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ABSTRACT 

The rigid sliding-block analysis introduced by Newmark in 1965 has become a popular 
method for assessing the stability of slopes during earthquakes. Estimates of sliding 
displacement calculated using this methodology serve as an index of seismic performance and 
are used for mapping seismic landslide hazard potential. The original approach of rigorously 
integrating ground acceleration time-histories to compute estimates of sliding displacement has 
been replaced by the use of simple, empirical models that predict displacement as a function of a 
slope's yield acceleration and one or more measures of ground shaking. To have confidence in 
these models, the displacement computed by these models must be compared with observations 
of landslides from previous earthquakes. 

Seven different empirical models were evaluated by comparing predicted displacements 
with an inventory of observed landslides from the 1994 Northridge, California earthquake. Using 
a comprehensive set of ground motion data and shear strength properties from the Northridge 
earthquake, sliding displacements were calculated within a geographic information system (GIS) 
and the accuracy of each model was computed. The influence of factors such as landslide size, 
geologic unit, slope angle, and material strength on the prediction of landslides was also 
evaluated. The results indicate that the accuracy of the predictive models depends less on the 
model used and more on the uncertainty in the model parameters, specifically the assigned shear 
strength values. Because current approaches do not take into account the spatial variability of 
strength within individual geologic units, the accuracy of the predictive models is controlled by 
the distribution of slope angles within observed and predicted landslide cells. Assigning overly 
conservative (low) shear strength values results in a higher percentage of landslides accurately 
identified, but also results in a large over-estimation of the seismic landslide hazard. 

 

NON-TECHNICAL SUMMARY 

The methods used to predict the occurrence of earthquake-induced landslide integrate 
ground shaking, topographic, and geologic/strength information to generate estimates of 
downslope movement.  These models are based predominantly on numerical simulation, and thus 
require comparison with the observed locations of landslides during previous earthquakes.  This 
study evaluates seven different models by comparing their estimates of movement with observed 
landslides from the 1994 Northridge earthquake.  The results indicate that, in general, many of 
the models do equally as well, and that the accuracy of the models depends mostly on the 
assigned strengths to the geologic units. 
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Chapter 1 

 
Introduction 

 

 

 

 

 

1.1 RESEARCH SIGNIFICANCE 

Earthquakes pose a dangerous and costly threat to many people around the world. 

As the devastating March 11, 2011 earthquake in Japan (Mw = 9.0) has so tragically 

demonstrated, earthquake-induced hazards such as tsunamis often represent a greater 

threat to life and property than the ground shaking that occurs during an earthquake. 

Earthquake-induced landslides are another significant seismic hazard that can damage 

and destroy life and property, disrupt transmission lines, block roads and hamper relief 

efforts. The areas that are most susceptible to earthquake-induced landslides are 

mountainous regions that are in close proximity to active tectonic plate boundaries. In the 

United States this describes portions of coastal California, as well as large portions of the 

Pacific Northwest. 

To be resilient to the effects of earthquake-induced landslides requires significant 

hazard planning on the part of communities and local governments. Hazard planning 

efforts are supported by research on the causes of seismic slope failures and how to 
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predict them in the future. Current research on studying earthquake-induced landslides 

from previous earthquakes typically involves the use of aerial photography and/or 

satellite imagery to identify the landslides that occurred during the earthquake, and an 

analysis of the geologic, hydrologic or other factors that may have contributed to the 

landsliding. Assuming that future landslides will occur under the same conditions as past 

events, these observations can be used to develop criteria for assessing potential seismic 

landslide hazards.  

For planning purposes, regional maps of seismic landslide hazard potential are 

most useful. A seismic landslide hazard map delineates zones where earthquake-induced 

landslides are a concern and where additional investigation is required before developing 

the land. Current hazard mapping efforts for earthquake-induced landslides use estimates 

of sliding displacement to evaluate the potential for ground failure.  In these procedures, 

slopes that are predicted to develop significant, permanent, downslope displacements 

during an earthquake are deemed seismically unstable. The use of a Geographic 

Information System (GIS) to create seismic landslide hazard maps has become 

widespread because it has the capabilities to collect, store, manipulate, display and 

analyze large amounts of spatially-referenced data quickly. 

Mapping seismic landslide hazards requires an assessment of (1) the strength of 

the slope, (2) the expected level of ground shaking, and (3) a prediction of displacement.  

To have confidence in the developed methodology, it is important to validate the 

procedures against observations from previous earthquakes. The goal of this research is 

to validate the performance of some recently developed seismic landslide hazard 

mapping methodologies against observations of landsliding within six quadrangles in Los 

Angeles, California that were shaken by the 1994 Northridge earthquake. More than 

11,000 triggered landslides were documented following the Northridge earthquake, the 
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majority of them occurring in the Santa Susana Mountains to the northwest of the 

earthquake epicenter. The results of this research can be used to improve current methods 

for creating seismic landslide hazard maps, and to identify elements of the mapping 

procedure that warrant further evaluation. 

1.2 SCOPE OF RESEARCH 

This thesis focuses on comparing the results from current seismic landslide hazard 

mapping procedures with observed landslides from the Northridge earthquake and 

assessing the model parameters that affect estimates of sliding displacement. Seven 

different displacement prediction models are used to predict displacements as a function 

of topography (slope angle), geology (material strength), and ground shaking estimates. 

These displacements are compared with locations of observed landslides from the 1994 

Northridge earthquake. Several methods are used to assess and compare the accuracy of 

each model. The influence of the model parameters (slope angle, material strength) on the 

results is also evaluated in an effort to identify potential improvements in the modeling 

procedures.  

Chapter 1 briefly discusses the significance of this research, and provides the 

scope and organization of this thesis.  

Chapter 2 provides background information on seismic slope stability, common 

procedures used to assess the performance of slopes during earthquake shaking, and 

previous work conducted in seismic landslide hazard mapping.  

Chapter 3 summarizes the procedures used in this research to calculate sliding 

block displacements, the data used by the different displacement prediction equations, 

and the proposed methods for comparing predicted displacements with observed 

landslides from the 1994 Northridge earthquake. This includes a cell-by-cell approach 

that assesses the accuracy of each model based on their ability to match predicted 
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landslide cells with observed landslide cells, and a landslide-by-landslide approach that 

assesses the accuracy of each model based on their ability to identify at least 50% of an 

observed landslide. 

Chapter 4 presents and discusses the maps of sliding displacement developed for 

this study, and summarizes statistics on the accuracy of each displacement prediction 

equation using the methods described in Chapter 3. In addition, the influence of factors 

such as landslide size, geologic unit, slope angle, and material shear strength on the 

results is evaluated. 

Chapter 5 discusses the significance of the results and provides conclusions and 

recommendations for future work in mapping earthquake-induced landslides. 
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Chapter 2 

 
Evaluation of Earthquake-Induced 

Landslides 
 

 

 

 

2.1 INTRODUCTION 

A landslide or slope failure refers to the downslope movement of soil and rock 

materials under the influence of gravity, caused by a destabilizing force or condition. 

Heavy rainfall and earthquake shaking are common natural causes for landslides. During 

an earthquake, sliding is expected when the strength of the slope materials is exceeded by 

a combination of the static stresses and the stresses imparted by the ground shaking. The 

best way to limit the risk of damage and prevent loss of life due to earthquake-induced 

landslides is to conduct seismic slope stability analyses and identify those slopes that 

represent the greatest seismic hazard. This chapter covers background information on 

seismic slope stability analyses, procedures for seismic landslide hazard mapping, and 

previous research in this area conducted by others. 

Current methods to assess the performance of slopes during earthquakes are 

generally based on either finite element modeling or limit equilibrium analysis 

(Jibson, 2010). Dynamic finite element modeling is computationally intensive, requiring 
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a sufficient amount of high-quality data and intimate knowledge of the nonlinear stress-

strain-strength characteristics of the soil, as well as specification of a suite of input 

acceleration-time histories. The goal of the analyses is to predict the level of deformation 

that will occur under the expected seismic loading. Due to the time and effort involved, 

this approach is typically reserved for critical projects such as earth dams.  

A simpler alternative to finite element modeling is limit equilibrium analysis. The 

limit equilibrium approach is commonly used for static slope stability analyses. This 

approach considers the shear stresses along a failure surface and computes a factor of 

safety based on the available shear strength and the shear stresses required for 

equilibrium. The minimum factor of safety for a slope is estimated by trial and error for a 

large number of assumed failure surfaces. The limit equilibrium approach can be 

modified to consider seismic stability, and in this case is called pseudostatic slope 

stability analysis. 

A pseudostatic slope stability analysis is a limit equilibrium analysis that models 

earthquake shaking as a destabilizing, horizontal static force. This concept is illustrated in 

Figure 2.1.  

 

 

Figure 2.1: Pseudostatic force acting on a given failure surface 
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The destabilizing force, F, is given by: 

 

𝐹 =  𝑘𝑊 (2.1) 

 

where 𝑘 is the seismic coefficient, 𝑊 is the weight of the sliding mass, and 𝜏 represents 

the mobilized shear strength of the soil along the failure surface (Kramer, 1996). A factor 

of safety is computed as the ratio of resisting forces (available shear strength) to driving 

forces (gravity + pseudostatic force). 

The pseudostatic approach greatly simplifies the earthquake shaking problem and 

is not a very accurate representation of the complex, dynamic inertial forces that actually 

exist during earthquake shaking (Jibson, 2010). Other challenges are the selection of an 

appropriate seismic coefficient (𝑘), which is typically selected to be some fraction of the 

expected peak ground acceleration, and the value of an acceptable factor of safety. The 

limit equilibrium analysis only shows a slope to be stable (FS < 1.0) or unstable 

(FS > 1.0) with no indication of the likelihood or consequences of instability.  

Representing a compromise between the overly simplistic pseudostatic analysis 

and the more complex finite element analysis, permanent displacement analysis has 

become widely used in the earthquake engineering community to assess the seismic 

performance of slopes. This approach recognizes that the pseudostatic stability of a slope 

varies throughout earthquake shaking because ground accelerations vary, and that 

permanent displacements will accumulate during periods of instability (FS < 1.0). 

Calculated displacements do not necessarily correspond to observed movements in the 

field, but they do represent an index of the seismic performance and can be used to 

determine relative seismic hazard levels. Permanent displacement analysis is the basis for 
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the seismic landslide hazard mapping procedures used in this study and is discussed in 

more detail in the following sections.   

 

2.2 PERMANENT DISPLACEMENT ANALYSIS 

Permanent-displacement analysis (Newmark, 1965) models a potential landslide 

as a rigid block resting on an inclined plane (Figure 2.2). If a dynamic force exerted on 

the block exceeds the shear resistance at the sliding interface, the block displaces 

downslope. The base acceleration required to generate a force that overcomes the shear 

resistance and initiates sliding is known as the critical or yield acceleration ( ). The 

application of  results in a factor of safety FS = 1.0. 

 

 

 
Figure 2.2: Sliding block model used in permanent displacement analysis 

 

Provided with an earthquake acceleration-time history, any portion of the record 

that exceeds the yield acceleration contributes to the accumulation of permanent 

displacements. The movement of the block relative to the inclined plane can be obtained 

by integrating the relative acceleration (i.e. the difference between the acceleration 

and ) twice; this procedure is illustrated in Figure 2.3. Every time the yield acceleration 

is exceeded, the amount of relative sliding displacement induced is related to both the 
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amount by which the yield acceleration is exceeded, and the length of time spent sliding. 

Thus, the total relative displacement is influenced by the amplitude, frequency content 

and duration of shaking (Kramer, 1996). 

 

 

Figure 2.3: Demonstration of sliding block displacement calculation for a yield acceleration 
(ky= 𝑎𝑐 in figure) of 0.20 g (Jibson et al., 2000) 

 

An important assumption of the original sliding block analysis is that the 

displaced mass is a rigid-plastic body; the block itself does not deform and no permanent 

displacements are experienced until the yield acceleration is exceeded. In reality, though, 

landslide masses do not behave as rigid-plastic bodies and they deform internally during 

earthquake shaking. The internal deformations represent the dynamic response of the 

sliding mass during earthquake shaking. As an earthquake ground motion propagates 
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through a slope, different parts of the slope move differently and in different directions. 

These differences are typically small for thin failure masses, and more considerable for 

thick failure masses (Kramer, 1997). The dynamic response of a potential landslide mass 

can be accounted for by performing a more rigorous decoupled sliding block analysis. In 

this two-step process, the spatially varying ground acceleration distribution within the 

sliding mass is computed (assuming no sliding) and used to calculate an average 

acceleration-time history. This average acceleration at any instant during ground shaking 

represents the inertial force associated with the ground acceleration distribution within 

the sliding mass. The resulting average acceleration time-history is then input into a rigid-

block analysis to compute permanent displacement (Jibson, 2010). Decoupled analysis 

has been shown to accurately predict field behavior, but requires an estimate of the 

dynamic response of the sliding mass. 

Decoupled sliding block analysis is required for deeper sliding masses because 

the dynamic response of the sliding mass is of significance. Rigid sliding block analysis 

ignores the dynamic response of the sliding mass, and thus it is most applicable to thin, 

veneer slope failures. This failure mode is common in natural slopes (Keefer, 1984).  

In its original application, conducting a rigorous permanent displacement analysis 

requires an estimate of the yield acceleration of the slope and an acceleration-time history 

(or suite of time histories) that represents the expected earthquake shaking at the site. 

More recent applications use empirical predictive models that compute displacements as 

a function of the yield acceleration and one or more ground motion parameters 

(e.g. Jibson (2007), Saygili and Rathje (2008), Rathje and Saygili (2009)). Typical 

procedures for calculating the yield acceleration, selecting appropriate ground motion 

data and calculating permanent displacements are discussed in the following sections.  
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2.2.1 Yield acceleration 

For a given slope and an assumed failure surface, such as the one considered in 

Figure 2.1, the critical or yield acceleration can be estimated by iteratively performing a 

pseudostatic analysis to determine the seismic coefficient that results in a factor of safety 

of FS = 1.0. The seismic coefficient multiplied by g is equivalent to the yield 

acceleration. Selection of the critical slip surface geometry that results in the lowest 

seismic coefficient is a trial and error process. However, most failures in natural slopes 

are shallow and have small thickness to length ratios (Keefer, 1984, 2002). In these cases 

an infinite slope model can be used to approximate the slip surface geometry. 

 

 

 

Figure 2.4: Infinite slope model under static conditions 

 

The geometry of the infinite slope model is shown in Figure 2.4. In this figure ′ 

is the effective cohesion, ′ is the effective friction angle,  is the material unit weight,  

is the slope angle,  is the slope-normal thickness of the rigid block,  is the proportion 

of the block thickness that is saturated,  is the weight of the sliding block, and  and  

are the shear and normal stresses acting on the slip surface, respectively (Jibson et al., 

2000). 

 

′ , ′ ,
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If one considers earthquake shaking to occur parallel to a slope (Newmark, 1965), 

the yield acceleration can be expressed as a simple function of the static factory of safety, 

the acceleration of gravity and the slope angle: 

 

 𝑘𝑦 = (𝐹𝑆 − 1)𝑔 ⋅ 𝑠𝑖𝑛𝛼 (2.2) 

 

A somewhat different equation results if the ground acceleration is assumed to be 

horizontal rather than parallel to the slope, but the differences in the computed values of 

𝑘𝑦 are small (Saygili, 2008). Based on the slope geometry and the soil properties 

represented in Figure 2.4, the static factor of safety for an infinite slope model is 

computed as: 

  
 𝐹𝑆 =  𝑐′

𝛾𝑡 sin𝛼
+  tan𝜑′

tan𝛼
�1 −𝑐 𝛾𝑤

𝛾
� (2.3) 

 

For regional applications of the infinite slope model, slope angles are derived 

from a Digital Elevation Model (DEM), and nominal values for unit weight, saturation 

and block thickness are typically assumed. The main source of uncertainty in calculating 

the static factor of safety (and thus the yield acceleration) is the assigned material shear 

strength properties.  

Shear strength is typically assigned using Mohr-Coulomb strength parameters 𝑐′ 

and 𝜑′ obtained from direct shear or triaxial tests. For unsaturated materials (𝑐 = 0), this 

represents total stress conditions. For saturated materials (𝑐 > 0), the changes in pore 

pressures generated during earthquake shaking are generally ignored such that the 

strength is assigned using 𝑐′, 𝜑′, and the effective stresses before shaking. This is 

generally conservative, however, because non-liquefiable sands are typically dense and 
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negative pore pressures are generated due to dilatancy, resulting in higher temporary 

strengths. Using 𝑐′ and 𝜑′ to assign strengths is not appropriate for liquefiable (loose) 

sands, but the sliding block analysis is not applicable to these soils. For clay sites, an 

undrained strength (𝑠𝑢) is assigned and 𝜑 = 0.  

Shear strength data are compiled and assigned based on geologic units. Variability 

within a geologic unit is typically ignored due to practical constraints. After values of 𝑐′ 

and 𝜑′ are assigned, yield accelerations can be calculated and combined with ground 

shaking information to compute estimates of sliding displacement.  

2.2.2 Ground Motions 

To conduct a rigorous sliding-block displacement analysis, ground acceleration-

time histories are required. The selection of appropriate acceleration-time histories is 

often guided by the results of a probabilistic seismic hazard analysis (PSHA). PSHA 

takes into account all possible earthquake scenarios (i.e., magnitude and distance) around 

a particular site to compute the probability of exceedance of a specified ground motion 

level across multiple spectral periods. These “hazard curves” are used to develop a target 

acceleration response spectrum based on a design hazard level, typically a 10% or 2% 

probability of exceedance in 50 years.  

Using a public database of available ground motion recordings from previous 

earthquakes, and one of a handful of widely available software programs, time histories 

are selected to fit the PSHA-derived target response spectrum. For a given hazard level, 

there are magnitude and distance combinations that contribute more to that hazard – this 

information can be acquired by performing what is known as a deaggregation of the 

hazard. Ground motions are not only selected based on how well they match the target 

response spectrum, but also based on how well they match the magnitude and distance 

from the deaggregation. Because of the large aleatory variability in earthquake ground 
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motions, it is recommended that a suite of motions be considered when fitting a PSHA-

derived target.  

Given an estimate of the yield acceleration and a suite of ground motions, a 

sliding displacement can be calculated for each ground motion. Displacement is 

computed by double integrating the difference between the acceleration-time history and 

the yield acceleration. This integration initiates when the acceleration exceeds the yield 

acceleration, and continues until the relative velocity between the ground and sliding 

block becomes zero. The average displacement from the suite of ground motions is often 

used as the expected displacement. 

