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Abstract
The spatial scale of previously proposed methods for mapping site response ranges from the
global scale down to individual urban regions exposed to heightened seismic risk. Typically,
spatial coverage and accuracy are inversely related. We use the densely spaced strong motion
stations in Parkfield, California to estimate the accuracy of different site response mapping
methods and demonstrate a method for integrating multiple site response estimates from the
site to the global scale. This method is simply a weighted mean of a suite of different esti-
mates, where the weights are the inverse of the variance of the individual estimates. Thus,
the dominant site response model varies in space as a function of the accuracy of the differ-
ent models. Site response models should be judged in terms of both the degree of correlation
with observed amplifications and in terms of spatial coverage. Performance varies with pe-
riod, but in general the Parkfield data show that: (1) Where a velocity profile is available, the
square-root-of-impedance method outperforms VS30 (30 m divided by the S wave travel time
to 30 m depth), and (2) Where velocity profiles are unavailable, the topographic slope method
outperforms surficial geology. The performance of the topographic slope method in Parkfield
motivates us to use the Next Generation of Attenuation database to develop new equations
that predict site response from topographic slope. We show that these equations predict site
response more accurately than both the previously published topographic slope method and a
previously developed ground motion prediction equation for most spectral periods.

1 Introduction
Earthquake hazard maps, such as the U.S. national seismic hazard maps (Frankel et al., 1996,
2002; Petersen et al., 2008) and rapid response maps (Wald et al., 2006, 2005), are fundamen-
tally linked to empirical ground motion prediction equations (GMPEs). In general, earthquake
hazard maps use at least one GMPE to compute the intensity of ground shaking throughout
the region of interest. GMPEs are generally a function of three types of explanatory variables:
source, path, and site. The source and path variables can be computed at an arbitrary location
for an assumed earthquake scenario. In this article, we study the site effects term by compar-
ing recorded ground motions to those predicted by a previously developed GMPE and present
(1) a new method for integrating multiple estimates of site response into a period dependent
map of site response amplifications, and (2) new equations for incorporating site effects into
an existing GMPE using topographic slope, which we develop specifically for the purpose of
incorporating site effects into earthquake hazard maps.

Many of the most recently developed GMPEs use VS30 (30 m divided by the travel time
of an S wave to 30 m depth) to model the site term (Power et al., 2008). A major obstacle
to incorporating site effects into earthquake hazard maps is that VS30 is not known in most
locations. Thus, researchers have developed correlations of VS30 with quantities that are more
spatially continuous, such as surficial geology (Wills and Clahan, 2006) and topographic slope
(Wald and Allen, 2007). Other researchers have focused on the limitations of the ability of
VS30 to model site response (Castellaro et al., 2008). This limitation can be overcome by
including additional site response explanatory variables into GMPEs to improve prediction
accuracy (Douglas et al., 2009).
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Our first task is to assess the performance of alternative site response explanatory variables.
We define performance as the degree of correlation with observed site response amplifications.
The quantitative assessment of different site response terms will be valuable for decisions re-
garding future data collection efforts and GMPE development. We use this information to
demonstrate a framework for integrating alternative site response explanatory variables into a
unified period-dependent site response map.

We study a suite of site response explanatory variables, including VS30, the fundamental site
frequency (f0), topographic slope, surficial geology, the square-root-of-impedance amplifica-
tion, and the one-dimensional plane SH-wave amplification. We judge the different variables
on two different scales: (1) the ability to explain GMPE site response residuals, and (2) data
availability, both in terms of number of strong motion stations where the data are available
and in terms of geographic coverage for creating earthquake hazard maps. These two scales
are generally inversely related. For example, Wald and Allen (2007) developed a method for
predicting site response from globally available topography data. Thus, the site response ex-
planatory variable (topographic slope) is known with uniform precision at every strong motion
station as well as any point on a map where an estimate of ground shaking intensity is de-
sired. The ubiquity of this explanatory variable, compared to direct measurements of VS30,
presumably can only be achieved by sacrificing some predictive accuracy.

Douglas (2003) thoroughly described the history of GMPE development, including the
various methods of incorporating site effects. Site effects have been most commonly included
into GMPEs with multiplicative factors based on site category (e.g., Trifunac, 1976). Some
GMPE developers have also used S-wave velocity (Vs) profiles to eliminate the subjectivity of
assigning site categories (e.g., Ambraseys, 1995). Three of the five recently developed Next
Generation of Attenuation (NGA) GMPEs use multiple explanatory variables: VS30 plus a soil
depth parameter. Abrahamson and Silva (2008) and Chiou and Youngs (2008) define the soil
depth parameter as the depth at which Vs ≥ 1.0 km/sec (Z1.0) and Campbell and Bozorgnia
(2008) define the soil depth parameter as the depth at which Vs ≥ 2.5 km/sec (Z2.5).

The accuracy with which any site response variable can model site response is a combi-
nation of how well that variable correlates with site response (i.e., model uncertainty) and the
accuracy with which that variable can be estimated at a specific location (i.e., estimation un-
certainty). For example, an estimate of VS30 from downhole logging will presumably correlate
better with site response than qualitative categories of “soil” and “rock” because the VS30 model
exhibits less model uncertainty. In contrast, the downhole estimate of VS30 would most likely
exhibit a stronger correlation with site response than the VS30 inferred from surficial geology or
topographic slope because the latter estimates introduce additional estimation uncertainty. In
this article, we develop a method for mapping site response that accounts for these two types
of uncertainties.

