-(PGA,PGV).
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Figure 4.12: Distribution of landslides within the Simi Valley quadrangle as a function of
landslide size (number of cells) and the percentage of cells captured by Model RS-(PGA,PGV).
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Table 4.7: Distribution of observed landslides within the Oat Mountain quadrangle as a function
of landslide size and the percentage of cells captured by model RS-(PGA,PGV) with a5 cm
threshold.

Number of cells in each landslide

1 2 3-4 5-10 >10

Percentage 0 9.8% 8.5% 7.8% 7.8% 3.4% 37.3%

of cells 0-25% 0.0% 0.0% 0.0% 1.3% 1.4% 2.7%

captured 25-50% 0.0% 0.0% 1.7% 2.4% 1.7% 5.9%

in each 50-75% 0.0% 2.4% 3.9% 3.1% 4.1% 13.5%
landslide

! 75-100% 9.3% 7.1% 8.7% 8.7% 6.7% 40.6%

19.1% 18.0% 22.2% 23.3% 17.4%

Table 4.8: Distribution of observed landslides within the Simi Valley quadrangle as a function of
landslide size and the percentage of cells captured by model RS-(PGA,PGV) with a5 cm
threshold.

Number of cells in each landslide

1 2 3-4 5-10 >10
0 9.6% 15.3% 20.8% 22.9% 10.4% 79.0%

Percentage
of cells 0-25% 0.0% 0.0% 0.0% 1.3% 4.7% 5.9%
captured 25-50% 0.0% 0.0% 1.3% 3.0% 2.5% 6.8%
in each 50-75% 0.0% 0.6% 0.8% 1.9% 1.5% 4.9%

landslid
andsiide  '95.100% | 1.3% 0.0% 0.4% 1.3% 0.4% 3.4%
10.8% 15.9% 23.4% 30.4% 19.5%

In summary, the results of Model RS-(PGA, PGV) were consistently good for all
landslides within the Oat Mountain quadrangle, and consistently poor for all landslides
within the Simi Valley quadrangle. Because the distribution of landslide size within each
quadrangle was similar, the difference in performance between the two quadrangles does
not appear to reflect significant bias from smaller landslides. Referring back to Table 4.2,
model RS-(PGA, PGV) predicted landslides to cover approximately 8.7% of the Oat
Mountain quadrangle, and the actual landslides covered only 0.6% of the quadrangle.

This suggests that the model is simply missing the landslides, perhaps due to poor
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estimates of the ground motions or shear strengths, inaccuracies in slope angle caused by
the resolution of the DEM, or because of the limits of the simple sliding block model
used. Figure 4.13 shows an example of a 3-cell landslide within Oat Mountain. The
landslide is completely missed by the model, but cells immediately adjacent to the

landslide are identified.

Figure 4.13: Example of a three-cell landslide within the Oat Mountain quadrangle that was
missed by Model RS-(PGA, PGV) with a 5 cm threshold.
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43.3

After evaluating the accuracy of the different predictive models, the distribution
of observed and predicted landslide cells within individual geologic units was analyzed.

The results of Model RS-(PGA, PGV) with a 5 cm threshold in the Oat Mountain

quadrangle are shown in Table 4.9 as a function of geologic unit.

Influence of Geologic Unit and Slope Angle on Model Accuracy

Table 4.9: Distribution of observed and predicted landslide cells across geologic units in
the Oat Mountain quadrangle using Model RS-(PGA, PGV) and a 5 cm threshold