2.2.3 Displacement Prediction Equations 

Conducting a rigorous sliding-block analysis is relatively straightforward, but for 

a large, regional hazard analysis it can be impractical to try and select multiple, unique 

acceleration-time histories for the conditions to be modeled. Double integrating all of 

these time histories multiple times for every slope is also time consuming. A simpler 

approach is to use an empirical regression equation which is based on displacements 

computed for a large database of ground motions and 𝑘𝑦 values. Because the magnitude 

of predicted displacement is sensitive to the characteristics of earthquake ground motions 

(i.e. intensity, frequency content, duration), researchers have developed models that 

estimate displacements as a function of yield acceleration and one or more ground motion 

(GM) parameters, using the form: 

 

 ln𝐷 = 𝑓(𝑘𝑦,𝑃𝑀 𝑝𝑎𝑟𝑎𝑐𝑒𝑡𝑒𝑟𝑠) (2.4) 

 

Peak ground acceleration (PGA) is the most commonly used measure of ground 

shaking intensity, and the ratio of yield acceleration to PGA (𝑘𝑦/𝑃𝑃𝑃) is used in recent 
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predictive models developed by Saygili and Rathje (2008), Rathje and Saygili (2009), 

and Jibson (2007). The ratio of 𝑘𝑦/𝑃𝑃𝑃 is a useful parameter to incorporate in a 

predictive model because 𝑘𝑦/𝑃𝑃𝑃 ≥ 1.0 indicates that the peak ground acceleration does 

not exceed the yield acceleration and that there is zero displacement. One of the 

limitations of using PGA to characterize a ground motion is that it only measures a single 

point in the acceleration-time history, and therefore does not provide information on the 

frequency content or duration of the motion. Therefore additional parameters are required 

to characterize the ground motion. Peak ground velocity (PGV) can be obtained by 

integrating the acceleration-time history over time, and has been shown to correlate to 

earthquake damage better than PGA (Wu et al. 2003).  

A more comprehensive measure of shaking intensity was developed by Arias 

(1970) and is related to the integral over time of squared accelerations in a strong-motion 

record: 
 𝐼𝑎 = 𝜋

2𝑔 ∫[𝑎(𝑡)]2𝑑𝑡 (2.5) 

  

where 𝐼𝑎 is Arias intensity in units of velocity (m/s) and 𝑎(𝑡) is ground acceleration as a 

function of time. Jibson (1993, 2007) and Jibson et al. (1998, 2000) developed models 

that relate displacement to yield acceleration and 𝐼𝑎, and Arias intensity is one of several 

ground motion parameters used by Saygili and Rathje (2008). Other ground motion 

parameters that have been used include the natural period of the sliding mass (Ts) and the 

spectral acceleration at select periods (Bray and Travasarou, 2007). 

Displacement prediction equations essentially provide the same information as a 

rigorous sliding block analysis, but require less time and effort. The median calculated 

displacement is also more stable than a value derived from a single acceleration-time 

history or a small suite of time histories. The different predictive models are generally 
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judged based on their ability to reduce the standard deviation of the prediction, which, for 

a given 𝑘𝑦 and ground motion level, can result in a range of expected displacements 

greater than one order of magnitude (Saygili and Rathje, 2008). 
 

2.3 SEISMIC LANDSLIDE HAZARD MAPS 

Permanent-displacement models are commonly used to create seismic landslide 

hazard maps. These maps are used for emergency-preparedness and long-term land use 

planning, among other things. Areas of relative seismic landslide hazard (low, moderate, 

high, etc.) are typically demarcated based on specified thresholds of allowable 

displacement, or on a specified annual probability of exceedance. Creating regional 

hazard maps involves manipulating large sets of detailed spatial data within a Geographic 

Information System (GIS). 

The use of GIS was recommended by Holden and Real (1990) as the most cost 

effective way to prepare regional-scale hazard maps, and it has since defined the state of 

practice. The increased availability of high-quality GIS data combined with powerful 

analytical tools has made it a robust research platform. The two most common types of 

GIS data are vector and raster data. Vector data are stored as points (pairs of x, y 

coordinates), lines (a sequence of points), or polygons (a closed set of lines). This type of 

data is well-suited for locating discrete values or boundaries between data sets. Raster 

data represent continuous areas and are characterized by raster cells (i.e. a grid).  

When geographically-referenced layers of slope angle, soil shear strength, and 

earthquake ground shaking are imported into a GIS as raster data, estimates of yield 

acceleration and sliding displacement can be computed and assigned to each raster cell. 

The typical resolution of raster data used in seismic landslide hazard mapping is 10 

meters, which means that a 100-km2 area can be characterized by one million unique 
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cells (and thus one million unique values of yield acceleration and displacement). In 

order to turn maps of yield acceleration or displacement into maps of seismic landslide 

hazard, thresholds must be established that relate ranges of yield acceleration or 

displacement values to different hazard levels. These thresholds depend on many factors 

that are project-specific. 

The two organizations that do the most work mapping earthquake-induced 

landslides within the United States are the California Geological Survey (CGS) and the 

United States Geological Survey (USGS). Each organization has adopted a different 

approach to seismic landslide hazard mapping, although both are based on displacements 

predicted for a rigid sliding block. 

2.3.1 CGS Approach 

Following the 1989 Loma Prieta (𝑀𝑤 = 6.9) earthquake outside of San Francisco, 

the Seismic Hazards Mapping Act of 1990 was adopted by the California legislature 

(Public Resources Code, Section 2690-2699.6). The Seismic Hazards Mapping Act 

directs the California Geological Survey (CGS) to delineate Seismic Hazard Zones for 

strong ground shaking, soil liquefaction, and landslides. In accordance with the Seismic 

Hazards Mapping Act, CGS published in 1997 a special publication entitled Guidelines 

for Evaluating and Mitigating Seismic Hazards in California that provides guidelines for 

identifying hazard zones where detailed investigations are required. The report was 

updated and re-issued in 2008.  

The methodology adopted by CGS for creating earthquake-induced landslide 

hazard potential maps is based on a procedure proposed by McCrink and Real (1996). 

The procedure is based on developing yield acceleration thresholds that represent 

different levels of rigid sliding block displacement. The yield acceleration thresholds are 

based on the expected ground shaking within a given quadrangle. A single earthquake 
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strong-motion record is selected to be representative of the ground motion hazard for a 

particular quadrangle. Selection of the strong-motion record is based on the value of PGA 

that has a 10% probability of exceedance in 50 years, and the magnitude and distance 

combination that contributes most to the ground motion hazard (obtained from the 

deaggregation). The selected strong-motion record is used to calculate sliding 

displacement for a range of yield acceleration values, the relationship between 

displacement and 𝑘𝑦 is plotted (Figure 2.5), and the thresholds identified. 

 

 
 

Figure 2.5: Plot of sliding displacement as a function of yield acceleration for a selected 
strong-motion record (Saygili, 2008) 

 

As shown in Table 2.2, CGS has defined different displacement levels that 

represent different landslide hazard levels. Using the sliding displacement-yield 

acceleration plot, yield acceleration thresholds are identified that represent the landslide 

hazard levels for the selected ground motion. 
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Table 2.2: Landslide hazard displacement thresholds used by CGS 

Landslide Hazard Sliding Displacement (cm) 
Very Low < 5 cm 

Low 5 cm < D < 15 cm 
Moderate 15 cm < D < 30 cm 

High D > 30 cm 

 

 

The resulting yield acceleration thresholds are compared (within a GIS) with the 

gridded yield acceleration values computed throughout the quadrangle from the infinite 

slope model (i.e. equations 2.2 and 2.3) and used to assign an appropriate landslide 

hazard level. In equation 2.3, the CGS procedures assume unsaturated slope conditions 

(𝑐 = 0) and no shear strength contribution from cohesion (𝑐′ = 0). These assumptions 

are based on the results from McCrink and Real (1996) and McCrink (2001) that showed 

ignoring cohesion and setting 𝑐 = 0 resulted in the best comparison with observed 

landslides from the Loma Prieta earthquake.  

All cells that correspond to a sliding displacement of 5 cm or greater (i.e. Low, 

Moderate, High hazard levels) are defined as landslide hazard zones. In addition, CGS 

breaks down the results for each quadrangle in a hazard potential matrix, which shows 

how the assigned hazard levels vary with slope angle and friction angle.  An example of a 

hazard potential matrix published for the Oat Mountain quadrangle in Los Angeles 

County is provided in Table 2.3. The shaded groups are included in the hazard zone map 

for the quadrangle. 
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Table 2.3: Hazard potential matrix for earthquake-induced landslides in the Oat Mountain 
7.5-minute quadrangle (CDMG, 1997b) 

 

 

2.3.2 USGS Approach 

The approach used by the USGS is based on a study conducted by Jibson et al. 

(1998, 2000) regarding the earthquake-induced landslides from the 1994 Northridge 

earthquake. Similar to the approach used by CGS, gridded yield acceleration values are 

calculated within a GIS using an infinite slope model and equations 2.2 and 2.3. 

However, unlike the CGS approach, values of cohesion are considered in the calculation 

(𝑐′ ≠ 0). The ground motion hazard is also characterized differently. Rather than 

selecting a single representative strong-motion record and rigorously computing 

displacements for a range of yield acceleration values, a displacement prediction model is 

used to calculate displacements as a function of gridded yield acceleration values and 

gridded values of some ground motion parameters, commonly either peak ground 

acceleration (𝑃𝑃𝑃) or Arias intensity (𝐼𝑎). Values of ground shaking intensity that have a 

2% and 10% probability of exceedance are considered. 

After displacements are calculated for the two ground motion hazard levels, 

ranges of displacement are assigned to different landslide hazard categories, as shown in 

Table 2.4. In addition, each hazard category is assigned a probability of landsliding based 

on an equation developed by Jibson et al. (1998, 2000) that calculates the probability of 
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landsliding as a function of predicted displacement. This procedure was recently used to 

produce landslide hazard maps for Anchorage, Alaska (Jibson and Michael, 2009).  

 

 
Table 2.4: Landslide hazard displacement thresholds and associated probabilities of landsliding 

used by USGS  

Hazard Category Displacement (cm) Probability of Landsliding (%) 
Low 0 -1 0 - 2 

Moderate 1 - 5 2 - 15 
High 5 - 15 15 - 32 

Very High > 15 > 32 

 

2.4 PREVIOUS VALIDATION STUDIES 

For the sliding block analysis to be useful in evaluating the potential for 

earthquake-induced landslides, values of calculated yield acceleration and/or 

displacement must be quantitatively correlated with observations of landslides from 

previous earthquakes. This comparison can be made within the GIS framework. Similar 

to the information for slope angle, shear strength, and ground motion data that are used as 

input into displacement prediction models, locations of observed landslides are also 

imported into a GIS as raster data. A cell that falls within a mapped landslide area is 

assigned a numerical value that identifies it as part of that particular landslide; 

non-landslide cells are assigned “null” values. Values of yield acceleration or 

displacement can be compared with locations of landslide cells, and different predictive 

models or sets of model parameters can be assessed based on how well they predict the 

locations of the landslides. Two of the most comprehensive validation exercises for 

mapping earthquake-induced landslide hazards were performed by Jibson et al. (2000) for 

1994 Northridge earthquake and McCrink (2001) for the 1989 Loma Prieta earthquake. 
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Both studies compiled information using a GIS platform and created regional maps of 

predicted displacements to compare with maps of known earthquake-induced landslides.  

2.4.1 Jibson et al. (2000) 

Jibson et al. (2000) considered six quadrangles in the Santa Susana Mountains 

north of Los Angeles, California that were shaken by the 1994 Northridge earthquake.  

This was the first earthquake for which a comprehensive data set of slope and soil 

information, ground shaking, and observed landsliding was available to permit a detailed 

regional analysis. The study area covered nearly 1,000 square kilometers, and more than 

7,000 landslides were documented within that area, covering approximately 16 square 

kilometers or 1.6% of the six quadrangles. All data used in the study were imported into a 

GIS platform and converted to layers of gridded raster data at 10-meter cell spacing. 

Jibson et al. (2000) calculated values of yield acceleration for each 10-meter cell 

using equations 2.2 and 2.3 from an infinite slope model. Slope angles were calculated 

from Digital Elevation Models (DEM) that were derived from scanned U.S. Geological 

Survey contour plates, and soil shear strength parameters (𝑐′,𝜑′) were determined based 

on the results of direct-shear tests from local geotechnical consultants on samples of 

geologic units in the region. Before calculating displacements, shear strengths were 

increased incrementally until all cells were statically stable (FS > 1.0). Importance was 

placed on keeping relative strength differences between geologic units intact. The values 

of 𝑐′ and 𝜑′ used by Jibson et al. (2000) are shown in Table 2.5. 
  



Table 2.5: Shear strengths assigned by Jibson et al. (2000) to geologic units in the study areaa

Unit name (description) Oat Mountain Santa  Susana Simi Valley Newhall Val Verde Piru φ' (°) c'  (kPa)

Artificial fill af af af af af 34 16.8
Artificial cut and fill acf 34 16.8
Rockfall  deposits rf 34 16.8
Spoil from quarries Qsp 34 16.8
Alluvium ( young) Qay 34 16.8
Pond  deposits Qp Ql 34 16.8
Flood  plain deposits Qfp 34 16.8
Alluvium Qal Qal Qal Qal (1,2) Qal Qal 34 16.8
Older alluvium Qao Qao Qao Qao Qao Qao 34 16.8
Slope wash Qsw Qsw Qsw 34 19.2
Caliche Qc Qc? 34 16.8
Landslide  deposits Qls Qls Qls Qls Qls Qls 30 24.0
Terrace deposits Qt Qt Qt Qt Qt Qt 34 16.8
Fan  and terrace deposits Qft Qf Qf 34 16.8
Pacoima  Fm. (ss/cg ) Qpa 34 19.2
Older terrace deposits Qto Qto 34 16.8
Old fanglomerate Qfo 34 16.8
Saugus Fm. QTs Qs Qs Qs Qs Qs 34 19.2
Upper  Member  (silty breccia) QTsu 34 21.6
Lower Member/Sunshine Ranch Fm. QTsm Qsm Qsm 34 21.6
Saugus ( Pelona Schist clasts) Qsp Qsp 34 19.2
Saugus (San Francisquito clasts) Qss Qss 34 19.2
Pico Fm. Tp QTp QTp Tp Tp 32 24.0
Pico Fm. (?) Tp? 34 24.0
Pico Fm. (ss/cg) Tpc QTpc Tpc Tpc Tpc 34 24.0
Pico Fm. (silt ) Tps QTps Tps Tps Tps 30 24.0
Towsley Fm. (ss/shale) Tw Tw 34 26.3
Towsley Fm. (shale) Tws Tws Tws Tws Tws 30 26.3
Towsley Fm. (ss) Twc Twc Twc Twc Twc 34 26.3
Hasley Conglomerate Twhc Twhc 34 24.0
Castaic Fm. (ss) Tcs Tcs 34 19.2
Mint  Canyon  Fm. (ss) Tmc 34 19.2
Mint  Canyon  Fm. (ss/clay) Tmcl 32 19.2
Modelo  Fm. (shale) Tm Tm Tm Tm 31 26.3
Modelo  Fm. (shale/mud ) Tm1 Tm1 Tm1 31 26.3
Modelo  Fm. ( porc. shale) Tm2 Tm2 Tm2 Tm2 31 26.3
Modelo  Fm. (ss) Tm3 Tm3 Tm3 Tm3 34 26.3
Modelo  Fm. (shale) Tm4 Tm4 Tm4 Tm4 31 26.3
Modelo  Fm. (shale) Tm5 31 26.3
Modelo  Fm. (diatom.  shale) Tmd Tmd 31 26.3
Modelo  Fm. (shale) Tms Tms 31 26.3
Modelo  Fm. (cg/ss) Tmc 34 26.3
Topanga  Fm. (ss) Tt Tt Tt 34 26.3
Topanga  Fm. ( basalt ) Ttb Ti 34 33.5
Topanga  Fm. (shale) Tt1 31 28.7
Topanga  Fm. (ss) Tt2 34 26.3
Topanga  Fm. (shale) Tt3 31 28.7
Topanga  Fm. (ss) Tt4 34 26.3
Conejo Volcanics (andesite/basalt) Tco 40 40.7
Conejo Volcanics (andesite) Tcoa 40 43.1
Conejo Volcanics ( basalt) Tcob 40 38.3
Rincon  Shale Trn 30 19.2
Vaqueros  Fm. (silt, ss) Tv Tv 33 28.7
Sespe Fm. (ss, cg) Ts Ts Ts 33 26.3
Llajas Fm. (ss, silt, clay, cg) Tl Tl Tl 33 28.7
Llajas Fm. (calc. ss, hard ) Tlc Tlc 36 43.1
Santa  Susana  Fm. (clay shale) Tss Tss 30 33.5
Simi Conglomerate Tsc 34 40.7
Simi Conglomerate (cg) Tsc1 34 40.7
Simi Conglomerate (shale) Tsc2 30 33.5
Simi Conglomerate (ss) Tsc3 34 38.3
Chatsworth Fm.  (ss) Kc Kc 40 47.9

a φ': effective angle of internal  friction; c': effective cohesion intercept;  ss: sandstone;  cg: conglomerate;  1 kPa = 20.885 lb/ft2.
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Rigid sliding block displacements for the Jibson et al. (2000) study were 

calculated using the following displacement prediction equation, derived from a database 

of 555 acceleration-time histories from 13 worldwide earthquakes: 

 

 log𝐷 = 1.521 log𝐼𝑎 − 1.993 log𝑘𝑦 − 1.546 (2.6) 

 

where 𝐷 is displacement in centimeters, 𝐼𝑎 is Arias intensity in meters per second, and 𝑘𝑦 

is yield acceleration in units of g. The equation was regressed on two predictor variables: 

yield acceleration values (which ranged from 0.02 to 0.40 g), and Arias intensity values 

calculated for each acceleration-time history. To calculate displacements for the 

Northridge earthquake, a ground shaking grid from the earthquake was prepared. For 

each of the 189 strong-motion recordings of the main shock, the average Arias intensity 

from the two horizontal components was computed and plotted at the location of the 

strong motion station. A simple kriging algorithm was then used to interpolate values of 

𝐼𝑎 to each 10-meter cell across the six quadrangles. Figure 2.6 shows the contours of 

Arias intensity throughout the study area based on calculated and interpolated values. 