Thompson et al. (2010b) collected 52 spectral analysis of surface wave (SASW) Vs profiles
at strong motion stations in Parkfield, California. This is an ideal dataset for addressing site
response mapping because of the number and spatial density of the strong motion stations and
Vs profiles. Although other regions have been densely sampled with Vs measurements (e.g.,
Holzer et al., 2002), the Parkfield dataset is unique because of the number of locations that
contain both a Vs profile and a strong motion station within a relatively small region. We focus
on the recordings from the 1983 M 6.36 Coalinga earthquake. We do not to include the 2004
M 6.0 Parkfield earthquake to avoid nonlinear and finite fault effects (Liu et al., 2006; Shakal
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et al., 2006).
We begin by isolating the site response amplifications for a previously developed GMPE

and compare the amplifications in Parkfield to various site response explanatory variables. We
then quantify the prediction accuracy of these different explanatory variables, incorporating
both model and estimation uncertainty and use this information to integrate the different ex-
planatory variables to produce period-dependent maps of site response for the Parkfield region.
The Parkfield dataset is too limited (only 36 observations from one earthquake in one geolog-
ical/geomorphological environment) to develop equations that are applicable to other regions.
The performance of the topographic slope method at Parkfield motivates us to expand our
sample size with the NGA flatfile. We develop equations for modifying an existing GMPE
to estimate effects from topographic slope using the NGA data. Because these equations are
regressed against the same database as the GMPE and the explanatory variable is available
globally, these equations can be used for incorporating site effects into seismic hazard maps.

2 Data and Resources
Figure 1 shows the 52 strong motion stations that we analyze in this study and the epicenter
of the 1983 M 6.36 Coalinga earthquake. Thompson et al. (2010b) described the details of the
data collection effort. Vs profiles at the strong motion stations were measured with the SASW
method and are available at http://gdc.cee.tufts.edu (last accessed May 2010).

The ground motion records for the 1983 M 6.36 Coalinga earthquake are available from the
Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) at http:
//db.cosmos-eq.org (last accessed May 2010).

We digitized the 1:250,000 scale Jennings (1958) map of surficial geology that is available
from the California Geological Survey. The digitized version of the map is plotted in Thompson
et al. (2010b).

The Shuttle Radar Topography Mission (SRTM) 30 sec global topography data (Farr and
Kobrick, 2000) are available at http://www2.jpl.nasa.gov/srtm (last accessed May
2010) and we computed the topographic slope with Generic Mapping Tools (GMT; Wessel
and Smith, 1991) as described by Wald and Allen (2007). All other computations in this article
were completed with the the open source software R (R Development Core Team, 2010).

The NGA flatfile is available at http://peer.berkeley.edu/nga/flatfile.
html (last accessed May 2010).

3 Methods

3.1 Response Variable
Isolating site effects from the other processes that influence ground shaking intensity is not
a trivial matter (Abercrombie, 1997; Boore and Joyner, 1997; Steidl et al., 1996). The most
common approach is to compare the response at two stations for which the source and path
effects can be assumed to be identical. Thus, any differences must be due to the local site
conditions (i.e., site response). In terms of the pseudospectral acceleration (PSA), which is a
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Figure 1: Vicinity map showing the location of the 52 strong motion stations with SASW measurements
and the epicenter of the 1983 Coalinga earthquake.
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function of the fundamental period (T ) of a single-degree-of-freedom system (SDOF), the site
response amplification is

a(T ) =
PSA∗(T )

PSAref(T )
, (1)

where PSAref(T ) is the PSA at the reference site and PSA∗(T ) is the PSA at the location
of interest. All of the PSA values in this article assume 5% viscous damping. Generally,
the reference site is chosen to be a site that has minimal site effects, and is termed a “rock”
site. For example, Borcherdt (1994) defined site response as the ratio of the spectra of ground
motions recorded on soil to the spectra of ground motions recorded on rock. A drawback to
this approach is that the choice of the reference site can substantially influence the estimate of
a(T ) because PSAref(T ) may not be known with certainty.

We wish to avoid the somewhat arbitrary choice of reference site since there is no clear
rock site that is appropriate for many of the Parkfield strong motion stations. Since our goal
is to assess site response explanatory variables in terms of performance within GMPEs, we
define PSAref as the PSA computed from an existing GMPE for the reference rock condition.
The major drawbacks to this approach are that we must assume all the path and source effects
are accurately accounted for by the GMPE. We are comfortable with this assumption for this
application because it is unlikely that the unaccounted-for source and path variability will cre-
ate spurious correlations with any of the site response explanatory variables that we consider
in this article. Uncorrelated variability may reduce the degree of correlation between the site
response explanatory variables and the site response amplification values, but will not favor
one variable over another. Note that we need not worry about the accuracy of how well the
GMPE developers captured site response because we remove the effects of the site response
term by assuming the reference rock condition.