Observed LS Cells Predicted LS Cells Accurate
9,445 143,418 5,197

Strength Geologic % of % of % of %GFC in
Grou§ ®0) | ckPa) | i CELLS | scells | Gunit | “F' | cunie | B | 6. unit
1 39 31.3 Tl 49 0.52% 1.91% 0 0.00% 0 0.00%
1 39 31.3 Tlc 0.00% 0.00% 0 0.00% 0 0.00%
1 39 31.3 Tss 6 0.06% 0.56% 0 0.00% 0 0.00%
1 39 31.3 Tscl 5 0.05% 0.08% 0 0.00% 0 0.00%
1 39 31.3 Tsc2 2 0.02% 0.04% 0 0.00% 0 0.00%
1 39 31.3 Tsc3 126 1.33% 1.42% 0 0.00% 0 0.00%
1 39 31.3 Kc 166 1.76% 0.22% 0 0.00% 0 0.00%
1 39 31.3 Tm 395 4.18% 0.52% 0 0.00% 0 0.00%
1 39 31.3 Tm1/4/5/s 373 3.95% 0.38% 0 0.00% 0 0.00%
1 39 31.3 Tm2 66 0.70% 0.36% 0 0.00% 0 0.00%
1 39 31.3 Tm3 14 0.15% 0.15% 0 0.00% 0 0.00%
1 39 31.3 Tmd 252 2.67% 3.31% 0 0.00% 0 0.00%
1 39 31.3 Tt 128 1.36% 0.81% 0 0.00% 0 0.00%
1 39 31.3 Ttb 21 0.22% 1.36% 0 0.00% 0 0.00%
1 39 31.3 Tt1/3 6 0.06% 0.40% 0 0.00% 0 0.00%
1 39 31.3 Tt2/4 79 0.84% 0.74% 0 0.00% 0 0.00%
2 32 13.3 Tp 145 1.54% 1.01% 1461 10.22% 74 51.03%
2 32 13.3 Tpc 1275 13.50% 2.50% 13004 25.53% 928 72.78%
2 32 13.3 Qsw 16 0.17% 0.03% 908 1.67% 10 62.50%
2 32 13.3 Tw 3559 37.68% 1.66% 87541 40.80% 2810 78.95%
2 32 13.3 Twc 557 5.90% 1.12% 18304 36.66% 419 75.22%
2 32 13.3 Qs 402 4.26% 0.27% 6016 4.10% 268 66.67%
2 32 13.3 Qsu 50 0.53% 0.10% 2626 5.01% 19 38.00%
2 32 13.3 Qsm 429 4.54% 0.47% 4468 4.89% 204 47.55%
3 28 19.6 acf, af 16 0.17% 0.32% 42 0.84% 10 62.50%
3 28 19.6 rf 0.00% 0.00% 0
3 28 19.6 Qc 0.00% 0.00% 9 0.40% 0.00%
3 28 19.6 Tps 845 8.95% 1.50% 2806 4.98% 272 32.19%
3 28 19.6 Tws 349 3.70% 1.07% 4498 13.84% 174 49.86%
3 Qal, Qay/1/2,

28 19.6 Qp 0.01% 0.00% 127 0.04% 0.00%
3 28 19.6 Qao 0.10% 0.02% 81 0.20% 1 11.11%
3 28 19.6 Qt 0.00% 0.00% 10 0.41% 0.00%
3 28 19.6 Qto 1 0.01% 0.05% 11 0.53% 100.00%
4 25 22.3 Qls 103 1.09% 0.14% 1506 2.10% 7 6.80%
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The data show that zero landslides were predicted within any of the geologic units
in Strength Group 1 (which represents the largest set of shear strength values) despite
nearly 20% of the landslides observed in the Oat Mountain quadrangle occurring within
these geologic units. The majority of landslides (~68%) occurred within geologic units in
Strength Group 2, and the model was very accurate within this strength group, capturing
between 38% and 79% of the observed landslide source cells within each geologic unit.
However, the ratio of predicted to observed landslide cells was very large. The highest
percentage of landslide cells captured is 79% in geologic unit Tw, but the analysis
predicts 41% of that geologic unit to be landslides while only 1.6% of the unit
experienced landslides. The fewest landslides occurred in Strength Groups 3 and 4 and
almost all of them occurred in two geologic units, Tps and Tws.

Figure 4.14 shows the distribution of slope angles for all cells, the distribution of
slope angles for the observed landslide cells, and the percentage of observed landslide
cells within each slope angle bin for three different geologic units; Tm (Modelo
formation; see Table 3.1) from Strength Group 1, Tw (Towsley formation) from Strength
Group 2, and Tps (Pico formation) from Strength Group 3. These three geologic units
contain 51% of all the landslide cells observed in the quadrangle, with the Tm unit
contributing 4.2%, the Tw unit contributing 37.7%, and the Tps unit contributing 8.9%.