Values range from less than 1 m/s in the northwest corner to greater than 5 m/s in the 

southeast corner, which is closest to the Northridge earthquake epicenter.   
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Figure 2.6: Contours of Arias intensity (𝐼𝑎) in meters per second in six quadrangles studied by 

Jibson et al. (2000) and shaken by the 1994 Northridge earthquake (Jibson et al., 2000) 

 

Maps of predicted displacement (Figure 2.7) were then compared with maps of 

observed landslides (Figure 2.8). Observed landslides were digitized by Harp and Jibson 

(1995, 1996) using high-resolution aerial photographs taken by the U.S. Air Force the 

morning of the earthquake and converted to 10-meter raster grids. Landslide source areas 

were defined by Jibson et al. (2000) as those grid cells having elevations above the 

median elevation for each landslide, so that the upper half of each landslide was 

considered a source area. 

Figure 2.7 shows the displacements predicted in a section of the Oat Mountain 

quadrangle using the procedure described above. The largest displacements, represented 

by the darker red areas, are concentrated along steeper ridges north of Interstate 5. 

Figure 2.8 shows the observed landslides triggered by the Northridge earthquake over the 

same area. These landslides are also concentrated to the north of Interstate 5, although 

they appear to represent a larger area than the large-displacement cells from Figure 2.7.  
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Figure 2.7: Predicted displacements in part of the Oat Mountain quadrangle (Jibson et al., 2000) 

 

 

Figure 2.8: Landslides triggered in part of the Oat Mountain quadrangle (Jibson et al., 2000) 
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To quantitatively assess the accuracy of computed sliding displacements in 

predicting earthquake-induced landslides, Jibson et al. (2000) evaluated a probability of 

failure (𝑃𝑓) for different displacement levels. Probability of failure was defined as the 

proportion of cells occupied by landslide source cells for a specified range of 

displacement. For example, for a displacement bin centered around 10 cm, only the cells 

with predicted displacements within that bin are considered. The number of landslide 

source cells within the identified 10 cm cells is divided by the total number of 10 cm cells 

to compute 𝑃𝑓. Figure 2.9 shows the data derived from the analysis and the equation that 

was fit to the data. 

 

 

 

Figure 2.9: Proportion of landslide source cells as a function of displacement (Jibson et al., 2000) 
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Figure 2.9 shows that the probability of failure never exceeds about 34% even at 

very large displacements, suggesting that no more than 34% of high landslide hazard 

areas are likely to experience failure during an earthquake. Jibson et al. (2000) used this 

equation to create hazard maps showing the probability of slope failure as a function of 

predicted displacement.  

2.4.2 McCrink (2001) 

Earthquake-induced landslides from the 1989 Loma Prieta earthquake near San 

Francisco, California were used to validate a seismic hazard mapping procedure 

developed by McCrink (2001). This procedure was adopted by the California Geological 

Survey for preparing seismic hazard zone maps throughout California. The validation 

exercise was conducted using data collected from a quadrangle in the Santa Cruz 

Mountains. The data were combined within a GIS platform and converted to layers of 

gridded raster data at 10-meter cell spacing.  

Values of yield acceleration were calculated for each cell using equations 2.2 and 

2.3 for an infinite slope model, just as Jibson et al. (2000) had done. Geologic material 

strength values were compiled from laboratory test results found in reports on file with 

the Santa Cruz County Planning Department. To characterize the expected ground 

shaking within the quadrangle, a single representative strong-motion record from the 

Loma Prieta earthquake was used. The selected record was from the Corralitos station, 

and produced a peak horizontal ground acceleration (𝑃𝑃𝑃) of 0.64g during the Loma 

Prieta earthquake. This record was used to compute sliding displacements for a range of 

typical yield accelerations, and different 𝑘𝑦-displacement thresholds were established 

(Figure 2.10).  
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Figure 2.10: Yield acceleration versus sliding displacement for the Corralitos strong-motion 
record from the 1989 Loma Prieta earthquake (McCrink, 2001) 

 

After a relationship between yield acceleration and predicted displacement was 

established for the expected ground shaking in the quadrangle, McCrink (2001) calibrated 

the mapping procedure to find the optimal set of model parameters that would maximize 

the number of landslides captured, while minimizing the area included in the hazard 

zone. Values of 𝑐′,𝜑′, the thickness of the failure mass (𝑡), and the saturation thickness 

(𝑐) were varied in the analyses. Different combinations of displacement thresholds at 2, 

5, 10, 15, 20 and 30 cm were also considered. 

McCrink (2001) established an efficiency parameter to quantitatively compare the 

accuracy of different parameter sets. Efficiency was defined as the difference between the 

percentage of landslides accurately identified (GFC = % Ground Failure Capture) and the 

percentage of the entire quadrangle identified as a seismic hazard zone (QC = % 

Quadrangle Covered). Using this efficiency parameter (Efficiency = %GFC - %QC) 

rather than just using % GFC to judge the accuracy of different parameter sets prevented 

the identification of the optimal parameters based on a scenario where a 100% of the 
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landslides were accurately identified (i.e. GFC = 100%) because 100% of the quadrangle 

was covered by landslide zones (i.e. QC = 100% and efficiency is zero). 

Figure 2.11 shows the plot of efficiency (i.e. percent difference) and % GFC 

calculated for each parameter set by McCrink (2001). Instead of selecting the optimum 

parameter set (i.e. the maximum efficiency), McCrink (2001) decided to compromise on 

efficiency to include more ground failures. The chosen best parameter set is indicated on 

the plot, capturing approximately 84% of the Loma Prieta slope failures within the 

quadrangle, while covering approximately 50% of the quadrangle with landslide hazard 

zones (i.e. an efficiency of 34%). The set of parameters that corresponded with these 

results was mean friction angle, no cohesion (𝑐′ = 0), unsaturated slope conditions 

(𝑐 = 0), and a displacement threshold of 5 centimeters (low, moderate and high 

landslide potential).  

 

 
 

Figure 2.11: Plot of efficiency versus ground failure capture for different combinations of model 
parameters (McCrink, 2001) 
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McCrink (2001) also summarized the results in a landslide potential matrix 

(Figure 2.12), which shows how the different hazard potential levels for the chosen 

parameter set are distributed as a function of geologic strength group and slope angle. 

Very Low (VL) hazard potential corresponds to displacements less than 5 cm, Low (L) to 

between 5 and 15 cm, Moderate (M) to between 15 and 30 cm, and High (H) to greater 

than 30 cm. The shaded areas represent the hazard potential levels (L, M, H) included in 

the seismic hazard zone (i.e. all areas with displacements greater than 5 cm). 

 

 

 
 

Figure 2.12: Landslide potential matrix for the chosen best parameter set for Laurel quadrangle 
(McCrink, 2001) 
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2.5 SUMMARY 

Permanent displacement analysis has become a common procedure for evaluating 

the seismic performance of slopes. Appropriate for modeling shallow, infinite slope 

failures, the results of a rigid-block permanent displacement analysis can be used to 

develop maps of seismic landslide susceptibility or hazard. The magnitude of predicted 

displacement is sensitive to variations in yield acceleration, and to the intensity, 

frequency content and duration of the expected earthquake ground motions. Recent 

research has led to the development of empirical predictive models that estimate 

displacements as a function of one or more ground motion parameters. These models 

provide a simple, powerful tool for conducting large-scale, regional analyses.  

Comprehensive validation exercises have been performed for some of the early 

procedures adopted for the evaluation of earthquake-induced landslides. As research 

continues to yield advances in predictive modeling, these efforts must be validated 

against past earthquakes and compared with previous methodologies.  
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Chapter 3 

 
Validation Approach for the 

Northridge Earthquake 
 

 

 

 

3.1 INTRODUCTION 

This chapter describes the validation exercises performed in this study. The 

validation is based on comparing locations of observed landslides induced by a previous 

earthquake with sliding-block displacements predicted by various empirical models. Six 

quadrangles located in the Santa Susana Mountains north of Los Angeles, California are 

selected as the study area for this exercise. This study area was chosen based on the 

availability of a comprehensive landslide inventory from the 1994 Northridge earthquake.  

The workflow and data used in this study is similar to the validation exercise 

performed by Jibson et al. (2000). This chapter describes the data and assumptions used 

to calculate yield accelerations, the different empirical models used to calculate sliding 

displacements, the ground motion information for the study area, and the procedures used 

for mapping and assessing the accuracy of the results. Results are presented in the next 

chapter. All data in this study were converted to 10-meter raster grids and all 
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computations were performed using ArcGIS© 9.3 software developed by the 

Environmental Systems Research Institute (ESRI).  

 

3.2 NORTHRIDGE EARTHQUAKE STUDY AREA 

Six quadrangles located in the Santa Susana Mountains north of Los Angeles, 

California were used for the validation study. These six quadrangles – Piru, Val Verde, 

Newhall, Simi Valley, Santa Susana, and Oat Mountain – are the same quadrangles that 

Jibson et al. (2000) evaluated previously. The locations of the quadrangles are shown in 

Figure 3.1. These quadrangles were studied by Jibson et al. (2000) because of the dense 

concentration of landslides triggered during the 1994 Northridge earthquake, and because 

the study area was large enough to encompass significant variations in ground shaking. A 

map of the instrumental intensity of the Northridge earthquake (related to Modified 

Mercalli Intensities, MMI) produced by the USGS (Figure 3.2) shows that the study area 

is located just to the northwest of the earthquake epicenter in an area that experienced 

severe and violent shaking. Peak ground accelerations in the study area ranged from 0.2 

to 0.9 g, and are discussed further in subsequent sections of this chapter.  

The Northridge earthquake was the first earthquake for which all of the data sets 

necessary to conduct a detailed, regional seismic landslide hazard analysis were 

available. This includes (1) a comprehensive inventory of triggered landslides (Harp and 

Jibson 1995), (2) about 200 strong-motion records of the main shock recorded throughout 

the region, (3) detailed geologic maps, (4) extensive soil shear strength data, and (5) high 

resolution digital elevation models (Jibson et al. 2000).  
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Figure 3.1:  Location of study area (Map obtained from the California Geologic Survey Seismic 

Hazard Zonation Program website available at http://www.conservation.ca.gov/cgs/shzp) 
 

 
Figure 3.2: Map of instrumental intensity for the 1994 Northridge earthquake. The blue box 

represents the six quadrangles used in this study (Map created in Google Earth using data from 
the USGS ShakeMaps website available at http://earthquake.usgs.gov/earthquakes/shakemap/)  

http://www.conservation.ca.gov/cgs/shzp
http://earthquake.usgs.gov/earthquakes/shakemap/
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3.3 CALCULATING YIELD ACCELERATION 

The first step of the validation exercise is calculating yield accelerations for the 

slopes within the study area. Similar to the procedures used by CGS and USGS, an 

infinite slope model is used to approximate conditions in the field and the pseudostatic 

force is assumed to act parallel to the slope (Figure 3.3).  

 

 

Figure 3.3: Infinite slope conditions for calculating yield acceleration 

The equation for yield acceleration was derived in Chapter 2 for infinite slope conditions, 

and is shown again below: 

 𝑘𝑦 = (𝐹𝑆 − 1)𝑔 ⋅ 𝑠𝑖𝑛𝛼 (3.1) 

 
 𝐹𝑆 =  𝑐′

𝛾𝑡 sin𝛼
+  tan𝜑′

tan𝛼
�1 −𝑐 𝛾𝑤

𝛾
� (3.2) 

 

where 𝑘𝑦 is the yield acceleration, 𝑔 is the acceleration due to gravity, FS is the static 

factor of safety, 𝛼 is the slope angle, 𝑐′ is the effective cohesion, 𝜑′ is the effective 

friction angle, 𝑡 is the slope-normal thickness of the rigid block, 𝛾 is the material unit 

weight, 𝛾𝑤 is the unit weight of water, and 𝑐 is the proportion of the block thickness that 

is saturated. For this study the contribution of pore water pressure is considered 
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negligible (𝑐 = 0) because almost all of the failures in the Northridge earthquake 

occurred in dry conditions (Jibson et al. 2000). In addition, to be consistent with previous 

research (Jibson et al. 2000) a unit weight of 15.7 kN/m3 and a sliding-mass thickness of 

2.4 m are assigned to represent a typical slope failure from the Northridge earthquake. 

The yield acceleration then becomes only a function of the shear strength parameters 

(𝑐′, 𝜑′) and the slope angle. These parameters for the quadrangles studied are discussed 

next. 

3.3.1 Slope Angle 

Maps of slope angle are computed for each quadrangle based on 10-meter 

resolution digital elevation models (DEM) provided by the USGS. The DEMs had been 

created from high-resolution scans of USGS contour plates. Slope angles (in degrees) are 

derived using a simple algorithm within ArcGIS© that computes the maximum 

difference in elevation between a given cell and neighboring cells. Figure 3.4 shows the 

digital elevation model and the calculated slope angles for the Oat Mountain quadrangle. 

The southern portion of the quad is very flat with most slopes less than 15°, while most 

of the hills to the north are between 25° and 45°. Some of the peaks visible in the DEM 

correspond to slope angles greater than 45°. 

The distributions of slope angles within each quadrangle are compared in 

Figure 3.5. The Piru and Val Verde quadrangles in the northwest of the study area 

contain the greatest concentration of steep terrain; nearly 25% of the slopes in the Piru 

quadrangle are greater than 35°. In contrast, less than 3% of the slopes in the Newhall and 

Simi Valley quadrangles are steeper than 35°. The slope angle distributions of the 

neighboring Santa Susana and Oat Mountain quadrangles are very similar with about 

10% of the slopes greater than 35°.  
  



0 2 41 Km

-(a) (b)

Slope Angle
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Figure 3.4: (a) Digital elevation model with hillshading and (b) map of slope angle values for the Oat Mountain quadrangle.
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 (a) (b) (c) 

 (d) (e) (f) 
 

Figure 3.5: Distribution of slope angles for the (a) Piru, (b) Val Verde, (c) Newhall, 
(d) Simi Valley, (e) Santa Susana and (f) Oat Mountain quadrangles 

 

Jibson et al. (2000) noted that slope angles greater than about 60° are generally 

under-represented in the dataset because of the difficulty in representing steep slopes on a 

contour plate. Other research on the use of digital elevation models has shown that 

practical applications of GIS-based models that rely on slope angle as a parameter can 

assume standard deviations of ± 3° to 4° (Haneberg, 2006). Despite these observations, 

DEM’s are generally not a significant source of uncertainty when compared with the 

difficulties of estimating ground motions or assigning material properties.  
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3.3.2 Shear Strength Properties 

Shear strength properties are developed based on assigning values of (𝑐′, 𝜑′) to 

mapped geologic units. The spatial distribution of geologic units across all six 

quadrangles is based on 1:24,000-scale geologic maps of Yerkes and Campbell (1995a-d, 

1997a-b). The geologic map for the Oat Mountain quadrangle is shown in Figure 3.6. The 

legend identifies each geologic unit by the unit symbol; descriptions of these units are 

included later in this section. Comparing the geologic map with the digital elevation 

model in Figure 3.3, the low-lying areas in the northeast corner and bottom portion of the 

quadrangle consist of predominately Quaternary alluvial materials (Qal/Qay/Qp, Qao), 

and a large portion of the steeper, mountainous areas consist of Tertiary materials from 

the Modelo, Towsley and Pico formations (Tm, Tw, Tps respectively). The geologic 

maps for all six quadrangles are given in Appendix A (Figures A-1 through A-6).  

Representative shear strengths were assigned to these geologic units based on the 

median values of (𝑐′, 𝜑′) published by the California Geological Survey (CGS) in their 

Seismic Hazard Reports for each quadrangle (CDMG 1997, 1997b, 1997c, CGS 2002, 

2002b). Shear strength data were gathered by CGS primarily from geotechnical reports 

prepared by consultants on file with local government permitting departments. If shear 

test data were limited, test results from adjacent quadrangles were used to augment the 

data. CGS grouped geologic units together on the basis of average friction angle (𝜑′) and 

lithologic character. Each strength group was then assigned a single representative value 

of 𝜑′ for use in stability analyses. CGS does not consider cohesion in their stability 

analyses (𝑐′ = 0) but mean and median values of 𝑐′were published in their reports. Shear 

strength groupings published by CGS for the Oat Mountain quadrangle are shown in 

Figure 3.6 as an example of the strength data used in this study. 
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Figure 3.6: Map of geologic units within the Oat Mountain quadrangle, based on the geologic
map of Yerkes and Campbell (1993, 1995).
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Figure 3.7: Shear strength groups published in the CGS Seismic Hazard Report for Oat Mountain 

(CDMG, 1997b), available online at http://gmw.consrv.ca.gov/shmp/html/eval_rpts_so.html 

 

The higher strength groups generally consist of well-cemented Tertiary rock units 

composed of sandstone and siltstone, limestone, shale and conglomerate. The lower 

strength groups predominately consist of loosely-consolidated quaternary deposits and 

previously identified landslide materials. For some geologic units CGS distinguishes 

between the strength under favorable bedding and adverse bedding conditions. This 

distinction depends on the angle of material bedding with respect to a horizontal plane 

(known as dip) and slope geometry. If the dip direction of a formation and the slope 

direction are roughly the same, adverse bedding conditions exist because a landslide can 

slip along the bedding surface. Orthogonal dip and slope directions are considered 

favorable bedding conditions. In general, CGS assumes that favorable bedding conditions 

are representative of coarse-grained (higher strength) lithologies, and adverse bedding 
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conditions are representative of fine-grained (lower strength) lithologies (CDMG, 

1997b). In consultation with Dr. Randall Jibson from the USGS, only favorable bedding 

conditions were considered when selecting the appropriate shear strength values for this 

study because of the difficulty in identifying adverse bedding conditions on a regional 

scale (Jibson, personal communication). 