We use the Boore and Atkinson (2008) GMPE (BA08) to compute the rock (VS30 =
760 m/sec) PSA [PSAr(T )] for each station. To implement the BA08 equations, the mag-
nitude (6.36) and rake angle (90◦) of the event were obtained from the NGA flatfile, along with
the Joyner-Boore distance (RJB) for stations that are included in the NGA flatfile. We cannot
compute RJB directly because we are unaware of a publicly available finite fault model for this
event. Table 1 gives station summary information and RJB for the 36 stations that recorded the
1983 Coalinga earthquake. One station (853SC; Stone Corral 1E) is not available in the NGA
flatfile, so we estimate RJB by linear extrapolation from stations Stone Corral 2E and Stone
Corral 3E, which are approximately evenly spaced in a line.

Rewriting equation 1 in terms of natural logs, which is appropriate because of the functional
form of the BA08 GMPE, and defining PSAref(T ) = PSAr(T ) gives

ln[a(T )] = ln[PSA∗(T )]− ln[PSAr(T )], (2)

which is the dependent (or response) variable of interest in this article. The largest usable
period (Tmax) is a function of the corner frequency of the high-pass filter (fmin) applied to
the Coalinga ground motion records; fmin = 0.07 Hz for the 36 records of the Coalinga
earthquake that we use in this article. Following Abrahamson and Silva (1997), we assume
Tmax = 1/(1.25× fmin) ≈ 11.4 sec.
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Table 1: Summary of station information and the explanatory variables required to compute the PSA
from the Boore and Atkinson (2008) GMPE for the 1983 Coalinga earthquake (where applicable).

ID Latitude Longitude VS30 (m/sec) RJB (km)
807PAR 35.8985 -120.4329 261 27.96
808PAR 35.8986 -120.4325 270
809CHO 35.7328 -120.2893 173 43.83
810CHO 35.7430 -120.2753 233 42.76
811TUR 35.8779 -120.3599 907
812CHO 35.8180 -120.3791 214 35.04
813CHO 35.7072 -120.3163 283 46.73
814VIN 35.9220 -120.5348 309 30.91
815CHO 35.6963 -120.3288 237 47.88
816CHO 35.7521 -120.2657 523 41.99
817EAD 35.8952 -120.4229 384
818PAR 35.9266 -120.4570 384 26.20
819VIN 35.9731 -120.4671 468 22.66
820CHO 35.8701 -120.4051 297 29.91
821TUR 35.8767 -120.3826 309 28.58
822PAR 35.9080 -120.4595 246 28.11
823PAR 35.9211 -120.4813 308 28.00
824VCY 35.9399 -120.4247 657
825VCN 35.9573 -120.4831 381 24.83
826FZ 35.8955 -120.3989 542 27.10
828VIN 35.8829 -120.5629 320 35.85
829VIN 35.9033 -120.5513 386 33.28
830CHO 35.7670 -120.2488 397 40.01
831VIN 35.9336 -120.4974 284 27.72
832UPS 35.8214 -120.5059 358
833UPS 35.8248 -120.5011 417
834FZ 35.8791 -120.4461 372 30.43
835CHO 35.6842 -120.3418 252 49.40
836TUR 35.8824 -120.3510 467
837CHO 35.7151 -120.3041 410 45.49
838CHO 35.6369 -120.3998 359 55.05
839CHO 35.7239 -120.2970 231 44.82
840RFU 35.6199 -120.2570 239
841KFU 35.7153 -120.2056 576
842FFU 35.9108 -120.4873 227
843MFU 35.9564 -120.4959 398
844JFU 35.9389 -120.4309 379
845VIN 35.9268 -120.5100 439 29.01
846UPS 35.8277 -120.5001 342
847WFU 35.8145 -120.5118 447
848FZ 35.8586 -120.4214 267 31.64
849FZ 35.8360 -120.3958 221 33.42
850FZ 35.8019 -120.3450 212 36.14
851SC 35.8331 -120.2713 565 32.81
852SC 35.8105 -120.2831 566 35.29
853SC 35.7878 -120.2948 261 37.77
854GH 35.7958 -120.4120 511 38.10
855GH 35.8113 -120.3922 290 35.93
856FZ 35.7580 -120.3075 178 41.04
857GH 35.8695 -120.3346 451 28.72
858GH 35.8428 -120.3485 361 31.85
859GFU 35.8324 -120.3477 558
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3.2 Site Response Explanatory Variables
The site response explanatory variables that we analyze in this article can be categorized in
a number of useful ways. We consider both vector and raster spatial data, as well as period
dependent and independent data. The only type of raster data that we use is topographic slope,
and we use two types of vector data: point data (Vs profiles and strong motion data) and polygon
data (surficial geology). These data (with the exception of the strong motion data) can be easily
processed to provide an estimate of VS30, which is the most commonly used site response
explanatory variable. Since we discuss many different estimates of VS30, it is convenient to
use superscripts to specify the different estimation techniques. For example, we refer to the
estimate of VS30 from an SASW measurement as V SASW

S30 . We choose not to include the soil
depth parameters in our analysis because only eight of the Vs profiles measured Z1.0 and none
measured Z2.5.

We compute the magnitude of the topographic slope (δ) with the method described by
Wald and Allen (2007). The slope is estimated from SRTM 30 sec global topography (Farr and
Kobrick, 2000) so the pixel size is approximately 1 km by 1 km. From δ, we estimate the VS30
(V δ
S30) with the empirical relationship presented by Wald and Allen (2007).