Approximately 65% of the slopes within the Tm unit are between 20 and 40
degrees, and no slopes are greater than 60 degrees. Most of the landslides (~80%) in this
unit occurred on slopes between 30 and 50 degrees. The percentage of area within each
slope bin that is covered by landslides increases with increasing slope angle. The large
strength assigned to this unit resulted in the model predicting landslides (i.e.

displacements greater than 5 cm) only on slopes steeper than about 63° (i.e. a slope
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threshold of 63°). As a result, no landslides were predicted. These results indicate that
perhaps the assigned strength for the Tm unit was too large.

The distribution of slope angles within geologic unit Tw shows a larger number of
steep slopes, and similar to the Tm unit, most of the landslides (~80%) occurred on
slopes of 30 to 50 degrees. Again, the percentage of slopes covered by landslides
increases with increasing slope angle. The strength assigned to unit Tw is smaller than for
unit Tm, and the slope threshold (representing a displacement of 5 cm) is about 34°.
Because the strength is constant for all slopes within geologic unit Tw, all slopes steeper
than about 34° are predicted to fail. The %GFC is large for this geologic unit (79%, see
Table 4.9) due to the fact that a large percentage of the observed landslides occurred on
slopes steeper than 34°. All landslides on slopes steeper than 34° are captured, but at the
expense of predicting all of these slopes will fail. As Figure 4.14 shows, the percentage of
landslide cells within a slope angle bin never approaches 100%.

Lastly, the distribution of slope angles within geologic unit Tps looks almost
identical to that of the Tm unit, and a similar distribution of slope angles is seen within
the observed landslide cells. However, the strength assigned to the Tps unit is lower than
the strength assigned to the Tm unit, such that the slope threshold (representing a
displacement of 5 cm) is 39° and 32% of the landslides were accurately identified.

One other interesting observation is that the slope threshold for Tps (Strength
Group 3) is larger than for Tw (Strength Group 2), although Strength Group 3 is
considered the “weaker” strength group in the CGS seismic hazard zone report for Oat
Mountain (CDMG, 1997b) based on the assigned friction angles (28° vs. 32°). However,
because the cohesion assigned to the Tps unit (19.6 kPa) is 50% larger than the cohesion
assigned to the Tw unit (13.3 kPa), at the small confining pressures considered for the

infinite slope analyses used in this study the strength of Tps is larger than Tw.
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Figure 4.14: Distribution of slope angles for all cells and all observed landslide cells in the Oat
Mountain quadrangle within geologic units (a) Tm, in Strength Group 1, (b) Tw, in Strength

Group 2, and (c) Tps, in Strength Group 3.
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As noted, if the shear strength across a geologic unit is constant, as is the case in
this study, the prediction of landslides (displacement) within that unit becomes a function
of slope angle. If the assigned strength is high, the model will only predict landslides in
the steepest slopes and may miss most or all of the observed landslides. If the assigned
strength is low, the model will predict landslides in many of the flatter slopes, where the
observed landslide density is smaller. This will result in a larger percentage of landslides
captured but also a significant over-prediction in the total landslide area. The
distributions in Figure 4.14 indicate that there is significant spatial variability of shear
strength within individual geologic units, which explains why some 60° slopes remain
stable while some 20° slopes fail within the same geologic unit. It is very difficult to
evaluate and assign spatial variations in strength properties for a regional-scale analysis,

and it will likely continue to be a challenge in the short-term.
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4.4 INFLUENCE OF SHEAR STRENGTH ON LANDSLIDE PREDICTIONS

The influence of geologic material strengths on the displacement and landslide
predictions using model RS-(PGA, PGV) is evaluated in this section. Model
RS-(PGA, PGV) is evaluated using the cell-by-cell approach with a 5 cm displacement
threshold and three different sets of shear strength values; (Case 1) strengths used by
Jibson et al. (2000) and documented in Table 2.5, (Case Il) strengths used in this study
and documented in Table 3.1, and (Case I11) strengths used by CGS (¢’ from Table 3.1,
¢’ = 0). The influence of material strengths is evaluated within the Oat Mountain
quadrangle only.