The mapped shear strength groups for the Oat Mountain quadrangle are shown in 

Figure 3.8. The darkest shade of grey represents the strongest shear strength group 

(Group 1). The pink areas represent the previous landslide deposits (Group 4). Maps of 

shear strength groups for all six quadrangles are given in Appendix A (Figures A-7 

through A-12). 
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Figure 3.8: Map of shear strength groups within the Oat Mountain quadrangle based on
 the map of geologic units (Figure 3.6) and the shear strength values in Table 3.1
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A summary of geologic units and assigned shear strengths for each quadrangle is 

provided in Table 3.1. Values for cohesion (𝑐′) range from 12 to 35 kPa, and values for 

friction angle (𝜑′) range from 12° for previous landslide deposits (Qls) to 39° for the 

well-cemented tertiary units. The strength values in Table 3.1 are generally lower than 

those assigned by Jibson et al. (2000), and in some cases significantly lower. Values of 

𝑐′assigned by Jibson et al. (2000) ranged from approximately 17 to 48 kPa and values of 

𝜑′ ranged from 30° to 40°. Jibson et al. (2000) started with median strengths compiled 

from direct-shear test results provided by local geotechnical consultants, and increased 

them incrementally until all slopes less than 60° were modeled as statically stable prior to 

earthquake shaking. This constraint resulted in large strengths being assigned to many 

geologic units in an effort to ensure that most steep slopes were statically stable. Jibson et 

al. (2000) believed that keeping intact the relative strength differences between geologic 

units was more important than the absolute values. However, this approach then 

overestimates the strength for an entire geologic unit if it contains some steep slopes. 

Because the strength of a material in an area with a steep slope is most likely stronger 

than the average value for that geologic unit, increasing the strength of the entire geologic 

unit results in overestimating the strength of the flatter slopes within that geologic unit. 

Therefore, for this study the median strength values were used throughout a geologic unit 

even if those strength parameters resulted in the steepest slopes being statically unstable 

within that unit. 

In contrast, the approach used by CGS is to ignore any contribution from cohesion 

(𝑐′ = 0) in their stability analyses. For the same values of friction angle and slope angle, 

this results in a smaller yield acceleration (i.e. higher landslide susceptibility) and can be 

overly conservative. The influence of the assigned shear strength parameters on the yield 

acceleration is further explored in the next section.  



Table 3-1:  Shear strengths assigned in this study to geologic units in the six quadrangles of the study area

Unit Name (description) Type
 ' (°) c' (kPa)  ' (°) c' (kPa)  ' (°) c' (kPa)  ' (°) c' (kPa)  ' (°) c' (kPa)  ' (°) c' (kPa)

Artificial fill af 31 14.4 32 12.4 31 14.4 28 14.4 28 19.6
Artificial cut and fill acf 28 19.6
Rockfall deposits rf 28 19.6
Alluvium (young) Qay 28 19.6
Pond deposits Qp 28 19.6
Flood plain deposits Qfp 31 14.4
Alluvium Qal 31 14.4 32 12.4 31 14.4 28 14.4 28 14.4 28 19.6
Older alluvium Qao 25 34.7 32 12.4 31 14.4 28 14.4 28 14.4 28 19.6
Slope wash Qsw 31 14.4 28 14.4 32 13.3
Caliche Qc 31 14.4 28 19.6
Landslide deposits Qls 12 14.1 13 15.6 25 12.0 23 22.5 23 22.5 25 22.3
Terrace deposits Qt 31 14.4 32 12.4 31 14.4 28 14.4 28 14.4 28 19.6
Fan and terrace deposits Qf/Qft 31 14.4 32 12.4 28 14.4
Pacoima Fm. (ss/cg) Qpa 31 14.4
Older terrace deposits Qto 31 14.4 28 19.6
Old fanglomerate Qfo 31 14.4
Saugus Fm. Qs 31 14.4 32 12.4 31 14.4 35 12.0 35 12.0 32 13.3
Upper Member (silty breccia) Qsu 32 13.3
Lower Member/Sunshine Ranch Qsm 35 12.0 35 12.0 32 13.3
Saugus (Pelona Schist clasts) Qsp 32 12.4 31 14.4
Saugus (San Francisquito clasts) Qss 32 12.4 31 14.4
Pico Fm. Tp 31 14.4 32 12.4 35 12.0 35 12.0 32 13.3
Pico Fm. (ss/cg) Tpc 31 14.4 32 12.4 31 14.4 35 12.0 32 13.3
Pico Fm. (silt) Tps 25 34.7 28 20.1 31 14.4 23 19.2 28 19.6
Towsley Fm. (ss/shale) Tw 35 12.0 32 13.3
Towsley Fm. (shale) Tws 31 14.4 28 20.1 37 14.8 23 19.2 28 19.6
Towsley Fm. (ss) Twc 31 14.4 32 12.4 37 14.8 35 12.0 32 13.3
Hasley Conglomerate Twhc 31 14.4 32 12.4
Castaic Fm. (ss) Tcs 28 20.1 37 14.8
Mint Canyon Fm. (ss) Tmc 37 14.8
Mint Canyon Fm. (ss/clay) Tmcl 37 14.8
Modelo Fm. (shale) Tm 31 14.4 35 12.0 35 12.0 39 31.3
Modelo Fm. (shale/mud) Tm1 25 34.7 35 12.0 39 31.3
Modelo Fm. (porc. shale) Tm2 31 14.4 35 12.0 35 12.0 39 31.3
Modelo Fm. (ss) Tm3 31 14.4 35 12.0 35 12.0 39 31.3
Modelo Fm. (shale) Tm4 31 14.4 35 12.0 35 12.0 39 31.3
Modelo Fm. (shale) Tm5 31 14.4
Modelo Fm. (diatom. shale) Tmd 35 12.0 39 31.3
Modelo Fm. (shale) Tms 28 20.1 39 31.3
Modelo Fm. (cg/ss) Tmc 28 20.1
Topanga Fm. (ss) Tt 35 12.0 35 12.0 39 31.3
Topanga Fm. (basalt) Ttb 28 14.4 39 31.3
Topanga Fm. (shale) Tt1 39 31.3
Topanga Fm. (ss) Tt2 39 31.3
Topanga Fm. (shale) Tt3 39 31.3
Topanga Fm. (ss) Tt4 39 31.3
Conejo Volcanics (andesite/basalt) Tco 38 28.7
Conejo Volcanics (andesite) Tcoa 38 28.7
Conejo Volcanics (basalt) Tcob 38 28.7
Rincon Shale Trn 31 14.4
Vaqueros Fm. (silt, ss) Tv 35 12.0
Sespe Fm. (ss, cg) Ts 34 13.8 35 12.0 35 12.0
Llajas Fm. (ss, silt, clay, cg) Tl 35 12.0 35 12.0 39 31.3
Llajas Fm. (calc. ss, hard) Tlc 35 12.0 39 31.3
Santa Susana Fm. (clay shale) Tss 35 12.0 39 31.3
Simi Conglomerate Tsc 35 12.0
Simi Conglomerate (cg) Tsc1 39 31.3
Simi Conglomerate (shale) Tsc2 39 31.3
Simi Conglomerate (ss) Tsc3 39 31.3
Chatsworth Fm. (ss) Kc 38 28.7 39 31.3
a φ': effective angle of internal  friction; c': effective cohesion intercept;  ss: sandstone;  cg: conglomerate;  1 kPa = 20.885 lb/ft 2.

Oat MountainPiru Val Verde Newhall Simi Valley Santa Susana
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3.3.3 Maps of Yield Acceleration 

Values of slope angle and shear strength are used in Equations 3.1 and 3.2 to 

compute yield acceleration. Yield acceleration values were computed at 10-meter grid 

spacing across all six quadrangles based on the computed grids of slope angle and shear 

strength. Because yield acceleration is a function of the static factor of safety (FS) and is 

independent of the expected level of ground shaking, a map of yield acceleration is 

essentially a map of seismic landslide susceptibility. The effect of shear strength 

properties on the dynamic performance of a slope can be evaluated by comparing values 

of yield acceleration. Figure 3.9 below shows the distribution of yield acceleration values 

and static factors of safety across the Oat Mountain quadrangle for the cases considered 

in the preceding section: 

(i) CASE I: Strengths used by Jibson et al. (2000) 

(ii) CASE II: Strengths used in this study (𝑐′ and 𝜑′ from Table 3.1) 

(iii) CASE III: CGS approach (𝜑′ from Table 3.1, c’ = 0) 

 

 
Figure 3.9: Distribution of values of a) factor of safety, and b) yield acceleration in the 

Oat Mountain quadrangle for Case I, Case II, and Case III 
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The approach used by CGS (Case III), which ignores the contribution of cohesion 

to the shear strength, results in almost 20% of the quadrangle being statically unstable 

(FS < 1) and nearly 40% of the quadrangle having a yield acceleration less than 0.20. In 

contrast, the large shear strength values used by Jibson et al. (2000) result in very few 

(< 1%) yield accelerations below 0.30, which implies that the landslide susceptibility 

across the entire quadrangle is very low. The approach used in this study (Case II) results 

in a small percentage of the quadrangle being statically unstable (0.4%). Figure 3.10 

shows a map of yield acceleration values computed for the Oat Mountain quadrangle 

using the shear strength parameters in Table 3.1 (Case II). In general, smaller yield 

acceleration values are concentrated in the steeper slopes. The noticeable band of yield 

accelerations greater than 0.50 surrounded by areas with much smaller yield accelerations 

in the north central portion of the quadrangle corresponds to geologic unit “Tm” in the 

map of geology (Figure 3.5), described as the upper Miocene Modelo Formation 

(CDMG, 1997b). This geologic unit is in the highest shear strength group in the 

quadrangle. Maps of yield acceleration for all six quadrangles (for Case II) are given in 

Appendix A (Figures A-13 through A-18). 

A yield acceleration value is a good indicator of a slope’s susceptibility to 

landsliding, but the occurrence of a landslide is also a function of the ground motion 

intensity. The sliding-block analysis combines the yield acceleration with ground shaking 

information to predict the occurrence of landslides based on an estimate of the sliding 

displacement. Empirical models that predict displacement as a function of yield 

acceleration and one or more ground motion parameters are discussed in the following 

section.  
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using shear strength values from Table 3.1 (Case II).
Figure 3.10: Map of yield acceleration values computed for the Oat Mountain quadrangle

Yield
Acceleration (g)

< 0.1
0.1 - 0.2
0.2 - 0.3
0.3 - 0.4
0.4 - 0.5
> 0.5

49



 50 

3.4 CALCULATING PERMANENT DISPLACEMENTS 

The use of displacement prediction equations is an efficient way to compute rigid 

sliding-block displacements over a large area. Values of yield acceleration and ground 

shaking information are combined within a GIS and values of permanent displacement 

are calculated and assigned to individual cells across each quadrangle. Ground shaking is 

characterized by different predictive models using a single ground motion parameter or 

combinations of ground motion parameters. The predictive models used in this study and 

the related ground motion parameters are discussed below. 

3.4.1 Predictive Models 

Seven displacement prediction equations are considered for this study and are 

summarized in Table 3.2. Models J-(𝐼𝑎), J-( 𝑃𝑃𝑃), and J-( 𝑃𝑃𝑃, 𝐼𝑎) were developed by 

Jibson (2007), model RS-( 𝑃𝑃𝑃, M) was developed by Rathje and Saygili (2009), and 

models RS-( 𝑃𝑃𝑃, 𝑃𝑃𝑃), RS-( 𝑃𝑃𝑃, 𝐼𝑎), and RS-( 𝑃𝑃𝑃, 𝑃𝑃𝑃, 𝐼𝑎) were developed by 

Saygili and Rathje (2008). For convenience the models designated “RS” will be referred 

to as the Rathje and Saygili (2008, 2009) models.   

The models developed by Jibson (2007) were developed using a database of 2,270 

strong-motion records from 30 worldwide earthquakes. The records were double-

integrated for five different yield acceleration values (0.05, 0.10, 0.20, 0.30, and 0.40 g) 

to produce a large data set of displacements with corresponding yield accelerations, peak 

ground accelerations, and Arias intensities. This data set was sampled to produce a final 

set of 875 displacements – 175 for each of the five yield acceleration values. Based on 

this final data set, Jibson (2007) modeled displacements as a function of yield 

acceleration (𝑘𝑦), Arias intensity (𝐼𝑎), and peak ground acceleration (𝑃𝑃𝑃). The standard 

deviations of these three models are between 0.510 and 0.656 log (base 10) units. 
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Table 3.2: Displacement prediction equations used in this study 

Jibson (2007) 

J-(𝐼𝑎) log𝐷 = 2.401 log 𝐼𝑎 − 3.481 log𝑘𝑦 − 3.230 (3.3) 

J-(𝑃𝑃𝑃) log𝐷 = 0.215 + log ��1 − 𝑘𝑦
𝑃𝐺𝐴

�
2.341

⋅ � 𝑘𝑦
𝑃𝐺𝐴

�
−1.438

�  (3.4) 

J-(𝑃𝑃𝑃, 𝐼𝑎) log𝐷 = 0.561 log 𝐼𝑎 − 3.833 log � 𝑘𝑦
𝑃𝐺𝐴

� − 1.474  (3.5) 

Rathje and Saygili (2008, 2009) 

RS-(𝑃𝑃𝑃,𝑀) ln𝐷 = 2.39 − 5.24 � 𝑘𝑦
𝑃𝐺𝐴

� −  18.78 � 𝑘𝑦
𝑃𝐺𝐴

�
2

+  42.01 � 𝑘𝑦
𝑃𝐺𝐴

�
3
− 29.15 � 𝑘𝑦

𝑃𝐺𝐴
�
4
  

−1.56 ln𝑃𝑃𝑃 + 1.38 ln 𝐼𝑎  

(3.6) 

RS-(𝑃𝑃𝑃,𝑃𝑃𝑃) ln𝐷 = −1.56 − 4.58 � 𝑘𝑦
𝑃𝐺𝐴

� −  20.84 � 𝑘𝑦
𝑃𝐺𝐴

�
2

+  44.75 � 𝑘𝑦
𝑃𝐺𝐴

�
3
− 30.50 � 𝑘𝑦

𝑃𝐺𝐴
�
4
  

−0.64 ln𝑃𝑃𝑃 + 1.55 ln𝑃𝑃𝑃  

(3.7) 

RS-(𝑃𝑃𝑃, 𝐼𝑎) ln𝐷 = −0.74 − 4.93 � 𝑘𝑦
𝑃𝐺𝐴

� −  19.91 � 𝑘𝑦
𝑃𝐺𝐴

�
2

+  43.75 � 𝑘𝑦
𝑃𝐺𝐴

�
3
− 30.12 � 𝑘𝑦

𝑃𝐺𝐴
�
4
  

−1.30 ln𝑃𝑃𝑃 + 1.04 ln𝑃𝑃𝑃 + 0.67 ln 𝐼𝑎  

(3.8) 

RS-(𝑃𝑃𝑃,𝑃𝑃𝑃, 𝐼𝑎) ln𝐷 = 4.89 − 4.85 � 𝑘𝑦
𝑃𝐺𝐴

� −  19.64 � 𝑘𝑦
𝑃𝐺𝐴

�
2

+  42.49 � 𝑘𝑦
𝑃𝐺𝐴

�
3
− 29.06 � 𝑘𝑦

𝑃𝐺𝐴
�
4
  

+0.72 ln𝑃𝑃𝑃 + 0.89(𝑀 − 6)  

(3.9) 

Note: 𝐷 is displacement in centimeters, 𝐼𝑎 is Arias intensity in meters per second, 𝑘𝑦 is the yield 
acceleration in units of g, PGA is peak ground acceleration in units of g, PGV is peak ground velocity in 
units of cm/s, and M is moment magnitude. 
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The models developed by Rathje and Saygili (2008, 2009) were developed using 

2,383 strong motion records downloaded from the Next Generation Attenuation (NGA) 

database of the Pacific Earthquake Engineering Research Center 

(http://peer.berkeley.edu/nga). These models use combinations of ground motion 

parameters that were selected based on the concept of “efficiency” developed by Cornell 

and Luco (2001). Ground motion parameters that produce less variability in the 

displacement prediction are considered more efficient. Saygili and Rathje (2008) found 

that incorporating multiple ground motion parameters significantly increased the 

efficiency (i.e. reduced the standard deviation) of the displacement prediction. The Rathje 

and Saygili (2008, 2009) models used in this study predict displacement as a function of 

yield acceleration and different combinations of peak ground acceleration (𝑃𝑃𝑃), peak 

ground velocity (𝑃𝑃𝑃), Arias intensity (𝐼𝑎) and moment magnitude (𝑀). 

A comparison of the models in Table 3.2 is provided in Figure 3.11. For a given 

deterministic earthquake event (M = 7 @ 5 km) at a typical rock site (Vs30 = 760 m/s), 

predicted displacements are plotted against a range of practical yield acceleration values. 

Using ground motion prediction equations developed by Boore and Atkinson (2008) this 

event produces PGA = 0.32 g and PGV = 30 cm/s. The Arias intensity for this event is 

𝐼𝑎 = 1.1 m/s using the relationship developed by Bray and Travasarou (2003). In general, 

the models developed by Rathje and Saygili (2008, 2009) predict slightly larger 

displacements than the models developed by Jibson (2007) in the range of 𝑘𝑦 = 0.05 to 

0.25. For example, at a yield acceleration of 𝑘𝑦 = 0.10, model J-(𝑃𝑃𝑃, 𝐼𝑎) predicts a 

displacement of 𝐷 = 3 cm while model RS-(𝑃𝑃𝑃, 𝐼𝑎) predicts a displacement of 𝐷 = 6 

cm. As the yield acceleration approaches zero, the Jibson (2007) model predictions 

increase towards very large values, while the Rathje and Saygili (2008, 2009) model 

predictions do not increase as much. Additionally, as the yield acceleration approaches 
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the peak ground acceleration (𝑃𝑃𝑃 = 0.32 𝑔), most of the model predictions approach 

zero except for the two Jibson (2007) models J-(𝐼𝑎) and J-(𝑃𝑃𝑃, 𝐼𝑎) These models do not 

approach zero because they do not explicitly consider whether 𝑘𝑦 is greater than 𝑃𝑃𝑃. 

 

 

 
Figure 3.11: Comparison of displacements predicted by the displacement prediction equations in 

Table 3.2 for a deterministic event (M = 7 @ 5 km)  
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3.4.2 Ground Motion Data 

Values of peak ground acceleration (𝑃𝑃𝑃 in g), peak ground velocity (𝑃𝑃𝑃 in 

cm/s), and Arias intensity (𝐼𝑎 in m/s) are required to use the displacement prediction 

models considered in this study. To calculate displacements, estimates of these ground 

shaking parameters are assigned to 10-meter grid cells within the study area. Because the 

goal is to evaluate the performance of these models against observations of landsliding 

from the Northridge earthquake, ground shaking data from the Northridge earthquake are 

required.  