We refer to the estimate of VS30 predicted by the geologic classification method of Wills
and Clahan (2006) as V geo

S30. All but one of the 36 strong motion stations that recorded the
Coalinga earthquake are included in the NGA Flatfile. Thus, we are able to ensure that we use
the same geologic classifications that were used in the NGA GMPE development for 35 of the
stations that we consider. The one station that is not in the Flatfile is Stone Corral 1E (853SC
in Table 1), which is classified as Quaternary nonmarine terrace deposits (Qt) according to
Jennings (1958). The Wills and Clahan (2006) classification that we assign to this station is
Quaternary (Pleistocene) alluvium (Qoa).

To map (interpolate) V geo
S30 we need to assign a Wills and Clahan (2006) classification to

locations that are not in the NGA flatfile. Table 2 gives the Wills and Clahan (2006) geologic
unit that we assigned to the Jennings (1958) units that are in the vicinity of the stations that we
consider in this article.

Lermo and Chávez-Garcı́a (1993) provided evidence that the horizontal-to-vertical spectral
ratios (H/V) may provide valuable site response information. This approach has become very
popular due to the ease with which an estimate of the site conditions can be achieved. We
use the procedure described by Zhao et al. (2006) to estimate f0 from H/V at the 36 stations
in this article that recorded the 1983 Coalinga earthquake. Ideally, we would use multiple
earthquakes to achieve a more robust estimate of f0, but the vast majority of these stations only
have records available for the 1983 Coalinga earthquake and the 2004 Parkfield earthquake.
H/V ratios are typically estimated from the Fourier spectrum (e.g., Cadet et al., 2010), but the
Zhao et al. (2006) method uses the 5% damped PSA instead. The advantage of using PSA over
the Fourier spectrum is that no additional smoothing is required. From the three orthogonal
ground motion components (two horizontal, H1 and H2; and one vertical, V) we compute two
estimates of H/V: PSAH1(T )/PSAV (T ) and PSAH2(T )/PSAV (T ). T1 and T2 are the periods at
which the two estimates of H/V are maximized and the estimate of the fundamental frequency
is f0 = 1/

√
T1 × T2.

The SASW Vs profiles include information that should be pertinent for site response besides
the single value of VS30. Thus, we investigate alternative data reduction methods to simplify
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Table 2: Relationship between Wills and Clahan (2006) geology classifications and the Jennings (1958)
geologic units.

Jennings (1958) Wills and Clahan (2006)
Symbol Description Symbol
Qal Alluvium Qal, thin
Qf Fan deposits Qal, thin
Qt Quaternary nonmarine terrace deposits Qoa
QP Plio-Pleistocene nonmarine QT
Pc Undivided Pliocene nonmarine QT
Pu Upper Pliocene marine Tsh
Pml Middle and/or lower Pliocene marine Tsh
Mc Undivided Miocene nonmarine Tsh
Mu Upper Miocene marine Tsh
Mv(r) Miocene volcanic – rhyolite Tv
Mm Middle Miocene marine Tsh
Ml Lower Miocene marine Tsh
Oc Oligocene nonmarine Tss
E Eocene marine Tss
K Undivided Cretaceous marine Kss
Ku Upper Cretaceous marine Kss
Kl Lower Cretaceous marine Kss
KJfv Franciscan volcanic and metavolcanic rocks KJf
KJf Franciscan Formation KJf
gr Mesozoic granite rocks xtaline
bi Mesozoic basic intrusive rocks xtaline
ub Mesozoic ultrabasic intrusive rocks xtaline
ls Pre-Cretaceous metamorphic rocks – limestone or dolomite xtaline

the information in the Vs profile to a single value that can be used as an explanatory variable
in a regression analysis. This includes the square-root-of-impedance method and the one-
dimensional plane SH-wave computation. The key feature of these explanatory variables, is
that they are period dependent, unlike VS30 and f0.

The square-root-of-impedance (SRI) method of estimating the site response amplifications
computes the amplification that a seismic wave will experience as it travels between two mate-
rials with different impedances, where the impedance is defined as the product of density and
velocity: ρ × V . The key assumption of this method is that the seismic energy is completely
transmitted across the material interface. The SRI method ignores the effects of seismic reflec-
tions and refractions that will occur within a stack of laterally constant layers. Joyner et al.
(1981) found that the impedance effect, as opposed to the effects of reflections and refractions,
is the dominant process that contributes to site amplification. The method for estimating the
period-dependent amplification with the SRI method [aSRI(T )] has been extensively described
in the relevant literature (e.g., Boore, 2003; Douglas et al., 2009; Joyner et al., 1981; Thomp-
son et al., 2010a) so we do not reproduce it here.