Figure 4.15 shows predicted displacements within the representative region in Oat
Mountain using model RS-(PGA, PGV) and three different sets of shear strength
parameters. Case | is based on strengths used by Jibson et al. (2000) and results in the
smallest concentration of large displacements. Case Il represents the strengths used in
this study and results in a greater area of large displacements. Case Il is based on the
approach used by CGS that ignores cohesion (¢’ = 0) and results in large displacements

across the majority of the representative region.
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@ Model RS-(PGA,PGV)
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¢, f ' from Jibson et al. (2000)

Predicted
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<1
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> 100
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15-100
> 100

(© Model RS-(PGA,PGV)
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1-5
5-15
15-100
> 100

Figure 4.15: Displacements predicted within a representative region of the Oat Mountain quadrangle
using model RS-(PGA, PGV) and three different sets of shear strength values.
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Figure 4.16 shows a comparison of observed landslides and predicted landslides
(for a displacement threshold of 5 ¢cm) using Model RS-(PGA, PGV) and the three
different sets of shear strength values. Case | covers 0.3% of the Oat Mountain
quadrangle with predicted landslide cells, and captures only 6.8% of observed landslide
cells. Case Il covers 8.7% of the quadrangle with predicted landslide cells, and captures
55% of observed landslide cells. Case Il covers 49.3% of the quadrangle with predicted
landslide cells, and captures 97% of observed landslide cells.

A summary of results across all six quadrangles is provided in Table 4.10. On
average Case | only captures 3% of the landslide cells, while Case Il captures 41% and
Case |11 captures 95% of the landslide cells. The results show that increasing strengths
across entire geologic units in order to make a small number of statically unstable cells
stable — i.e. the approach used by Jibson et al. (2000) in Case | — results in predicted
displacements that are too small to capture a large percentage of observed landslide cells.
In contrast, ignoring any contribution of cohesion in the slope stability analysis — i.e. the
approach used by CGS (Case 1) — results in predicted displacements that are too large
across many flatter slopes and grossly overestimates the area of earthquake-induced
landslide hazard. On average Case Il predicts landslides for 41% of the study area,
which is about 50 times larger an area than the observed landslide area (i.e. %QC / % LS
Area =~ 50%). The efficiency in Oat Mountain for Case Il (46.3%) is almost identical to
that for Case 11 (47.9%), despite the large difference in the ratios of % QC to % LS Area
(86 for Case IlI, 15 for Case Il). These results point to the severe over-prediction of

landslides using the CGS approach to assigning shear strengths.
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Figure 4.16: Comparison of observed and predicted landslides within a representative region of the
Oat Mountain quadrangle using Model RS-(PGA, PGA) with a 5 cm threshold and three different sets
of shear strength values
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Table 4.10: Summary of results for all six quadrangles of the study area using Model
RS-(PGA, PGV) with a 5 cm threshold and three different sets of shear strength values

Case | Case ll Case lll

% GFC 0.5% 44.2% 97.0%

1. PIRU % QC 0.0% 14.4% 64.0%

% LS Area:  1.2% % Efficiency 0.4% 29.8% 33.0%
% QC/% LS Area 0.0 12.0 53.3

% GFC 4.9% 33.3% 95.4%

2. VAL VERDE % QC 0.2% 6.8% 54.2%

%LS Area:  1.7% % Efficiency 4.6% 26.5% 41.2%
% QC/% LS Area 0.1 3.9 31.3

% GFC 4.8% 43.4% 92.8%

3. NEWHALL % QC 0.0% 1.0% 29.4%

% LS Area:  0.2% % Efficiency 4.8% 42.4% 63.4%
% QC/% LS Area 0.3 6.6 185.5

% GFC 0.9% 21.1% 80.1%

4. SIMI VALLEY % QC 0.0% 0.4% 13.0%

% LS Area:  0.3% % Efficiency 0.8% 20.7% 67.2%
% QC/% LS Area 0.0 1.4 39.2

% GFC 2.2% 48.2% 94.5%

5. SANTA SUSANA % QC 0.1% 4.0% 37.8%

% LS Area:  1.0% % Efficiency 2.1% 44.2% 56.7%
% QC/% LS Area 0.1 3.9 36.9

% GFC 6.8% 55.0% 97.2%

6. OAT MOUNTAIN % QC 0.3% 8.7% 49.3%

% LS Area:  0.6% % Efficiency 6.5% 46.3% 47.9%
% QC/% LS Area 0.5 15.2 85.9

AVERAGE % GFC 3.3% 41.0% 94.7%

AVERAGE % QC 0.1% 5.9% 41.2%

AVERAGE % Efficiency 3.2% 35.1% 53.5%
AVERAGE % QC/% LS Area 0.1 7.1 495
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Chapter 5