Ground shaking information from the Northridge earthquake is available for 

download from ShakeMap®, an online mapping tool developed by the USGS that rapidly 

assesses the extent and intensity of ground shaking following an earthquake. Ground 

motion estimates are based on strong motion recordings and predicted ground motions 

derived from empirical ground motion prediction equations (GMPE). Using a reported 

earthquake magnitude and location, the GMPE calculates values of ground shaking for a 

grid of hypothetical rock sites. If a grid point falls at an instrumented strong-motion site, 

the recorded motion is used instead of the predicted motion. For grid points close to an 

instrumented strong-motion site, ShakeMap® uses both the recorded motion and the 

predicted motion to develop an estimate of ground shaking. Additionally, ShakeMap® 

corrects ground motions for site amplification using estimates of shear-wave velocity 

(Vs30) and amplification estimates used in GMPEs.  

ShakeMap® uses different attenuation relationships for different ground motion 

parameters. For 𝑃𝑃𝑃, the Boore et al. (1997) GMPE is used, and for 𝑃𝑃𝑃, the Joyner and 

Boore (1988) GMPE is used. Estimates of Arias intensity are not currently generated by 

ShakeMap®. However, for this project Dr. David Wald of the USGS developed a map of 

𝐼𝑎 for the Northridge earthquake using values of 𝐼𝑎 computed from the recorded motions 



 55 

combined with the empirical attenuation relationship developed by Travasarou et al. 

(2003). The output from ShakeMap® is a finely sampled grid (1.5-km spacing) of 

latitude and longitude pairs with associated ground motion estimates at each point. 𝑃𝑃𝑃, 

𝑃𝑃𝑃, and 𝐼𝑎 data from the Northridge earthquake were downloaded in ASCII file format 

and converted into 10-meter raster grids within ArcGIS© using a simple kriging 

interpolation algorithm. 

Figure 3.12 shows a map of peak ground acceleration (𝑃𝑃𝑃) produced by 

ShakeMap® following the Northridge earthquake. The approximate location of the study 

area is shown by the larger blue rectangle (dashed line). The smaller black rectangle 

represents the surface projection of the fault (Wald et al. 1996), and the black star 

represents the earthquake epicenter. The majority of strong-motion recording stations 

(yellow triangles) are located in Los Angeles County, to the south and east of the 

epicenter. Fewer stations are located to the northwest, near the study area. This results in 

a greater reliance on ground motion prediction equations to produce estimates of ground 

shaking within the study area. There can be a great deal of uncertainty involved in 

creating estimates of ground shaking, particularly when using a sparse network of station 

recordings. This uncertainty stems from the fact that ground motions can vary greatly 

over small distances.  
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Figure 3.12: ShakeMap® of peak ground acceleration (PGA) during the 1994 Northridge 

earthquake. Strong motion stations are shown as yellow triangles. The black rectangle represents 
the surface projection of the fault from Wald et al. (1996). Contours of PGA are shown in % g. 

 

Figures 3.13 through 3.15 show the contours of peak ground acceleration (𝑃𝑃𝑃), 

peak ground velocity (𝑃𝑃𝑃), and Arias intensity (𝐼𝑎), respectively, derived from 

ShakeMap® for the six quadrangles in the study area. The values shown represent the 

values used in this study. As expected, the values of 𝑃𝑃𝑃, 𝑃𝑃𝑃, and 𝐼𝑎 increase towards 

the southeast, closest to the earthquake epicenter. Values of 𝑃𝑃𝑃 range from about 0.2 g 

in the northwest corner of the Piru quadrangle to about 0.9 g in the southern portion of 

the Santa Susana quadrangle; values of 𝑃𝑃𝑃 range from about 20 cm/s in Piru up to 

about 140 cm/s in the southeast corner of Oat Mountain; and values of 𝐼𝑎 range from 

about 1 m/s in Piru to more than 10 m/s in some portions of Oat Mountain. Compared 

with the 𝐼𝑎 values used by Jibson et al. (2000), the values in Figure 3.13 are larger. 
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However, the values in Figure 3.13 are considered better estimates of 𝐼𝑎 from the 

Northridge earthquake because of the robust methodology used by ShakeMap®. 

 
Figure 3.13: Contours of peak ground acceleration (PGA) derived by ShakeMap® in the study 

area during the Northridge earthquake. Contours of PGA are shown in increments of 0.1 g. 

 
Figure 3.14: Contours of peak ground velocity (PGV) derived by ShakeMap® in the study area 

during the Northridge earthquake. Contours of PGV are shown in increments of 20 cm/s. 
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Figure 3.15: Contours of Arias intensity (𝐼𝑎) derived by ShakeMap® in the study area during the 

Northridge earthquake. Contours of 𝐼𝑎 are shown in increments of 1 m/s. 
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3.5 EVALUATING THE USE OF SLIDING DISPLACEMENTS TO PREDICT LANDSLIDES 

For the sliding-block method to be useful in predicting earthquake-induced 

landslides, modeled displacements must correspond well with landslides observed in the 

field (Jibson 2010). Predictive models (and model parameters) can be validated by 

comparing computed displacement values with locations of observed landsliding from 

previous earthquakes. Note that the displacements from the simplified sliding block 

model do not directly represent displacements that occur in the field. Rather, predicted 

displacements above some threshold value are often associated with landslide occurrence. 

Using the ArcGIS© platform, every 10-meter grid cell that is assigned a computed 

displacement value can be compared with the field observations of landslides (i.e. 

whether the cell is a landslide or non-landslide cell). Cells with larger computed 

displacements should intuitively be more likely to correspond to landslide cells than cells 

with smaller computed displacements. Different predictive models can be compared 

based on the strength of this correspondence. 

Figures 3.16 through 3.21 show the full inventory of landslides triggered by the 

Northridge earthquake for each of the six quadrangles considered in this study. More than 

7,000 individual landslides were digitized within the study area by Harp and Jibson 

(1995, 1996). The Val Verde quadrangle contains the most observed landslides 

(approximately 2,500) the Piru, Santa Susana and Oat Mountain quadrangles contain 

between 1,300-1,400 landslides apiece, and the Simi Valley and Newhall quadrangles 

contain around 400-450 landslides each. In general, the quadrangles with the higher 

concentrations of steep slopes experienced the greatest number of landslides.  
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0 1 20.5 KmPIRU QUADRANGLE

No. of Landslides: 1,293
No. of Landslide Cells: 35,575 (2.2% of quad)

Figure 3.16: Map of landslides observed during the 1994 Northridge earthquake in the
Piru quadrangle (Harp and Jibson, 1995, 1996).
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No. of Landslides: 2,504
No. of Landslide Cells: 56,186 (3.5% of quad)

Figure 3.17: Map of landslides observed during the 1994 Northridge earthquake in the
Val Verde quadrangle (Harp and Jibson, 1995, 1996).
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No. of Landslides: 371
No. of Landslide Cells: 5,294 (0.3% of quad)

Figure 3.18: Map of landslides observed the 1994 Northridge earthquake in the
Newhall quadrangle (Harp and Jibson, 1995, 1996).
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0 1 20.5 KmSIMI VALLEY QUADRANGLE

No. of Landslides: 482
No. of Landslide Cells: 10,773 (0.7% of quad)

Figure 3.19: Map of landslides observed during the 1994 Northridge earthquake in the
Simi Valley quadrangle (Harp and Jibson, 1995, 1996).
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0 1 20.5 KmSANTA SUSANA QUADRANGLE

No. of Landslides: 1,406
No. of Landslide Cells: 33,755 (2.1% of quad)

Figure 3.20: Map of landslides observed during the 1994 Northridge earthquake in the
Santa Susana quadrangle (Harp and Jibson, 1995, 1996).
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No. of Landslides: 1,328
No. of Landslide Cells: 19,959 (1.3% of quad)

Figure 3.21: Map of landslides observed during the 1994 Northridge earthquake in the
Oat Mountain quadrangle (Harp and Jibson, 1995, 1996).
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Recognizing that the area of an observed landslide includes the location where the 

landslide initiated (upslope) and the location where the landslide stopped (downslope), 

predicted displacements are correlated only with landslide source areas. Landslide source 

areas are defined as those cells having elevations above the median elevation for each 

landslide, so that the upper half of each landslide is considered a source area (Jibson et al. 

2000). The resulting landslide source areas comprise nearly 80,000 cells (equivalent to 8 

square kilometers), or roughly 0.8% of the cells within the six quadrangle study area. 

Figure 3.22 shows the landslide source cells within Oat Mountain for comparison with 

the full landslide inventory shown in Figure 3.21. Maps of landslide source areas for all 

six quadrangles are given in Appendix A (Figures A-19 through A-24). 
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No. of Landslides: 1,328
No. of Landslide Source Cells: 9,445 (0.6% of quad)

Figure 3.22: Map of landslide sources observed during the 1994 Northridge earthquake
in the Oat Mountain quadrangle (Harp and Jibson, 1995, 1996).
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One approach that has been used to evaluate the accuracy of the predictive models 

is to calculate the percentage of landslide source cells (i.e. the upper half of each 

landslide) that are associated with predicted displacements above a threshold value. This 

approach was taken by McCrink (2001), as discussed in Section 2.4. One drawback of 

this approach is that it does not acknowledge the occurrence of false positives (i.e. cells 

with large predicted displacements that do not correspond with landslide source cells). A 

model that captures a large percentage of landslide source cells is less useful if it also 

captures a large percentage of non-landslide source cells. McCrink (2001) calculated the 

% Quad Cover (i.e. the percentage of cells in a quadrangle that are assigned 

displacements above the threshold value) of each model as a way of penalizing those 

models that captured a large percentage of landslide source cells simply because a large 

percentage of the quadrangle was assigned displacements above the threshold value. 

However, this metric does not take into account the scenario where a large percentage of 

the quadrangle is landslide cells, in which case a large % Quad Cover is desirable.   

Another approach that has been used to assess the ability of displacement 

prediction equations to predict landslides is to consider the percentage of cells within a 

displacement range that are associated with observed landslides. This was the approach 

taken by Jibson et al. (2000), also discussed in Section 2.4. One drawback of this 

approach is that it hides a significant amount of false negatives (i.e. small displacements 

being predicted within observed landslide source cells). 

For this study, predicted displacements are compared with locations of observed 

landslide cells using a cell-by-cell approach and a landslide-by-landslide approach. The 

cell-by-cell approach takes into account the percentage of landslide source cells 

associated with displacements above a specified threshold value, as well as statistics on 

the occurrence of false positives and false negatives. The landslide-by-landslide approach 
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evaluates the ability of the different predictive models to capture a certain portion of each 

individual landslide group (i.e. a group of landslide source cells from the same landslide). 

Both of these approaches are discussed in further detail in the following sections.  

3.5.1 Cell-by-Cell Approach 

The cell-by-cell approach used in this study is similar to the approach used by 

McCrink (2001). The efficiency of a model is computed as the difference between the 

percentage of ground failures captured (%GFC) and the percentage of the quadrangle 

covered (%QC) with predicted landslides (i.e. cells with computed displacements above a 

threshold value). These parameters are computed as follows: 

 
 % 𝑃𝐹𝐶 =  # 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝐷 > 𝑥

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑒𝑙𝑙𝑠
 (3.10) 

 
 % 𝑄𝐶 =  # 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝐷 > 𝑥

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑔𝑙𝑒
 (3.11) 

 

 % 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = % 𝑃𝐹𝐶 − % 𝑄𝐶 (3.12) 

 

where D is the predicted displacement in centimeters, and x is the specified displacement 

threshold in centimeters. Establishing a meaningful displacement threshold is a little 

ambiguous; displacements in the range of 5 to 15 cm have typically been used in previous 

studies to define failure (Jibson, 2010). For this study, modeled displacements are 

compared with observed landslides for two different displacement thresholds, 5 cm and 

15 cm. Any cells with predicted displacements exceeding these threshold values are 

considered predicted landslide cells.  

In addition to the parameters adopted from McCrink (2001), the percentage of 

each quadrangle that is covered by observed landslide source cells (% LS Area) and the 
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ratio of predicted landslide cells to observed landslide source cells (% QC / % LS Area) 

in each quadrangle is calculated for all models, and both displacement thresholds: 

  
 % 𝐿𝑆 𝑃𝑟𝑒𝑎 =  # 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑒𝑙𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑔𝑙𝑒
 (3.13) 

 
 % 𝑄𝐶

% 𝐿𝑆 𝐴𝑟𝑒𝑎
 =  # 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝐷 > 𝑥

# 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑒𝑙𝑙𝑠
 (3.14) 

 

This ratio provides some insight into the relative performance of different models 

between quadrangles where there are lots of observed landslides (e.g. the Val Verde 

quadrangle in the study area) and quadrangles where there are few observed landslides 

(e.g. the Newhall quadrangle in the study area). However, this metric does not consider 

whether the predicted landslide cells (% QC) are coincident with the observed landslide 

cells (% LS Area). 

To address the occurrence of false positives and false negatives a confusion 

matrix (Figure 3.23) can be used to tabulate the observed landslide and no-landslide cells 

with the predicted landslide and no-landslide cells. The accurate predictions are 

represented by the diagonal elements of the confusion matrix (A, D), while the erroneous 

predictions are found off the diagonal (B, C). For the 2-class problem of landslide 

identification, false positives are represented below the diagonal (B) and false negatives 

above the diagonal (C). Total accuracy is defined as the percentage of cells accurately 

placed in the landslide or no-landslide bin: 

 
 % 𝑃𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  [𝐴+𝐷]

[𝐴+𝐵+𝐶+𝐷] (3.15) 
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Total accuracy considers both the landslide and no-landslide cells in quantifying 

accuracy, while the previously discussed metric % GFC only considers the landslide cells 

(i.e. % GFC = A/[A+C]).  
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Figure 3.23: Confusion matrix used to evaluate commission error (B/[A+B]) and omission error 

(C/[A+C]) for landslides in a cell-by-cell comparison of predicted and observed landslides. 

 

The commission error for landslides is defined as the percentage of the predicted 

landslide cells that are not actually landslide cells (i.e. false positives), and the omission 

error for landslides is defined as the percentage of observed landslide cells that were 

predicted to be no-landslide cells (i.e. false negatives): 

 
 % 𝐶𝑜𝑐𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  𝐵

[𝐴+𝐵] (3.16) 

 
 % 𝑂𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  𝐶

[𝐴+𝐶] (3.17) 

 

The total accuracy and the commission and omission errors are calculated for 

each predictive model and each displacement threshold, for all six quadrangles in the 

study area. The results of these analyses are presented in Chapter 4. 
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3.5.2 Landslide-by-Landslide Approach 

Another approach used in this study is to evaluate the success of the predictive 

models on a landslide-by-landslide basis rather than a cell-by-cell basis. This method 

credits the predictive models for predicting a specified minimum area of each landslide. 

For example, if a model captures 50% of the cells within a particular landslide, the 

cell-by-cell approach will calculate a %GFC = 50%. But if the specified minimum area is 

50%, the landslide-by-landslide approach will credit the model for capturing that entire 

landslide (i.e. 100% success). The landslide-by-landslide approach can be used to better 

understand the results of the cell-by-cell approach, rather than serve as an alternative. It 

can help determine why a model captured a large or small percentage of landslide cells in 

a given quadrangle; maybe the model successfully located several large landslide groups 

but missed many smaller landslides, or maybe the model did not predict enough landslide 

cells to capture the larger landslides, but was able to capture many of the smaller 

landslides.  Figure 3.24 illustrates an example of a group of observed landslide cells 

(outlined in black), a little more than half of which were predicted to be landslide cells 

(the orange cells). However, it could be argued that the model successfully identified the 

landslide despite the location being slightly off.  

 

 
Figure 3.24: Typical comparison between observed and predicted landslide cells. 
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Each landslide source cell within the study area belongs to an individual, 

numbered landslide source. The percentage of area of each landslide source that is 

captured by the models can be calculated by dividing the number of predicted landslide 

cells within a landslide source by the total number of landslide source cells in that 

landslide source. The accuracy of the predictive models using the landslide-by-landslide 

approach, described as the % LS Captured, can then be calculated as the percentage of 

landslides with at least 50% of the area captured: 

 

 
 % 𝐿𝑆 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑 =  # 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 ≥ 0.5

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠
 (3.17) 

 
 
 

3.6 SUMMARY 

 

Using the data and procedures outlined in this chapter, estimates of rigid sliding 

displacement are calculated and compared with locations of observed landslides from the 

1994 Northridge earthquake. The results of these analyses are presented and discussed in 

the following chapter.  
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Chapter 4 

 
Validation Results 

 

 

 

 

 

4.1 INTRODUCTION 

This chapter presents the results of the study. Statistics on the accuracy of each 

model using the cell-by-cell approach and the landslide-by-landslide approach described 

in the previous chapter are tabulated herein for all six quadrangles. In addition, the 

influence of landslide size, geologic unit, slope angle and material strength on the 

landslide predictions is evaluated. 

Because of the large study area and the number of displacement prediction models 

considered in this exercise, maps of predicted displacement are not shown for all six 

quadrangles. Instead, a representative region within the Oat Mountain quadrangle has 

been selected to show the maps of predicted displacement for each model and the maps 

comparing locations of observed landslides with predicted landslides.  The location of the 

representative region is shown in Figure 4.1 and is located in the northeast corner of the 

Oat Mountain quadrangle. The representative region consists of geologic units from 

Strength Group 2 (Tw, Tpc, Qs) and Strength Group 3 (Tps, Qal/Qay). 
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Figure 4.1: Location of the representative region within the Oat Mountain quadrangle used for 
comparing the results of the different displacement prediction models. 

 

Figure 4.2 shows the observed landslides, the calculated yield acceleration values, 

and the estimates of 𝑃𝑃𝑃, 𝑃𝑃𝑃, and 𝐼𝑎 for the representative region within the Oat 

Mountain quadrangle. The proximity of this area to the fault rupture from the Northridge 

earthquake resulted in large ground motions, with 𝑃𝑃𝑃 ~ 0.60 to 0.65 g, 𝑃𝑃𝑃 ~ 75 to 85 

cm/s, and 𝐼𝑎 ~ 6.5 m/s. The maps of predicted displacement shown in the following 

section are based on these input data.  
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Figure 4.2 (Page 1 of 2): Maps of the small representative region within the Oat Mountain quadrangle
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4.2 MAPS OF SLIDING DISPLACEMENT 

Figures 4.3(a) through 4.9(a) show sliding displacements calculated for an area 

within the Oat Mountain quadrangle for all seven displacement prediction models. Larger 

displacements (greater than 15 cm) are represented by the orange and dark red cells, 

smaller displacements (less than 5 cm) are represented by the grey and green cells, and 

moderate displacements (5-15 cm) are represented by the yellow cells. In general, 

calculated displacements greater than 5 cm are concentrated along the steep ridges, and 

displacements less than 5 cm are more spread out among flatter slopes. The model that 

appears to predict the largest number of cells greater than 5 cm in the area shown is 

model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃, 𝐼𝑎), while the model with the fewest number of cells greater than 

5 cm in the area shown is model J-(𝑃𝑃𝑃).  