Accounting for the effect of reflections and refractions could potentially provide a more
realistic model a(T ) than aSRI(T ). We accomplish this by assuming plane SH wave (the hor-
izontally polarized component of the S wave) propagation through a laterally homogeneous
medium (SH1D). The resulting amplifications [aSH1D(T )] are computed using the Thomson-
Haskell technique (Haskell, 1953; Thomson, 1950).
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3.3 Testing for Independence
One of the goals of this paper is to assess the degree of correlation between the different ex-
planatory variables and ln[a(T )]. Pearson’s product moment correlation coefficient (r) is the
most widely used measure of the linear association between two variables (Draper and Smith,
1981). The hypothesis test for deviation of r from zero requires that the data are assumed
to follow the bivariate normal distribution (Fisz, 1963, Section 9.9). Generally, the variables
under consideration may be assumed to be lognormally distributed. The one-sided alternative
hypothesis depends on the explanatory variable under consideration. For example, we expect
r < 0 for ln[VS30] and ln[a(T )]. In contrast, we expect r > 0 for ln[aSRI(T )] and ln[a(T )].

3.4 Mapping Site Response
Some of the site response explanatory variables that we consider in this article are available
throughout the region of interest, namely V geo

S30 and δ. In contrast, explanatory variables derived
from the SASW measurements [V SASW

S30 , aSRI(T ), and aSH1D(T )] are only available at 52 loca-
tions, and f0 is only available at the 36 strong motion stations where the Coalinga earthquake
was recorded.

If we wish to create maps of site response amplification, we must interpolate the explana-
tory variables that do not cover the extent of the region of interest. We use the ordinary kriging
(OK) method as described by Cressie (1993) and employed by Thompson et al. (2010a) to map
site response amplifications in the Kobe, Japan sedimentary basin. Due to space limitations,
we do not reproduce the mathematics of the OK method, but we adopt the same notation as
Cressie (1993) so that it can easily be used as a reference for the spatial statistics (i.e., kriging)
material in this article.

Since our goal is to integrate different explanatory variables to predict a(T ), we are espe-
cially interested in the variance of the OK prediction (σ2

k), which varies in space and increases
with distance from the observed data. Kriging is a generalized least-squares regression algo-
rithm that minimizes σ2

k. The kriging equations fundamentally depend on the spatial correla-
tion structure of the data, which is typically represented by the variogram [2γ(h)], where h
is the Euclidean distance between two locations. Often the semivariogram [γ(h)] is analyzed
to diagnose the spatial structure. In this article, we use the “classical” variogram estimator
2γ̂(h), which uses the method-of-moments technique. The kriging equations require a vari-
ogram model [2γ(h;θ)], where θ is the vector of model parameters. We use a three-parameter
semivariogram model that is termed the Whittle-Matérn model (Guttorp and Gneiting, 2005).

3.5 Regression Analysis
We apply the classic straight line regression formulation

ln[a(T )] = β0 + β1X + ε (3)

for predicting ln[a(T )] from an explanatory variable X , where β0 and β1 are the parameters
of the model, and ε is a normally distributed random variable with mean zero and variance σ2.
We notate the least squares estimates of β0 and β1 as b0 and b1, respectively (Draper and Smith,
1981).
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A key assumption of the linear model is that X is not a random variable, and thus has zero
variance. Under this assumption, the variance of a predicted value of ln[a(T )] for a specific
value of X (X0) is given by

s2p = s2
[
1 +

1

n
+

(X0 − X̄)2∑n
i=1(Xi − X̄)2

]
, (4)

where n is the number of observations of X (Xi), X̄ is the sample mean of Xi, and

s2 =
1

n− 2

n∑
i=1

(
ln[a(T )]i − ln[â(T )]i

)2
, (5)

where ln[â(T )] is the ordinary least squares estimate of ln[a(T )] (Draper and Smith, 1981).
For the case that X = ln[V geo

S30], the reliability of the observations of X is variable. The
standard deviation of ln[V geo

S30] clearly depends on geologic unit (see Table 1 in Wills and
Clahan, 2006). To account for this, we perform weighted least squares regression, assuming
that the observations of X are independent but have different variances. The weights wi =
1/σ2

i , where σ2
i is set to the square of the sample standard deviations ln[V geo

S30] reported in
Table 1 of Wills and Clahan (2006).

We use the log transformation of each of the explanatory variables (e.g,X = ln[VS30] rather
than X = VS30) because (1) this removes much of the skew in each of the variables, and (2) all
of the explanatory variables are necessarily positive.

Note thatX = ln[aSRI(T )] andX = ln[aSH1D(T )] are the only variables for which there is a
theoretical expectation that β0 = 0. Thus, we remove the β0 from the regression if it is clearly
insignificant (P -value is greater than 0.3).

3.6 Regression Predictions at Unsampled Locations
At locations where X is estimated by kriging (e.g., for X = ln[f0] and X = ln[aSRI(T )]), the
assumption that the variance of X is zero is severely violated. Thus, we must add another error
term to equation 3 to predict ln[a(T )] where X is a kriging estimate (Xk)

ln[ak(T )] = β0 + β1(Xk + η) + ε , (6)

where η is a normally distributed random variable with mean zero and we assume that the
variance is σ2

k. Equation 4 does not hold under these conditions so we estimate the variance of
a prediction at an unsampled location (s2p,k) with the Monte Carlo method as follows:

1. Generate nsim = 100, 000 samples of each random variable in equation 6. The random
variables are distributed according to:

β0 ∼ t(µβ0 , n− 2, σβ0),

β1 ∼ t(µβ1 , n− 2, σβ1),

η ∼ N(0, σk), and
ε ∼ N(0, σ), (7)
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where t(µ, ndf, σ) is Student’s t-distribution with mean µ, ndf degrees of freedom, and
standard deviation σ; N(µ, σ) is the normal distribution with mean µ and standard devi-
ation σ. To generate the random sample we substitute the least squares estimates of the
means and standard deviations for the theoretical values in equation 7. The vectors of
randomly generated samples in equation 7 are denoted b0,i, b1,i, ni, and ei, respectively.