Conclusions

5.1 SUMMARY AND CONCLUSIONS

This thesis presented a comparison of methodologies for predicting earthquake-
induced landslides using permanent displacement analysis. Regional estimates of sliding
displacement were computed within a Geographic Information System (GIS) and
compared with locations of observed landslides within six quadrangles shaken by the
1994 Northridge, California earthquake. This study area was chosen because of the
availability of a comprehensive inventory of over 11,000 landslides triggered during the
Northridge earthquake and nearly 200 strong-motion recordings of the main shock
throughout the region. The main goals of this research were to qualitatively and
quantitatively compare the accuracy of different predictive models, and to explore the
influence of factors such as landslide size, geologic unit, slope angle, and shear strength
on the accuracy of the model predictions. Two different approaches were taken to assess
the accuracy of the models — a cell-by-cell approach and a landslide-by-landslide

approach.
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5.1.1 Comparing Predictive Models

Estimates of sliding displacement were calculated using three empirical models
developed by Jibson (2007) that predict displacement as a function of yield acceleration
and (I,), (PGA), and (PGA, 1,); and four empirical models developed by Rathje and
Saygili (2008, 2009) that predict displacement as a function of yield acceleration and
(PGA, M), (PGA, PGV), (PGA, 1,), and (PGA, PGV, 1,). The results of both the cell-by-
cell analysis and the landslide-by-landslide analysis showed that, on average, there was
not a significant difference in accuracy between the different predictive models. For a
5 cm displacement threshold, the highest average percentage of landslide cells captured
(%GFC) was 41.3% by Model RS-(PGA, PGV, 1,) and the lowest was 26.4% by Model
J-(PGA). In general, the models that predict displacement as a function of more than one
ground motion parameter performed better than the models that predict displacement as a
function of only one ground motion parameter. There was very little difference in the
performance of the three vector models developed by Rathje and Saygili (Saygili and
Rathje, 2008), suggesting that estimates of either PGV or I, can be paired with estimates
of PGA and yield similar results.

The difference in results between the models developed by Jibson (2007) and the
models developed by Rathje and Saygili (2008, 2009) can in part be explained by the use
of a displacement threshold and the behavior of the models at different yield
accelerations. Based on the plot in Figure 3.11 that shows a comparison of predicted
displacements for all models as a function of yield accelerations, a 5 cm displacement

threshold corresponds to yield accelerations of about 0.09 g using the Jibson (2007)

models (i.e. values of k, < 0.09 g will result in displacements > 5 c¢m) and 0.12 g using

the Rathje and Saygili (2008, 2009) models (i.e. values of k, < 0.12 g will result in

displacements > 5 cm). This difference seems subtle but it means that more cells exceed
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the displacement threshold using the Rathje and Saygili (2008, 2009) models than do
using the Jibson (2007) models, and so more landslides are captured. This is also why the
difference in results using a 5 cm threshold versus a 15 cm threshold is larger for the
Rathje and Saygili (2008, 2009) models.

Surprisingly, the difference in results between predictive models was not as great
as the difference in results between different quadrangles. For example, Model RS-(PGA,
PGV) with a 5 cm threshold captured 55.0% of landslide cells in the Oat Mountain
quadrangle, but only 21.1% in the Simi Valley quadrangle. The model captured the same
percentage of landslide cells in the Piru and Santa Susana quadrangles (~45%) but the
ratio of predicted to observed landslide cells (%QC / %LS Area) was 12.0 in Piru and
only 3.9 in Santa Susana. One possible reason for these discrepancies is that the shear
strength values assigned to individual geologic units vary from one quadrangle to the
next. For example, the shear strength values published by the California Geological
Survey (CGS) for geologic unit Tm (Modelo formation) are (¢’ = 31.3 kPa, ¢’ = 39°)
within the Oat Mountain quadrangle, and (¢’ = 12.0 kPa, ¢’ = 35°) within the

neighboring Santa Susana quadrangle.