In parts (b) and (c) of Figures 4.3 through 4.9, the displacements that exceed the 

threshold values of 15 cm and 5 cm, respectively, are shown in pink. These cells 

represent the landslides predicted when using these displacement thresholds. The 

locations of observed landslides are shown in blue. Generally, there are fewer observed 

landslide cells than predicted landslide cells. For example, the representative region has 

1,159 observed landslide cells (approximately 3% of the representative region), yet the 

displacement models predict between 657 and 2,514 landslide cells (1.8 to 6.8% of the 

representative region) for the 15-cm threshold, and between 1,265 and 5,778 landslide 

cells (3.4 to 15.6% of the representative) for the 5-cm threshold. 
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Figure 4.3: Results for Model J-(Ia) in the Oat Mountain quadrangle. (a) Predicted displacements, and
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Figure 4.4: Results for model J-(PGA) in the Oat Mountain quadrangle. (a) Predicted displacements, and
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(b)

(c)

),(J Model aIPGA-

< 15 cm
> 15 cm

Landslides

< 5 cm
> 5 cm

Landslides

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.5: Results for Model J-(PGA, Ia) in the Oat Mountain quadrangle. (a) Predicted displacements, and
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Predicted
Displacement (cm)

% GFC = 32.1 %
% QC = 3.2 %
% Efficiency = 28.9 %

Results for Oat Mountain,
15-cm Threshold:

Results for Oat Mountain,
5-cm Threshold:

% GFC = 48.6 %
% QC = 6.9 %
% Efficiency = 41.7 %

(a)

(b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm) are
shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage

 of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).

(b)

(c)

),(RS Model MPGA-

< 15 cm
> 15 cm

Landslides

< 5 cm
> 5 cm

Landslides

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.6: Results for Model RS-(PGA, M) in the Oat Mountain quadrangle. (a) Predicted displacements, and
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Predicted
Displacement (cm)

% GFC = 38.3 %
% QC = 4.3 %
% Efficiency = 34.1 %

Results for Oat Mountain,
15-cm Threshold:

Results for Oat Mountain,
5-cm Threshold:

% GFC = 55.0 %
% QC = 8.7 %
% Efficiency = 46.3 %

(a)

and (b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage

 of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).

(b)

(c)

),(RS Model PGVPGA-

< 15 cm
> 15 cm

Landslides

< 5 cm
> 5 cm

Landslides

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.7: Results for Model RS-(PGA, PGV) in the Oat Mountain quadrangle. (a) Predicted displacements,

83



Predicted
Displacement (cm)

% GFC = 38.0 %
% QC = 4.2 %
% Efficiency = 33.8 %

Results for Oat Mountain,
15-cm Threshold:

Results for Oat Mountain,
5-cm Threshold:

% GFC = 54.6 %
% QC = 8.7 %
% Efficiency = 45.9 %

(a)

and (b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage

 of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).

(b)

(c)

),(RS Model aIPGA-

< 15 cm
> 15 cm

Landslides

< 5 cm
> 5 cm

Landslides

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.8: Results for Model RS-(PGA, Ia) in the Oat Mountain quadrangle. (a) Predicted displacements,
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Predicted
Displacement (cm)

% GFC = 39.1 %
% QC = 4.4 %
% Efficiency = 34.7 %

Results for Oat Mountain,
15-cm Threshold:

Results for Oat Mountain,
5-cm Threshold:

% GFC = 55.7 %
% QC = 9.0 %
% Efficiency = 46.7 %

(a)

and (b, c) a comparison of observed and predicted landslides for two displacement thresholds (15 cm, 5 cm)
are shown for the representative region. %GFC = percentage of ground failures captured, % QC = percentage

 of the quad predicted to be landslides, and % Efficiency = (%GFC - %QC).

(b)

(c)

),,(RS Model aIPGVPGA-

< 15 cm
> 15 cm

Landslides

< 5 cm
> 5 cm

Landslides

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.9: Results for Model RS-(PGA, PGV, Ia) in the Oat Mountain quadrangle. (a) Predicted displacements,
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4.3 COMPARISON OF SLIDING DISPLACEMENTS WITH OBSERVED LANDSLIDES 

Visually comparing the locations of predicted landslides with the locations of 

observed landslides in Figures 4.3 through 4.9, each model appears to do a good job of 

locating the larger landslide groups, but the smaller landslides are harder to locate. Also, 

there are areas where landsides are predicted but not observed (false positives), and areas 

where landslides are observed but not predicted (false negatives). In some cases, 

predicted landslide cells are immediately adjacent to observed landslide cells, indicating 

that the model identified a landslide but slightly missed its location. These observations 

are helpful in interpreting the results of quantitative analyses. The results of this study are 

summarized in the following sections using the analyses described in Chapter 3.  

4.3.1 Cell-by-cell Comparison 

The percentages of ground failures captured (%GFC), the percentages of 

quadrangle covered by predicted landslide cells (%QC) and the calculated efficiencies 

(%GFC - %QC) of each model, for all six quadrangles, are compiled in Table 4.1 for a 

displacement threshold of 15 cm, and in Table 4.2 for a displacement threshold of 5 cm. 

Also shown in these tables is the percentage of quadrangle covered by observed 

landslides (% LS Area) for each quadrangle, and the ratio of %QC to % LS Area. The 

ratio of %QC to % LS Area is a measure of the over-prediction (or under-prediction) of 

overall landslide area from the various models, without considerations of whether the 

landslide locations are accurately identified. 

On average the 15 cm threshold captures about 20 to 30% of the observed 

landslide cells (%GFC = 18.7% to 29.1%) and the 5 cm threshold captures about 25 to 

40% of the observed landslide cells. Across the different quadrangles the %GFC tends to 

be largest for the Oat Mountain quadrangle (as high as 55%) and smallest for the Newhall 

and Simi Valley quadrangles (as low as 10 to 15%). This result may be caused by the 
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Newhall and Simi Valley quadrangles having experienced the fewest landslides (0.2% 

and 0.3% LS Area, respectively). The average ratio of %QC / % LS Area is about 3 to 4 

for the 15 cm threshold, and about 4 to 7 for the 5 cm threshold. The Piru and Oat 

Mountain quadrangles consistently show the largest ratios of %QC to % LS Area 

(generally greater than 5 to 10), while the other quadrangles show ratios generally less 

than 5. Using the smaller displacement threshold increases the %GFC, but also increases 

the over-prediction of landslide area. 
  



J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% GFC 32.0% 28.0% 31.6% 35.3% 32.8% 34.2% 33.1%
% QC 10.5% 9.4% 10.5% 11.6% 10.7% 11.1% 10.7%

% LS Area: 1.2% % Efficiency 21.5% 18.6% 21.1% 23.7% 22.2% 23.1% 22.4%
% QC/% LS Area 8.7 7.8 8.7 9.6 8.9 9.2 8.9

% GFC 21.2% 17.0% 20.2% 22.3% 24.1% 23.5% 24.1%
% QC 3.6% 2.7% 3.3% 3.9% 4.3% 4.1% 4.3%

% LS Area: 1.7% % Efficiency 17.6% 14.3% 16.8% 18.4% 19.8% 19.4% 19.8%
% QC/% LS Area 2.1 1.5 1.9 2.3 2.5 2.4 2.5

% GFC 18.2% 11.2% 16.4% 20.1% 28.1% 22.6% 26.5%
% QC 0.2% 0.1% 0.2% 0.2% 0.4% 0.3% 0.4%

% LS Area: 0.2% % Efficiency 18.0% 11.1% 16.2% 19.9% 27.7% 22.2% 26.1%
% QC/% LS Area 1.4 0.7 1.1 1.5 2.4 2.0 2.3

% GFC 17.9% 16.1% 17.4% 18.7% 16.9% 18.9% 17.5%
% QC 0.3% 0.3% 0.3% 0.3% 0.3% 0.4% 0.3%

% LS Area: 0.3% % Efficiency 17.6% 15.8% 17.1% 18.3% 16.6% 18.6% 17.2%
% QC/% LS Area 1.0 0.8 0.9 1.1 0.9 1.1 1.0

% GFC 23.3% 14.6% 21.4% 27.3% 30.8% 30.2% 31.0%
% QC 1.2% 0.6% 1.1% 1.6% 1.9% 1.8% 1.9%

% LS Area: 1.0% % Efficiency 22.0% 14.0% 20.3% 25.8% 28.9% 28.4% 29.1%
% QC/% LS Area 1.2 0.6 1.1 1.5 1.8 1.7 1.8

% GFC 30.7% 16.5% 26.4% 32.1% 38.3% 38.0% 39.1%
% QC 2.9% 1.1% 2.3% 3.2% 4.3% 4.2% 4.4%

% LS Area: 0.6% % Efficiency 27.8% 15.4% 24.1% 28.9% 34.1% 33.8% 34.7%
% QC/% LS Area 5.1 1.9 4.0 5.6 7.5 7.4 7.7

% GFC 25.0% 18.7% 23.5% 27.2% 28.8% 28.8% 29.1%
% QC 3.1% 2.3% 2.9% 3.4% 3.6% 3.6% 3.6%
% Efficiency 21.9% 16.4% 20.6% 23.8% 25.3% 25.2% 25.4%
% QC/% LS Area 3.7 2.8 3.5 4.1 4.3 4.3 4.4

Table 4.1: Summary of results for all six quadrangles of the study area, for a displacement threshold of 15 cm.

1. PIRU

2. VAL VERDE

3. NEWHALL

4. SIMI VALLEY

5. SANTA SUSANA

6. OAT MOUNTAIN

AVERAGE
AVERAGE
AVERAGE
AVERAGE

25.0%

18.7%
23.5%

27.2% 28.8% 28.8% 29.1%

J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

Average % Ground Failures Captured, 15 cm Threshold
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J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% GFC 38.6% 37.0% 37.4% 46.9% 44.2% 45.9% 44.6%
% QC 12.5% 12.3% 12.3% 15.6% 14.4% 14.9% 14.5%

% LS Area: 1.2% % Efficiency 26.1% 24.7% 25.2% 31.3% 29.8% 30.9% 30.1%
% QC/% LS Area 10.4 10.2 10.2 13.0 12.0 12.4 12.1

% GFC 26.6% 22.1% 24.1% 30.9% 33.3% 32.4% 33.2%
% QC 4.9% 3.9% 4.3% 6.1% 6.8% 6.5% 6.8%

% LS Area: 1.7% % Efficiency 21.6% 18.2% 19.8% 24.8% 26.5% 25.9% 26.5%
% QC/% LS Area 2.8 2.3 2.5 3.5 3.9 3.8 3.9

% GFC 26.4% 18.6% 22.8% 33.2% 43.4% 36.7% 41.6%
% QC 0.5% 0.2% 0.3% 0.6% 1.0% 0.9% 1.0%

% LS Area: 0.2% % Efficiency 26.0% 18.4% 22.5% 32.5% 42.4% 35.9% 40.6%
% QC/% LS Area 2.8 1.3 1.9 4.0 6.6 5.4 6.3

% GFC 20.7% 19.3% 19.6% 23.4% 21.1% 23.7% 22.0%
% QC 0.4% 0.4% 0.4% 0.5% 0.4% 0.5% 0.5%

% LS Area: 0.3% % Efficiency 20.3% 18.9% 19.2% 22.9% 20.7% 23.2% 21.5%
% QC/% LS Area 1.3 1.1 1.2 1.6 1.4 1.6 1.5

% GFC 35.1% 24.5% 31.0% 45.2% 48.2% 48.4% 48.7%
% QC 2.3% 1.3% 1.8% 3.5% 4.0% 4.0% 4.1%

% LS Area: 1.0% % Efficiency 32.8% 23.2% 29.1% 41.7% 44.2% 44.4% 44.6%
% QC/% LS Area 2.2 1.3 1.8 3.4 3.9 3.9 4.0

% GFC 43.1% 27.7% 36.3% 48.6% 55.0% 54.6% 55.7%
% QC 5.4% 2.4% 3.9% 6.9% 8.7% 8.7% 9.0%

% LS Area: 0.6% % Efficiency 37.7% 25.3% 32.4% 41.7% 46.3% 45.9% 46.7%
% QC/% LS Area 9.5 4.3 6.8 11.9 15.2 15.2 15.7

% GFC 32.7% 26.4% 29.7% 39.3% 41.0% 41.0% 41.3%
% QC 4.3% 3.4% 3.8% 5.5% 5.9% 5.9% 5.9%
% Efficiency 28.4% 23.1% 25.9% 33.8% 35.1% 35.1% 35.3%
% QC/% LS Area 5.2 4.0 4.6 6.6 7.1 7.1 7.1

3. NEWHALL

Table 4.2: Summary of results for all six quadrangles of the study area, for a displacement threshold of 5 cm.

1. PIRU

2. VAL VERDE

AVERAGE
AVERAGE
AVERAGE
AVERAGE

4. SIMI VALLEY

5. SANTA SUSANA

6. OAT MOUNTAIN

32.7%

26.4%
29.7%

39.3% 41.0% 41.0% 41.3%

J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

Average % Ground Failures Captured, 5 cm Threshold

 89



 90 

Comparing the different displacement prediction models, Tables 4.1 and 4.2 

indicate that models that predict a greater number of large displacements (and thus cover 

more of the quadrangle) capture a larger percentage of ground failures. On average, 

model RS-(𝑃𝑃𝑃,𝑃𝑃𝑃, 𝐼𝑎) captures the largest percentage of landslide source cells across 

all six quadrangles (GFC = 29.8%, 41.3% for the 15 cm and 5 cm thresholds, 

respectively) and covers the largest percentage of the six quadrangles (QC = 3.6%, 

5.9%). Model J-(𝑃𝑃𝑃) captures the smallest percentage of landslide source cells 

(GFC = 21.0%, 26.4%) and covers the smallest percentage of the six quadrangles 

(QC = 2.3%, 3.4%). For comparison, observed landslide source areas represent only 0.8% 

of the area of all six quadrangles. 

The models that predict displacement as a function of more than one ground 

motion parameter generally capture a larger percentage of landslides than the models that 

use only one ground motion parameter. The exception is model J-(𝑃𝑃𝑃, 𝐼𝑎) which 

captures a slightly smaller percentage of landslides across all six quadrangles than model 

J-(𝐼𝑎). The models developed by Rathje and Saygili (2008, 2009) that pair estimates of 

𝑃𝑃𝑃 with estimates of 𝑃𝑃𝑃 and/or 𝐼𝑎 (RS-(𝑃𝑃𝑃,𝑃𝑃𝑃), RS-(𝑃𝑃𝑃,𝐼𝑎), and 

RS-(𝑃𝑃𝑃,𝑃𝑃𝑃,𝐼𝑎)) all produce similar results. In fact, the results between models within 

a given quadrangle are less varied than the results between quadrangles. For example, 

with a 5 cm threshold the models generally capture 40 to 55% of landslide source cells in 

Oat Mountain, but only 20 to 25% in Simi Valley.  

Hard to see in this data are the large number of false positives that occur as a 

result of over-predicting landslides. Comparing the percentage of each quad covered by 

observed landslide source cells (% LS Area) with the percentage covered by predicted 

landslide cells (% QC) provides some insight. In Table 4.2, model RS-(𝑃𝑃𝑃, 𝑀) with a 

5 cm threshold captures almost 50% of the observed landslides in the Piru quadrangle, 
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but covers almost 16% of the quadrangle with predicted landslides. This is 13 times 

greater than the area covered by observed landslides (% LS Area = 1.2%). Figure 4.10 

illustrates this large number of false positives by showing a small area within the Piru 

quadrangle where nearly 100% of the observed landslides are predicted by model RS-

(𝑃𝑃𝑃, 𝑀) with a 5 cm threshold, but far more landslides are predicted than observed.   

 

 

Figure 4.10: Example of false positives for model RS-(𝑃𝑃𝑃, 𝑀) with a 5 cm threshold. Observed 
and predicted landslides are shown for a small area within the Piru quadrangle, overlain onto a 

DEM. The area shown predominately consists of geologic units Tm4 and Qls. 

 

The total accuracies (considering accurate identification of both landslides and 

non-landslides), as well as the commission errors (false positives) and omission errors 

(false negatives) for all models and all quadrangles are summarized in Tables 4.3 and 4.4 

for the 15 cm and 5 cm displacement thresholds, respectively. Noticeably, all of the 

accuracies are relatively high (greater than 85%), but these high accuracies are being 

predominately influenced by the accurate identification of non-landslide cells, which 

cover a very large percentage (> 98%) of each quadrangle. Commission errors are 
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generally between 80 and 95% for all analyses. These large commission errors mean that 

80 to 95% of predicted landslides are not landslides (i.e. false positives). These are 

extremely large numbers, and further indicate the over-prediction of landslide area by the 

models. The omission errors are generally between 45 and 85%, indicating that a large 

percentage of the landslides are missed by the models.  
  



J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% Accuracy 89.1% 90.1% 89.1% 88.1% 88.9% 88.5% 88.9%
% Commission Errors 96.3% 96.4% 96.4% 96.3% 96.3% 96.3% 96.3%

% LS Area: 1.2% % Omission Errors 68.0% 72.0% 68.4% 64.7% 67.2% 65.8% 66.9%

% Accuracy 95.4% 96.2% 95.6% 95.1% 94.8% 94.9% 94.8%
% Commission Errors 89.8% 88.9% 89.6% 90.1% 90.3% 90.2% 90.2%

% LS Area: 1.7% % Omission Errors 78.8% 83.0% 79.8% 77.7% 75.9% 76.5% 75.9%

% Accuracy 99.7% 99.8% 99.7% 99.7% 99.6% 99.6% 99.6%
% Commission Errors 87.1% 83.1% 85.3% 86.8% 88.2% 88.6% 88.4%

% LS Area: 0.2% % Omission Errors 81.8% 88.8% 83.6% 79.9% 71.9% 77.4% 73.5%

% Accuracy 99.5% 99.5% 99.5% 99.4% 99.5% 99.4% 99.5%
% Commission Errors 81.9% 79.7% 81.3% 82.3% 81.5% 82.7% 82.0%

% LS Area: 0.3% % Omission Errors 82.1% 83.9% 82.6% 81.3% 83.1% 81.1% 82.5%

% Accuracy 98.2% 98.6% 98.3% 98.0% 97.7% 97.8% 97.7%
% Commission Errors 80.9% 77.0% 80.2% 81.9% 83.2% 82.7% 83.1%

% LS Area: 1.0% % Omission Errors 76.7% 85.4% 78.6% 72.7% 69.2% 69.8% 69.0%

% Accuracy 96.9% 98.5% 97.4% 96.6% 95.6% 95.6% 95.4%
% Commission Errors 93.9% 91.5% 93.4% 94.2% 94.9% 94.8% 94.9%

% LS Area: 0.6% % Omission Errors 69.3% 83.5% 73.6% 67.9% 61.7% 62.0% 60.9%

% Accuracy 96.5% 97.1% 96.6% 96.2% 96.0% 96.0% 96.0%
% Commission Errors 88.3% 86.1% 87.7% 88.6% 89.1% 89.2% 89.2%
% Omission Errors 76.1% 82.8% 77.8% 74.0% 71.5% 72.1% 71.4%

3. NEWHALL

Table 4.3: Summary of model accuracy, commission error, and omission error for all six quadrangles of the study area, for a displacement threshold of 15 cm.