2. Compute nsim samples of ln[ak(T )]:

ln[ak(T )]i = b0,i + b1,i(Xk + ni) + ei . (8)

3. Compute s2p,k as the sample variance of ln[ak(T )]i.

4. Repeat the above steps for each value of Xk.

Note that we do not need to adjust the estimators of β0 and β1 to account for η because the data
used in the regressions are not kriged estimates.

3.7 Integrating Multiple Estimates of Site Response Amplification
The key to integrating multiple estimates of ln[a(T )] is the prediction variance: s2p,k for âf0(T )

and âSRI(T ) are denoted s2f0(T ) and s2SRI(T ), respectively; s2p for âgeo(T ) and âδ(T ) are denoted
s2geo(T ) and s2δ(T ), respectively. We choose to combine the four different estimates into a
variance-weighted estimate (ln[âvwe(T )]). This is simply a weighted average of the different
estimates of ln[a(T )], where each estimate is given a weight equal to the reciprocal of the
variance of the estimate.

ln[âvwe(T )] =
âf0(T )/s2f0(T ) + âSRI(T )/s2SRI(T ) + âgeo(T )/s2geo(T ) + âδ(T )/s2δ(T )

1/s2f0(T ) + 1/s2SRI(T ) + 1/s2geo(T ) + 1/s2δ(T )
. (9)

3.8 Topographic Slope
Wald and Allen (2007) correlated topographic slope with VS30 and recommended that the site
response amplifications then be computed from VS30 using the Borcherdt (1994) equations. We
hypothesize that a substantial improvement can be achieved by correlating ln[a(T )] directly
with ln[δ] using the NGA ground motion database.

BA08 excluded many records in the NGA flatfile from their analysis. This included af-
tershocks, singly recorded earthquakes, and a number of other criteria. We use exactly those
records that were used by BA08 for our analysis of the NGA data in this article. In this way, we
ensure that the equation we propose for predicting a(T ) from δ is valid for the same conditions
as the BA08 equations.

Equation 3 assumes that there is a linear relationship between X and ln[a(T )], where X is
some parameter associated with location of the ground motion recording. Unlike the Parkfield
recordings of the Coalinga earthquake, the NGA database contains recordings that span a wider
range of PSA, and so must add another term to equation 3 to account for the dependence
of ln[a(T )] on the intensity of the reference ground motion (we avoid the term “nonlinear”
because of its different meanings in the context of linear regression and soil dynamics):

ln[a(T )] = β0 + β1 ln[δ] + β2 ln[PSAr(T )] + ε . (10)
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Table 3: Correlation coefficients for the different site response explanatory variables as a function of
PSA period.

T (sec) ln[f0] ln[δ] ln[V
geo
S30] ln[V SASW

S30 ] ln[aSRI(T )] ln[aSH1D(T )]

0.05 0.33 -0.26 -0.15 -0.39 0.36 -0.11
0.10 0.42 -0.22 -0.13 -0.26 0.29 -0.05
0.20 0.42 -0.25 -0.07 -0.25 0.30 0.03
0.40 0.39 -0.29 -0.07 -0.33 0.35 0.08
0.50 0.16 -0.23 -0.07 -0.50 0.52 0.18
0.75 0.05 -0.28 -0.29 -0.70 0.70 0.32
1.00 -0.09 -0.07 -0.19 -0.59 0.60 0.26
2.00 -0.39 0.13 0.04 -0.46 0.52 0.17
4.00 -0.40 0.04 -0.08 -0.54 0.63 0.36
5.00 -0.33 0.02 -0.07 -0.51 0.59 0.31
7.50 -0.40 0.04 -0.08 -0.54 0.63 0.36

10.00 -0.01 0.19 0.19 -0.14 0.23 0.04

Note that δ = 0 at a few locations and ln(0) is undefined, so we apply a minimum “water
level” such that δ ≥ 5 × 10−4. We select this value because it is approximately the minimum
non-zero value of δ in these data.

This method is only valuable if it improves upon the method proposed by Wald and Allen
(2007). We measure the accuracy of the different models with the mean squared error

MSE(T ) =
1

n

n∑
i=1

(
ln[a(T )]i − ln[â(T )]i

)2
. (11)

We define MSEδ(T ) for when ln[â(T )] is computed from equation 10, MSEWA07(T ) for when
ln[â(T )] is computed with the Wald and Allen (2007) method, and MSEBA08(T ) for when
ln[â(T )] is computed from the BA08 equations.

4 Results

4.1 Correlation and Regression of Site Response Residuals
The site response residuals for T = 0.2, 0.5, 1.0, 4.0 sec are shown in Figures 2, 3, 4, and 5,
respectively. Subfigures (a) through (f) in each are for X = ln[f0], ln[δ], ln[V geo

S30], ln[V SASW
S30 ],

ln[aSRI(T )], ln[aSH1D(T )]. The value of r is reported in the top-left corner of each subfigure,
and the P-value for the null hypothesis that r = 0 is reported in the bottom-right corner. Table 3
gives values of r for additional periods.