5.1.2 Factors Influencing Model Accuracy

Because the accuracies of the models using the landslide-by-landslide approach
were smaller than those using the cell-by-cell approach, the distribution of landslide size
within Oat Mountain was evaluated to see if the results were being skewed by a large
number of small landslides. Looking at the maps of predicted and observed landslides,
there appeared to be a number of 1 and 2-cell landslides scattered across each quadrangle
that the models were not locating at all or the models were predicting landslides in cells
immediately adjacent to the observed landslides. For a 1-cell landslide, the landslide-by-

landslide approach is a binary problem; the model either captures it or does not capture it.
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If the models were missing a lot of 1-cell landslides, it would hurt the results of the
landslide-by-landslide approach but have little impact the results of the cell-by-cell
analysis. However, the distribution of landslide sizes within Oat Mountain showed that
despite a large percentage of small landslides (60% were less than 5 cells) the models
were missing an equal percentage of small and large landslides across the quadrangle.
This result is only significant because it means that there is some other factor influencing
the model accuracy.

The influence of individual geologic units on model accuracy was evaluated by
plotting the distribution of landslide cells captured in each unit in the Oat Mountain
quadrangle. What was immediately noticeable was that not a single landslide cell was
predicted within any geologic unit in Strength Group 1, despite the fact that nearly 20%
of observed landslides occurred within these units. Given the level of ground shaking
observed in the Oat Mountain quadrangle and the shear strength values assigned to these
units (¢’ = 31.3 kPa, ¢' = 39°), only slopes steeper than about 63 degrees would be
predicted to fail. All of the slopes in these geologic units were flatter than 60 degrees, and
the majority of observed landslides occurred in slopes between 30 and 50 degrees. This
result may indicate that the strengths assigned to Strength Group 1 were too large. In
contrast, the model did very well capturing a large percentage of landslides (%GFC up to
80%) within the geologic units in Strength Group 2. Given the shear strength values
assigned to these units (¢’ = 13.3 kPa, ¢’ = 32°), slopes steeper than about 34 degrees
would be predicted to fail. However, associated with a large %GFC is a large over-
prediction of the total landslide area.

When different geologic units are grouped together and assigned one set of shear
strength values, the prediction of displacement within that group becomes a function of

only slope angle. The steeper the slope, the larger the displacement predicted. However,
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the distribution of slope angles within observed landslide cells shows that the majority of
landslides do not necessarily occur on the steepest slopes. Often times the steepest slopes
exist because they represent the largest strength within a geologic unit. Assigning one set
of shear strength values does not take into account the spatial variability of material
strength within individual geologic units. This spatial variability is why landslides can be
observed in 20 degree slopes but not in 60 degree slopes of the same geologic unit.

If the assigned shear strength values are high, only the steepest slopes will be
predicted to fail. If the assigned strengths are low, too many of the flatter slopes will be
predicted to fail. This result was shown in the comparison of results using strengths
assigned in this study and strengths assigned by Jibson et al. (2000) and CGS. Jibson et
al. (2000) used larger strengths and captured a significantly smaller number of observed
landslides. The approach used by CGS ignores cohesion, which results in a large number
of landslides captured but also results in predicted landslides covering more than half of
some of the quadrangles. Without cohesion, many of the slopes within the quadrangles
become statically unstable, which is not realistic. Thus, the strengths used by CGS and

the resulting estimates of seismic stability are unrealistic.
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5.2 RECOMMENDATIONS

Based on the results herein, the accuracy of permanent displacement analyses
depends less on the predictive models used and more on the uncertainty in the parameters
used as input to these displacement models (i.e. ground motion parameters and the shear
strength parameters that affect k,). Reducing the uncertainty in ground motion
predictions and material properties will help improve predictions of seismic landslide
hazard moving forward. Understanding the spatial variability of strengths within geologic
units and preserving the relative differences in strength between units is particularly
important. In addition to improving these model parameters, the conditions under which
earthquake-induced landslides have occurred during past (and more recent) earthquakes
must be documented and studied to continue developing criteria for assessing seismic
landslide hazards.

With the emergence of GIS as a powerful research platform, the increasing
availability of ground shaking data from sources like ShakeMap®, and better methods for
documenting earthquake-induced landslides, these methodologies must continue to be
validated against observations of landsliding from other earthquakes. To date, most
validation exercises (including the study described herein) have focused on the
Northridge earthquake. Data need to be compiled for landslides from other earthquakes
such that other validation exercises can be performed on these data sets. Through these

additional studies the observations from the Northridge earthquake can be extended.
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