1. PIRU

2. VAL VERDE

AVERAGE
AVERAGE
AVERAGE

4. SIMI VALLEY

5. SANTA SUSANA

6. OAT MOUNTAIN

 93



J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% Accuracy 87.2% 87.4% 87.4% 84.3% 85.5% 85.0% 85.4%
% Commission Errors 96.3% 96.4% 96.3% 96.4% 96.3% 96.3% 96.3%

% LS Area: 1.2% % Omission Errors 61.4% 63.0% 62.6% 53.1% 55.8% 54.1% 55.4%

% Accuracy 94.3% 95.1% 94.8% 93.2% 92.6% 92.9% 92.7%
% Commission Errors 90.6% 90.2% 90.3% 91.2% 91.5% 91.4% 91.5%

% LS Area: 1.7% % Omission Errors 73.4% 77.9% 75.9% 69.1% 66.7% 67.6% 66.8%

% Accuracy 99.5% 99.7% 99.6% 99.3% 98.9% 99.1% 99.0%
% Commission Errors 90.7% 86.2% 88.1% 91.6% 93.4% 93.2% 93.4%

% LS Area: 0.2% % Omission Errors 73.6% 81.4% 77.2% 66.8% 56.6% 63.3% 58.4%

% Accuracy 99.4% 99.4% 99.4% 99.3% 99.4% 99.3% 99.3%
% Commission Errors 84.0% 82.5% 83.1% 85.1% 84.5% 85.6% 84.9%

% LS Area: 0.3% % Omission Errors 79.3% 80.7% 80.4% 76.6% 78.9% 76.3% 78.0%

% Accuracy 97.4% 98.2% 97.8% 96.4% 95.9% 96.0% 95.9%
% Commission Errors 84.2% 81.0% 82.8% 86.8% 87.7% 87.6% 87.8%

% LS Area: 1.0% % Omission Errors 64.9% 75.5% 69.0% 54.8% 51.8% 51.6% 51.3%

% Accuracy 94.5% 97.3% 95.9% 93.1% 91.3% 91.4% 91.1%
% Commission Errors 95.4% 93.5% 94.7% 95.9% 96.4% 96.4% 96.5%

% LS Area: 0.6% % Omission Errors 56.9% 72.3% 63.7% 51.4% 45.0% 45.4% 44.3%

% Accuracy 95.4% 96.2% 95.8% 94.3% 93.9% 93.9% 93.9%
% Commission Errors 90.2% 88.3% 89.2% 91.2% 91.6% 91.8% 91.7%
% Omission Errors 68.2% 75.1% 71.5% 62.0% 59.1% 59.7% 59.0%

3. NEWHALL

Table 4.4: Summary of model accuracy, commission error, and omission error for all six quadrangles of the study area, for a displacement threshold of 5 cm.

1. PIRU

2. VAL VERDE

AVERAGE
AVERAGE
AVERAGE

4. SIMI VALLEY

5. SANTA SUSANA

6. OAT MOUNTAIN
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4.3.2 Landslide-by-landslide Comparison 

The percentages of landslides captured (% LS Captured) by each model for all six 

quadrangles are compiled in Table 4.5 for a displacement threshold of 15 cm and in Table 

4.6 for a displacement threshold of 5 cm. Referring back to Chapter 3, a landslide is 

considered “captured” if at least 50% of observed landslide cells within the landslide are 

predicted to be landslide cells (i.e. the predicted displacements exceed the threshold 

value). The % LS Captured values range from as small as 4 to 5% in the Simi Valley 

quadrangle (15 cm threshold) to as large as 45 to 55% in the Oat Mountain quadrangle 

(5 cm threshold). Compared with the %GFC values determined from the cell-by-cell 

analysis, the % LS Captured values are about 8 to 10 percentage points smaller. There are 

a few exceptions, such as Model RS-(𝑃𝑃𝑃, 𝑀) in Oat Mountain, which captured 53.3% 

of the landslides (Table 4.6) versus 48.6% of landslide cells (Table 4.2). The results 

between quadrangles are also more varied when using the landslide-by-landslide 

approach rather than the cell-by-cell approach. For example, model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) with 

the 5 cm threshold captures 54.1% of landslides in Oat Mountain and 8.3% of landslides 

in Simi Valley when using the landslide-by-landslide approach. The same model and 

threshold resulted in % GFC values of 55% and 21.1% using the cell-by-cell approach in 

these two quadrangles. 

Similar to the results from the cell-by-cell analysis, the models that predict 

displacement as a function of more than one ground motion parameter perform better 

than the models that use only one ground motion parameter. Model RS-(𝑃𝑃𝑃,𝑃𝑃𝑃) 

captures the largest percentage of landslides ( 20.5%, 33.7% for the 15 cm, 5 cm 

thresholds, respectively), and Model J-(PGA) captures the smallest percentage of 

landslides (10.6%, 17.4%). 
 
 

  



J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% LS Captured 27.8% 23.8% 27.4% 32.1% 28.9% 30.6% 29.2%
% LS Area: 1.2%

% LS Captured 14.9% 10.9% 13.8% 16.0% 17.7% 17.0% 17.7%
% LS Area: 1.7%

% LS Captured 9.6% 5.5% 8.0% 10.4% 15.4% 11.5% 14.3%
% LS Area: 0.2%

% LS Captured 4.7% 3.8% 4.2% 5.1% 4.2% 4.2% 4.5%
% LS Area: 0.3%

% LS Captured 16.4% 8.2% 14.2% 19.3% 22.7% 21.8% 22.8%
% LS Area: 1.0%

% LS Captured 25.2% 11.5% 20.4% 26.9% 33.9% 33.1% 34.6%
% LS Area: 0.6%

% LS Captured 16.4% 10.6% 14.7% 18.3% 20.5% 19.7% 20.5%

4. SIMI VALLEY

Table 4.5: Summary of landslide-by-landslide analysis for all six quadrangles of the study area, for a displacement threshold of 15 cm

1. PIRU

2. VAL VERDE

3. NEWHALL

5. SANTA SUSANA

6. OAT MOUNTAIN

AVERAGE

16.4%

10.6%
14.7%

18.3% 20.5% 19.7% 20.5%

J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

Average % Landslides Captured, 15 cm Threshold

 96



J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

% LS Captured 35.1% 33.8% 34.3% 42.5% 40.9% 41.0% 43.2%
% LS Area: 1.2%

% LS Captured 20.6% 15.8% 17.8% 26.7% 27.8% 27.6% 25.2%
% LS Area: 1.7%

% LS Captured 13.2% 10.4% 11.3% 23.4% 29.1% 26.6% 19.8%
% LS Area: 0.2%

% LS Captured 7.2% 5.5% 6.2% 7.2% 8.3% 9.8% 10.0%
% LS Area: 0.3%

% LS Captured 26.6% 17.4% 22.3% 42.2% 42.3% 43.2% 37.7%
% LS Area: 1.0%

% LS Captured 39.5% 21.6% 31.7% 53.3% 54.1% 54.6% 45.9%
% LS Area: 0.6%

% LS Captured 23.7% 17.4% 20.6% 32.5% 33.7% 33.8% 30.3%

4. SIMI VALLEY

Table 4.6: Summary of landslide-by-landslide analysis for all six quadrangles of the study area, for a displacement threshold of 5 cm

1. PIRU

2. VAL VERDE

3. NEWHALL

5. SANTA SUSANA

6. OAT MOUNTAIN

AVERAGE

23.7%

17.4%
20.6%

32.5% 33.7% 33.8%
30.3%

J‐(Ia) J‐(PGA) J‐(PGA,Ia) RS‐(PGA,M) RS‐(PGA,PGV) RS‐(PGA, Ia) RS‐(PGA,PGV,Ia)

Average % Landslides Captured, 5 cm Threshold

 97
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Because the landslide-by-landslide approach does not take into account the size of 

the landslide – missing a 2-cell landslide counts the same as missing a 30-cell landslide –

a model may capture a large percentage of landslide cells and still perform poorly if the 

cells it misses are all small, individual landslides. If the distribution of landslides within a 

quadrangle is weighted towards smaller landslides, this could help explain why the 

majority of models captured a smaller percentage of landslides versus landslide cells.  

  The distributions of landslides within the Oat Mountain and Simi Valley 

quadrangles are plotted in Figures 4.11 and 4.12, respectively, as a function of landslide 

size (i.e. number of cells in each landslide), and the percentage of each landslide captured 

by Model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) with a displacement threshold of 5 cm. The data are also 

summarized in Tables 4.7 and 4.8. The distributions of landslide size within these two 

quadrangles are generally representative of the distributions across all six quadrangles, 

but the results are very different. Oat Mountain contains 1,259 individual landslides, 

54.1% of which are captured by Model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃). Simi Valley contains 471 

individual landslides, 8.3% of which are captured by the same model.  

Figure 4.11 shows that nearly 40% of the landslides within Oat Mountain are 1 or 

2-cell landslides, but it also shows that the model captured 50.6% of these small 

landslides, very close to the average for the entire quadrangle (54.1%). The percentage of 

landslides that were completely missed (0% cells captured) gradually decreases with 

increasing landslide size, indicating that the model did a slightly better job capturing the 

larger landslides, but overall the distribution is not heavily skewed one way or the other. 

In comparison, Figure 4.12 shows that about 27% of the landslides within Simi Valley 

are 1 or 2-cell landslides, and the model captured about 7% of these small landslides, also 

very close to the average for the quadrangle (8.3%). What is surprising is that 79% of 

landslides are completely missed, and most of them are larger than 2 cells in size.  
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Figure 4.11: Distribution of landslides within the Oat Mountain quadrangle as a function of 
landslide size (number of cells) and the percentage of cells captured by Model RS-(PGA,PGV). 

 

 
 

Figure 4.12: Distribution of landslides within the Simi Valley quadrangle as a function of 
landslide size (number of cells) and the percentage of cells captured by Model RS-(PGA,PGV). 
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Table 4.7: Distribution of observed landslides within the Oat Mountain quadrangle as a function 
of landslide size and the percentage of cells captured by model RS-(PGA,PGV) with a 5 cm 

threshold. 
 

  
Number of cells in each landslide 

 
  

1 2 3 - 4 5 - 10 > 10 
 

Percentage  
of cells 

captured  
in each 

landslide 

0 9.8% 8.5% 7.8% 7.8% 3.4% 37.3% 
0-25% 0.0% 0.0% 0.0% 1.3% 1.4% 2.7% 

25-50% 0.0% 0.0% 1.7% 2.4% 1.7% 5.9% 
50-75% 0.0% 2.4% 3.9% 3.1% 4.1% 13.5% 

75-100% 9.3% 7.1% 8.7% 8.7% 6.7% 40.6% 

  
19.1% 18.0% 22.2% 23.3% 17.4%  

 
 

Table 4.8: Distribution of observed landslides within the Simi Valley quadrangle as a function of 
landslide size and the percentage of cells captured by model RS-(PGA,PGV) with a 5 cm 

threshold. 
 

  
Number of cells in each landslide 

 
  

1 2 3 - 4 5 - 10 > 10 
 

Percentage  
of cells 

captured  
in each 

landslide 

0 9.6% 15.3% 20.8% 22.9% 10.4% 79.0% 
0-25% 0.0% 0.0% 0.0% 1.3% 4.7% 5.9% 

25-50% 0.0% 0.0% 1.3% 3.0% 2.5% 6.8% 
50-75% 0.0% 0.6% 0.8% 1.9% 1.5% 4.9% 

75-100% 1.3% 0.0% 0.4% 1.3% 0.4% 3.4% 

  
10.8% 15.9% 23.4% 30.4% 19.5%  

 
 

 

In summary, the results of Model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) were consistently good for all 

landslides within the Oat Mountain quadrangle, and consistently poor for all landslides 

within the Simi Valley quadrangle. Because the distribution of landslide size within each 

quadrangle was similar, the difference in performance between the two quadrangles does 

not appear to reflect significant bias from smaller landslides. Referring back to Table 4.2, 

model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) predicted landslides to cover approximately 8.7% of the Oat 

Mountain quadrangle, and the actual landslides covered only 0.6% of the quadrangle.  

This suggests that the model is simply missing the landslides, perhaps due to poor 
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estimates of the ground motions or shear strengths, inaccuracies in slope angle caused by 

the resolution of the DEM, or because of the limits of the simple sliding block model 

used. Figure 4.13 shows an example of a 3-cell landslide within Oat Mountain. The 

landslide is completely missed by the model, but cells immediately adjacent to the 

landslide are identified.  

 

 

Figure 4.13: Example of a three-cell landslide within the Oat Mountain quadrangle that was 
missed by Model RS-(PGA, PGV) with a 5 cm threshold. 

 

 
 
 
  



 102 

4.3.3 Influence of Geologic Unit and Slope Angle on Model Accuracy 

After evaluating the accuracy of the different predictive models, the distribution 

of observed and predicted landslide cells within individual geologic units was analyzed. 

The results of Model RS-(PGA, PGV) with a 5 cm threshold in the Oat Mountain 

quadrangle are shown in Table 4.9 as a function of geologic unit.  
 

 
Table 4.9: Distribution of observed and predicted landslide cells across geologic units in 

the Oat Mountain quadrangle using Model RS-(PGA, PGV) and a 5 cm threshold 

    
Observed LS Cells Predicted LS Cells Accurate 

 
  

 
9,445 143,418 5,197 

Strength 
Group φ'(°) c'(kPa) Geologic 

Unit CELLS % of  
LS cells 

% of 
G.Unit CELLS % of 

G.Unit CELLS %GFC in 
G. Unit 

1 39 31.3 Tl 49 0.52% 1.91% 0 0.00% 0 0.00% 
1 39 31.3 Tlc   0.00% 0.00% 0 0.00% 0 0.00% 
1 39 31.3 Tss 6 0.06% 0.56% 0 0.00% 0 0.00% 
1 39 31.3 Tsc1 5 0.05% 0.08% 0 0.00% 0 0.00% 
1 39 31.3 Tsc2 2 0.02% 0.04% 0 0.00% 0 0.00% 
1 39 31.3 Tsc3 126 1.33% 1.42% 0 0.00% 0 0.00% 
1 39 31.3 Kc 166 1.76% 0.22% 0 0.00% 0 0.00% 
1 39 31.3 Tm 395 4.18% 0.52% 0 0.00% 0 0.00% 
1 39 31.3 Tm1/4/5/s 373 3.95% 0.38% 0 0.00% 0 0.00% 
1 39 31.3 Tm2 66 0.70% 0.36% 0 0.00% 0 0.00% 
1 39 31.3 Tm3 14 0.15% 0.15% 0 0.00% 0 0.00% 
1 39 31.3 Tmd 252 2.67% 3.31% 0 0.00% 0 0.00% 
1 39 31.3 Tt 128 1.36% 0.81% 0 0.00% 0 0.00% 
1 39 31.3 Ttb 21 0.22% 1.36% 0 0.00% 0 0.00% 
1 39 31.3 Tt1/3 6 0.06% 0.40% 0 0.00% 0 0.00% 
1 39 31.3 Tt2/4 79 0.84% 0.74% 0 0.00% 0 0.00% 
2 32 13.3 Tp 145 1.54% 1.01% 1461 10.22% 74 51.03% 
2 32 13.3 Tpc 1275 13.50% 2.50% 13004 25.53% 928 72.78% 
2 32 13.3 Qsw 16 0.17% 0.03% 908 1.67% 10 62.50% 
2 32 13.3 Tw 3559 37.68% 1.66% 87541 40.80% 2810 78.95% 
2 32 13.3 Twc 557 5.90% 1.12% 18304 36.66% 419 75.22% 
2 32 13.3 Qs 402 4.26% 0.27% 6016 4.10% 268 66.67% 
2 32 13.3 Qsu 50 0.53% 0.10% 2626 5.01% 19 38.00% 
2 32 13.3 Qsm 429 4.54% 0.47% 4468 4.89% 204 47.55% 
3 28 19.6 acf, af 16 0.17% 0.32% 42 0.84% 10 62.50% 
3 28 19.6 rf   0.00% 0.00% 0       
3 28 19.6 Qc   0.00% 0.00% 9 0.40%   0.00% 
3 28 19.6 Tps 845 8.95% 1.50% 2806 4.98% 272 32.19% 
3 28 19.6 Tws 349 3.70% 1.07% 4498 13.84% 174 49.86% 

3 28 19.6 
Qal, Qay/1/2, 
Qp 1 0.01% 0.00% 127 0.04%   0.00% 

3 28 19.6 Qao 9 0.10% 0.02% 81 0.20% 1 11.11% 
3 28 19.6 Qt   0.00% 0.00% 10 0.41%   0.00% 
3 28 19.6 Qto 1 0.01% 0.05% 11 0.53% 1 100.00% 
4 25 22.3 Qls 103 1.09% 0.14% 1506 2.10% 7 6.80% 
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The data show that zero landslides were predicted within any of the geologic units 

in Strength Group 1 (which represents the largest set of shear strength values) despite 

nearly 20% of the landslides observed in the Oat Mountain quadrangle occurring within 

these geologic units. The majority of landslides (~68%) occurred within geologic units in 

Strength Group 2, and the model was very accurate within this strength group, capturing 

between 38% and 79% of the observed landslide source cells within each geologic unit. 