Figures 2-5 and Table 3 show clear trends in term of the performance of the different ex-
planatory variables. Site response is positively correlated with f0 at small periods and nega-
tively correlated with f0 at larger periods. Because of this gradual transition, both r and b1
become statistically insignificant for intermediate periods (see the Discussion section for more
details).

In contrast, |r| for all of the SASW-derived explanatory variables is greater at larger pe-
riods (with the exception of the small values at T = 10 sec). The period-dependence of the
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Figure 2: Correlation of ln[a(T = 0.2 sec)] with (a) ln[f0], (b) ln[δ], (c) ln[V
geo
S30], (d) ln[V SASW

S30 ], (e)
ln[aSRI(T )], and (f) ln[aSH1D(T )].
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Figure 4: Correlation of ln[a(T = 1.0 sec)] with (a) ln[f0], (b) ln[δ], (c) ln[V
geo
S30], (d) ln[V SASW

S30 ], (e)
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Figure 5: Correlation of ln[a(T = 4.0 sec)] with (a) ln[f0], (b) ln[δ], (c) ln[V
geo
S30], (d) ln[V SASW

S30 ], (e)
ln[aSRI(T )], and (f) ln[aSH1D(T )].
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correlation of ln[δ] and ln[V geo
S30] is less clear: The performance of ln[δ] is relatively constant

with respect to period except that the performance is particularly poor for T ≥ 1.0 sec, while
ln[V geo

S30] performs best at T = 0.75 sec but does not exhibit a clear performance trend.
To avoid severe colinearity, we should eliminate all but one of the explanatory variables

derived from the SASW data: ln[aSH1D(T )] is easily dismissed, but ln[V SASW
S30 ] and ln[aSRI(T )]

perform nearly equally well at most periods. ln[aSRI(T )] has a slight edge, which is most
significant for T ≥ 2 sec, and so we drop ln[V SASW

S30 ] from our subsequent analysis.
We are then left with four independent explanatory variables that we use to map a(t), each

exhibiting distinct spatial characteristics: ln[f0], ln[δ], ln[V geo
30 ], and ln[aSRI(T )]. Although

ln[aSRI(T )] generally exhibits the best correlation with ln[a(T )], the other explanatory variables
have other distinct advantages. For example, ln[f0] performs better than ln[aSRI(T )] for 0.1 ≤
T ≤ 0.4. But most importantly, the accuracy of both ln[aSRI(T )] and ln[f0] will diminish as
distance increases from the observed values. Thus, ln[δ] and ln[V geo

30 ] should be included for
locations distant from the SASW Vs profiles and strong motion stations.

4.2 Mapping Explanatory Variables
The raster and polygon data (δ and V geo

S30) do not require further analysis for mapping because
these values are spatially continuous throughout the region. In contrast, we must interpolate
the point data [f0 and aSRI(T )]. Reliable interpolation with the kriging method is only possible
if γ(h) increases with h, demonstrating that points that are closer together are more similar
than those that are further apart. Figure 6 shows γ̂(h) and γ(h;θ) for (a) f0, (b) the average
S-wave slowness (Ss; inverse of Vs) to 30 m depth (SS30), and (c) aSRI(T = 0.5) sec.

Here, we must explain why we display the γ̂(h) and γ(h;θ) for SS30 rather than VS30 in
Figure 6 (b). Although VS30 is displayed in Figure 7, we do not krig VS30 directly — instead
we krig SS30 and convert the result to VS30. This is analogous to how VS30 is computed from a
one-dimensional Vs profile: the SS30 is computed and then converted to VS30 (see discussions in
Boore and Thompson, 2007; Brown et al., 2002, for the motivation of using Ss as the primary
variable of interest). Figure 6 demonstrates that kriging is an effective method for spatially
interpolating these variables.

Figure 7 compares maps of the different explanatory variables, converted to VS30 when
applicable. The three different maps of VS30 (subfigures b-d) use a single color palette. This
figure fulfills two purposes: (1) visualize the spatial variability of the different explanatory
variables, and (2) contrast the different methods of VS30 estimation. Although aSRI(T ) is not
included, the spatial structure of aSRI(T ) is very similar to V SASW

S30 , with minor variations as a
function of T . For the f0 and V SASW

S30 maps, we use only the kriged estimates where σ2
k is less

than the sample variance of the measured data.
The resulting maps of â(T = 0.5 sec) are displayed in Figure 8. Each subfigure uses

the same color palette to visually highlight the differences. Analogous maps can easily be
created for other periods, but we only display one period as an illustrative example due to
space constraints. Note that the â(T ) for X = ln[f0] [âf0(T )] and â(T ) for X = ln[aSRI(T )]
[âSRI(T )] capture a lot of variability near the stations. In contrast, the resolution of â(T ) for
X = ln[V geo

S30] [âgeo(T )] and â(T ) for X = ln[δ] [âδ(T )] does not vary with distance from the
data. This highlights the major challenge that must be addressed to map site response: the
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Figure 6: (a) Semivariogram of ln[f0] for the 36 Parkfield sites that recorded the 1983 Coalinga earth-
quake. (b) Semivariograms of ln[SS30] at the 52 SASW sites. (c) Semivariogram of ln[aSRI(T =
0.5 sec)] at the 52 SASW sites. Points are γ̂(h) and the lines are γ(h;θ).
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Figure 7: Maps of alternative site response explanatory variables. (a) the fundamental frequency f0
(Zhao et al., 2006), (b) VS30 estimated from SASW measurements (Thompson et al., 2010b), (c) VS30
estimated from surficial geology (Wills and Clahan, 2006), and (d) VS30 estimated from topographic
slope (Wald and Allen, 2007).