However, the ratio of predicted to observed landslide cells was very large. The highest 

percentage of landslide cells captured is 79% in geologic unit Tw, but the analysis 

predicts 41% of that geologic unit to be landslides while only 1.6% of the unit 

experienced landslides. The fewest landslides occurred in Strength Groups 3 and 4 and 

almost all of them occurred in two geologic units, Tps and Tws.   

Figure 4.14 shows the distribution of slope angles for all cells, the distribution of 

slope angles for the observed landslide cells, and the percentage of observed landslide 

cells within each slope angle bin for three different geologic units; Tm (Modelo 

formation; see Table 3.1) from Strength Group 1, Tw (Towsley formation) from Strength 

Group 2, and Tps (Pico formation) from Strength Group 3. These three geologic units 

contain 51% of all the landslide cells observed in the quadrangle, with the Tm unit 

contributing 4.2%, the Tw unit contributing 37.7%, and the Tps unit contributing 8.9%. 

Approximately 65% of the slopes within the Tm unit are between 20 and 40 

degrees, and no slopes are greater than 60 degrees. Most of the landslides (~80%) in this 

unit occurred on slopes between 30 and 50 degrees. The percentage of area within each 

slope bin that is covered by landslides increases with increasing slope angle. The large 

strength assigned to this unit resulted in the model predicting landslides (i.e. 

displacements greater than 5 cm) only on slopes steeper than about 63° (i.e. a slope 
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threshold of 63°). As a result, no landslides were predicted. These results indicate that 

perhaps the assigned strength for the Tm unit was too large.  

The distribution of slope angles within geologic unit Tw shows a larger number of 

steep slopes, and similar to the Tm unit, most of the landslides (~80%) occurred on 

slopes of 30 to 50 degrees. Again, the percentage of slopes covered by landslides 

increases with increasing slope angle. The strength assigned to unit Tw is smaller than for 

unit Tm, and the slope threshold (representing a displacement of 5 cm) is about 34°. 

Because the strength is constant for all slopes within geologic unit Tw, all slopes steeper 

than about 34° are predicted to fail.  The %GFC is large for this geologic unit (79%, see 

Table 4.9) due to the fact that a large percentage of the observed landslides occurred on 

slopes steeper than 34°. All landslides on slopes steeper than 34° are captured, but at the 

expense of predicting all of these slopes will fail. As Figure 4.14 shows, the percentage of 

landslide cells within a slope angle bin never approaches 100%.  

Lastly, the distribution of slope angles within geologic unit Tps looks almost 

identical to that of the Tm unit, and a similar distribution of slope angles is seen within 

the observed landslide cells. However, the strength assigned to the Tps unit is lower than 

the strength assigned to the Tm unit, such that the slope threshold (representing a 

displacement of 5 cm) is 39° and 32% of the landslides were accurately identified.  

One other interesting observation is that the slope threshold for Tps (Strength 

Group 3) is larger than for Tw (Strength Group 2), although Strength Group 3 is 

considered the “weaker” strength group in the CGS seismic hazard zone report for Oat 

Mountain (CDMG, 1997b) based on the assigned friction angles (28° vs. 32°). However, 

because the cohesion assigned to the Tps unit (19.6 kPa) is 50% larger than the cohesion 

assigned to the Tw unit (13.3 kPa), at the small confining pressures considered for the 

infinite slope analyses used in this study the strength of Tps is larger than Tw. 
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Figure 4.14: Distribution of slope angles for all cells and all observed landslide cells in the Oat 
Mountain quadrangle within geologic units (a) Tm, in Strength Group 1, (b) Tw, in Strength 

Group 2, and (c) Tps, in Strength Group 3. 
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As noted, if the shear strength across a geologic unit is constant, as is the case in 

this study, the prediction of landslides (displacement) within that unit becomes a function 

of slope angle. If the assigned strength is high, the model will only predict landslides in 

the steepest slopes and may miss most or all of the observed landslides. If the assigned 

strength is low, the model will predict landslides in many of the flatter slopes, where the 

observed landslide density is smaller. This will result in a larger percentage of landslides 

captured but also a significant over-prediction in the total landslide area. The 

distributions in Figure 4.14 indicate that there is significant spatial variability of shear 

strength within individual geologic units, which explains why some 60° slopes remain 

stable while some 20° slopes fail within the same geologic unit. It is very difficult to 

evaluate and assign spatial variations in strength properties for a regional-scale analysis, 

and it will likely continue to be a challenge in the short-term.  
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4.4 INFLUENCE OF SHEAR STRENGTH ON LANDSLIDE PREDICTIONS 

The influence of geologic material strengths on the displacement and landslide 

predictions using model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) is evaluated in this section. Model 

RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) is evaluated using the cell-by-cell approach with a 5 cm displacement 

threshold and three different sets of shear strength values; (Case I) strengths used by 

Jibson et al. (2000) and documented in Table 2.5, (Case II) strengths used in this study 

and documented in Table 3.1, and (Case III) strengths used by CGS (𝜑′ from Table 3.1, 

c’ = 0).  The influence of material strengths is evaluated within the Oat Mountain 

quadrangle only.  

Figure 4.15 shows predicted displacements within the representative region in Oat 

Mountain using model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) and three different sets of shear strength 

parameters. Case I is based on strengths used by Jibson et al. (2000) and results in the 

smallest concentration of large displacements. Case II represents the strengths used in 

this study and results in a greater area of large displacements. Case III is based on the 

approach used by CGS that ignores cohesion (𝑐’ = 0) and results in large displacements 

across the majority of the representative region.  

 

 

 

 

 

 

 

 



Predicted
Displacement (cm)

Model RS-(PGA,PGV)
CASE II: 
c', f ' from Table 3.1

Model RS-(PGA,PGV)
CASE III: 
c = 0, f ' from Table 3.1

(a)

(b)

(c)

< 1
1 - 5
5 - 15
15 - 100
> 100

Model RS-(PGA,PGV)
CASE I:
c', f ' from Jibson et al. (2000)

< 1
1 - 5
5 - 15
15 - 100
> 100

< 1
1 - 5
5 - 15
15 - 100
> 100

Figure 4.15: Displacements predicted within a representative region of the Oat Mountain quadrangle
using model RS-(PGA, PGV) and three different sets of shear strength values.
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Figure 4.16 shows a comparison of observed landslides and predicted landslides 

(for a displacement threshold of 5 cm) using Model RS-(𝑃𝑃𝑃, 𝑃𝑃𝑃) and the three 

different sets of shear strength values. Case I covers 0.3% of the Oat Mountain 

quadrangle with predicted landslide cells, and captures only 6.8% of observed landslide 

cells. Case II covers 8.7% of the quadrangle with predicted landslide cells, and captures 

55% of observed landslide cells. Case III covers 49.3% of the quadrangle with predicted 

landslide cells, and captures 97% of observed landslide cells. 

A summary of results across all six quadrangles is provided in Table 4.10. On 

average Case I only captures 3% of the landslide cells, while Case II captures 41% and 

Case III captures 95% of the landslide cells. The results show that increasing strengths 

across entire geologic units in order to make a small number of statically unstable cells 

stable – i.e. the approach used by Jibson et al. (2000) in Case I – results in predicted 

displacements that are too small to capture a large percentage of observed landslide cells. 

In contrast, ignoring any contribution of cohesion in the slope stability analysis – i.e. the 

approach used by CGS (Case III) – results in predicted displacements that are too large 

across many flatter slopes and grossly overestimates the area of earthquake-induced 

landslide hazard. On average Case III predicts landslides for 41% of the study area, 

which is about 50 times larger an area than the observed landslide area (i.e. %QC / % LS 

Area ≈ 50%). The efficiency in Oat Mountain for Case III (46.3%) is almost identical to 

that for Case II (47.9%), despite the large difference in the ratios of % QC to % LS Area 

(86 for Case III, 15 for Case II). These results point to the severe over-prediction of 

landslides using the CGS approach to assigning shear strengths.  

 
  



% GFC = 55.0 %
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Figure 4.16: Comparison of observed and predicted landslides within a representative region of the
Oat Mountain quadrangle using Model RS-(PGA, PGA) with a 5 cm threshold and three different sets

of shear strength values
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Table 4.10: Summary of results for all six quadrangles of the study area using Model 
RS-(PGA, PGV) with a 5 cm threshold and three different sets of shear strength values 

 
   Case I Case II Case III 

1. PIRU 
% GFC 0.5% 44.2% 97.0% 
% QC 0.0% 14.4% 64.0% 

% LS Area: 1.2% % Efficiency 0.4% 29.8% 33.0% 
    % QC/% LS Area 0.0 12.0 53.3 

2. VAL VERDE 
% GFC 4.9% 33.3% 95.4% 
% QC 0.2% 6.8% 54.2% 

% LS Area: 1.7% % Efficiency 4.6% 26.5% 41.2% 
    % QC/% LS Area 0.1 3.9 31.3 

3. NEWHALL 
% GFC 4.8% 43.4% 92.8% 
% QC 0.0% 1.0% 29.4% 

% LS Area: 0.2% % Efficiency 4.8% 42.4% 63.4% 
    % QC/% LS Area 0.3 6.6 185.5 

4. SIMI VALLEY 
% GFC 0.9% 21.1% 80.1% 
% QC 0.0% 0.4% 13.0% 

% LS Area: 0.3% % Efficiency 0.8% 20.7% 67.2% 
    % QC/% LS Area 0.0 1.4 39.2 

5. SANTA SUSANA 
% GFC 2.2% 48.2% 94.5% 
% QC 0.1% 4.0% 37.8% 

% LS Area: 1.0% % Efficiency 2.1% 44.2% 56.7% 
    % QC/% LS Area 0.1 3.9 36.9 

6. OAT MOUNTAIN 
% GFC 6.8% 55.0% 97.2% 
% QC 0.3% 8.7% 49.3% 

% LS Area: 0.6% % Efficiency 6.5% 46.3% 47.9% 
    % QC/% LS Area 0.5 15.2 85.9 

AVERAGE % GFC 3.3% 41.0% 94.7% 
AVERAGE % QC 0.1% 5.9% 41.2% 
AVERAGE % Efficiency 3.2% 35.1% 53.5% 
AVERAGE % QC/% LS Area 0.1 7.1 49.5 
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Chapter 5 

 
Conclusions 

 

 

 

 

 

5.1 SUMMARY AND CONCLUSIONS 

This thesis presented a comparison of methodologies for predicting earthquake-

induced landslides using permanent displacement analysis. Regional estimates of sliding 

displacement were computed within a Geographic Information System (GIS) and 

compared with locations of observed landslides within six quadrangles shaken by the 

1994 Northridge, California earthquake. This study area was chosen because of the 

availability of a comprehensive inventory of over 11,000 landslides triggered during the 

Northridge earthquake and nearly 200 strong-motion recordings of the main shock 

throughout the region. The main goals of this research were to qualitatively and 

quantitatively compare the accuracy of different predictive models, and to explore the 

influence of factors such as landslide size, geologic unit, slope angle, and shear strength 

on the accuracy of the model predictions. Two different approaches were taken to assess 

the accuracy of the models – a cell-by-cell approach and a landslide-by-landslide 

approach. 
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5.1.1 Comparing Predictive Models 

Estimates of sliding displacement were calculated using three empirical models 

developed by Jibson (2007) that predict displacement as a function of yield acceleration 

and ( ), ( ), and ( , ); and four empirical models developed by Rathje and 

Saygili (2008, 2009) that predict displacement as a function of yield acceleration and 

( , ), ( , ), ( , ), and ( , , ). The results of both the cell-by-

cell analysis and the landslide-by-landslide analysis showed that, on average, there was 

not a significant difference in accuracy between the different predictive models. For a 

5 cm displacement threshold, the highest average percentage of landslide cells captured 

(%GFC) was 41.3% by Model RS-( , , ) and the lowest was 26.4% by Model 

J-( ). In general, the models that predict displacement as a function of more than one 

ground motion parameter performed better than the models that predict displacement as a 

function of only one ground motion parameter. There was very little difference in the 

performance of the three vector models developed by Rathje and Saygili (Saygili and 

Rathje, 2008), suggesting that estimates of either  or  can be paired with estimates 

of  and yield similar results.  

The difference in results between the models developed by Jibson (2007) and the 

models developed by Rathje and Saygili (2008, 2009) can in part be explained by the use 

of a displacement threshold and the behavior of the models at different yield 

accelerations. Based on the plot in Figure 3.11 that shows a comparison of predicted 

displacements for all models as a function of yield accelerations, a 5 cm displacement 

threshold corresponds to yield accelerations of about 0.09 g using the Jibson (2007) 

models (i.e. values of  < 0.09 g will result in displacements > 5 cm) and 0.12 g using 

the Rathje and Saygili (2008, 2009) models (i.e. values of  < 0.12 g will result in 

displacements > 5 cm). This difference seems subtle but it means that more cells exceed 
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the displacement threshold using the Rathje and Saygili (2008, 2009) models than do 

using the Jibson (2007) models, and so more landslides are captured. This is also why the 

difference in results using a 5 cm threshold versus a 15 cm threshold is larger for the 

Rathje and Saygili (2008, 2009) models.  

Surprisingly, the difference in results between predictive models was not as great 

as the difference in results between different quadrangles. For example, Model RS-( , 

) with a 5 cm threshold captured 55.0% of landslide cells in the Oat Mountain 

quadrangle, but only 21.1% in the Simi Valley quadrangle. The model captured the same 

percentage of landslide cells in the Piru and Santa Susana quadrangles (~45%) but the 

ratio of predicted to observed landslide cells (%QC / %LS Area)  was 12.0 in Piru and 

only 3.9 in Santa Susana. One possible reason for these discrepancies is that the shear 

strength values assigned to individual geologic units vary from one quadrangle to the 

next. For example, the shear strength values published by the California Geological 

Survey (CGS) for geologic unit Tm (Modelo formation) are ( 31.3	 , 39°) 

within the Oat Mountain quadrangle, and ( 12.0	 , 35°) within the 

neighboring Santa Susana quadrangle. 

5.1.2 Factors Influencing Model Accuracy 

Because the accuracies of the models using the landslide-by-landslide approach 

were smaller than those using the cell-by-cell approach, the distribution of landslide size 

within Oat Mountain was evaluated to see if the results were being skewed by a large 

number of small landslides. Looking at the maps of predicted and observed landslides, 

there appeared to be a number of 1 and 2-cell landslides scattered across each quadrangle 

that the models were not locating at all or the models were predicting landslides in cells 

immediately adjacent to the observed landslides. For a 1-cell landslide, the landslide-by-

landslide approach is a binary problem; the model either captures it or does not capture it. 



 115 

If the models were missing a lot of 1-cell landslides, it would hurt the results of the 

landslide-by-landslide approach but have little impact the results of the cell-by-cell 

analysis. However, the distribution of landslide sizes within Oat Mountain showed that 

despite a large percentage of small landslides (60% were less than 5 cells) the models 

were missing an equal percentage of small and large landslides across the quadrangle. 

This result is only significant because it means that there is some other factor influencing 

the model accuracy. 

The influence of individual geologic units on model accuracy was evaluated by 

plotting the distribution of landslide cells captured in each unit in the Oat Mountain 

quadrangle. What was immediately noticeable was that not a single landslide cell was 

predicted within any geologic unit in Strength Group 1, despite the fact that nearly 20% 

of observed landslides occurred within these units. Given the level of ground shaking 

observed in the Oat Mountain quadrangle and the shear strength values assigned to these 

units (𝑐′ = 31.3 𝑘𝑃𝑎, 𝜑′ = 39°), only slopes steeper than about 63 degrees would be 

predicted to fail. All of the slopes in these geologic units were flatter than 60 degrees, and 

the majority of observed landslides occurred in slopes between 30 and 50 degrees. This 

result may indicate that the strengths assigned to Strength Group 1 were too large. In 

contrast, the model did very well capturing a large percentage of landslides (%GFC up to 

80%) within the geologic units in Strength Group 2. Given the shear strength values 

assigned to these units (𝑐′ = 13.3 𝑘𝑃𝑎, 𝜑′ = 32°), slopes steeper than about 34 degrees 

would be predicted to fail. However, associated with a large %GFC is a large over-

prediction of the total landslide area.  

When different geologic units are grouped together and assigned one set of shear 

strength values, the prediction of displacement within that group becomes a function of 

only slope angle. The steeper the slope, the larger the displacement predicted. However, 
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the distribution of slope angles within observed landslide cells shows that the majority of 

landslides do not necessarily occur on the steepest slopes. Often times the steepest slopes 

exist because they represent the largest strength within a geologic unit. Assigning one set 

of shear strength values does not take into account the spatial variability of material 

strength within individual geologic units. This spatial variability is why landslides can be 

observed in 20 degree slopes but not in 60 degree slopes of the same geologic unit.  

If the assigned shear strength values are high, only the steepest slopes will be 

predicted to fail. If the assigned strengths are low, too many of the flatter slopes will be 

predicted to fail. This result was shown in the comparison of results using strengths 

assigned in this study and strengths assigned by Jibson et al. (2000) and CGS. Jibson et 

al. (2000) used larger strengths and captured a significantly smaller number of observed 

landslides. The approach used by CGS ignores cohesion, which results in a large number 

of landslides captured but also results in predicted landslides covering more than half of 

some of the quadrangles. Without cohesion, many of the slopes within the quadrangles 

become statically unstable, which is not realistic. Thus, the strengths used by CGS and 

the resulting estimates of seismic stability are unrealistic. 

 
  



 117 

5.2 RECOMMENDATIONS 

Based on the results herein, the accuracy of permanent displacement analyses 

depends less on the predictive models used and more on the uncertainty in the parameters 

used as input to these displacement models (i.e. ground motion parameters and the shear 

strength parameters that affect 𝑘𝑦). Reducing the uncertainty in ground motion 

predictions and material properties will help improve predictions of seismic landslide 

hazard moving forward. Understanding the spatial variability of strengths within geologic 

units and preserving the relative differences in strength between units is particularly 

important. In addition to improving these model parameters, the conditions under which 

earthquake-induced landslides have occurred during past (and more recent) earthquakes 

must be documented and studied to continue developing criteria for assessing seismic 

landslide hazards. 

With the emergence of GIS as a powerful research platform, the increasing 

availability of ground shaking data from sources like ShakeMap®, and better methods for 

documenting earthquake-induced landslides, these methodologies must continue to be 

validated against observations of landsliding from other earthquakes. To date, most 

validation exercises (including the study described herein) have focused on the 

Northridge earthquake. Data need to be compiled for landslides from other earthquakes 

such that other validation exercises can be performed on these data sets. Through these 

additional studies the observations from the Northridge earthquake can be extended. 
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