20



performance of the different explanatory variables depends both on location (distance to the
observed data) as well as T (as summarized in Table 3).

Figure 9 plots (a) s2f0(T ), (b) s2SRI(T ), (c) s2geo(T ), and (d) s2δ(T ), again using a single color
palette throughout. These figures show that for T = 0.5 sec, âSRI(T ) has the lowest prediction
variance, which is consistent with the fact that it has the largest absolute value of r at this
period (see Table 3). The second lowest prediction variance is achieved by âδ(T ), which is
again consistent with the r values reported in Table 3. The prediction variance of âgeo(T ) is
clearly a function of geologic unit, and is smaller than the prediction variance of âf0(T ) in
some location.

Figure 10 plots âvwe(T ) for (a) T = 0.2 sec, (b) T = 0.5 sec, (c) T = 1.0 sec, and (d)
T = 4.0 sec. Note that we can recognize which explanatory variables are controlling the
spatial variability by comparison to Figure 7. Note that for T = 0.5 sec, we can additionally
compare the combined result to the predictions of explanatory variables in Figure 8. We see
that the variation of âvwe(T = 0.5 sec) in the vicinity of the stations is controlled by âSRI(T ),
and in regions distant from the stations is controlled by âδ(T ). This is the result that we should
expect given the prediction variances in Figure 9 and the r values in Table 3. We also see
that for T = 1.0 sec and T = 4.0 sec, δ contributes less to âvwe(T ) than the Jennings (1958)
geology polygons at locations distant from the stations. This is consistent with the decrease in
r values for X = ln[δ] at the larger periods in Table 3.

4.3 NGA Database and Topographic Slope
We represent the performance of the regression of ln[a(T )] against ln[δ] for the NGA database
(equation 10) by plotting ln[â(T )] versus ln[a(T )] in Figure 11 for (a) the peak ground acceler-
ation (PGA) and (b) T = 4.0 sec. For comparison, we also plot ln[â(T )] versus ln[a(T )] where
ln[â(T )] is computed with the Wald and Allen (2007) method. These plots qualitatively show
that equation 10 accounts for more variability in the site response term than the Wald and Allen
(2007) method.

The results are more thoroughly summarized in Table 4 which includes all the periods
used by BA08. Table 4 includes the number of records included at each T , the estimates of
the regression parameters and their P-values, and MSEδ(T ), MSEWA07(T ), and MSEBA08(T ).
As expected, the values of b1 and b2 are all negative indicating that amplification is inversely
related to topographic slope and the reference ground motion intensity. Also, we see that the
magnitude of b2 tends decreases as T increases, indicating that the degree of soil nonlinearity
effects is larger for smaller period motion.

In terms of MSE, the Wald and Allen (2007) method slightly outperforms the BA08 site
response model for T ≤ 0.25 sec (by 1 to 3%) and the BA08 model performs better at other
periods; The MSEWA07(T ) is generally 8 to 14% larger than MSEBA08(T ) for 0.4 ≤ T ≤ 5 sec.
In contrast, MSEδ(T ) is 10 to 13% smaller than MSEBA08(T ) for T ≤ 0.15 sec (including
PGA) and is 6 to 8% smaller for T ≥ 3 sec. Equation 10 performs poorest relative to the
BA08 model for 0.5 ≤ T ≤ 1.5 sec, which MSEδ(T ) is 5 to 8% larger than MSEBA08(T ).
MSEδ(T ) is smaller than MSEWA07(T ) for all T except for T = 0.5 sec where the differences
is approximately 1%. MSEδ(T ) is 11% smaller than MSEWA07(T ) for PGA and 13% smaller
for PGV.
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Figure 8: Maps of four different estimates of a(T = 0.5 sec): (a) âf0(T ), (b) âSRI(T ), (c) âgeo(T ),
and (d) âδ(T ).
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Figure 9: Maps of the variance of the a(T = 0.5 sec) estimates in Figure 8: (a) s2f0(T ), (b) s2SRI(T ),
(c) s2geo(T ), and (d) s2δ(T ).
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Figure 10: Map of the âvwe(T ), integrating the four different explanatory variables in Figure 8 for (a)
T = 0.2 sec, (b) T = 0.5 sec, (c) T = 1.0 sec, and (d) T = 4.0 sec.
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Wald and Allen (2007)
Equation 10
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Figure 11: Plots of ln[â(T )] versus ln[a(T )] for the Wald and Allen (2007) model compared and
equation 10 for (a) PGA and (b) T = 4.0 sec.

Table 4: Summary of the regression for equation 10 and comparison to alternative models: The number
of records available at each period, parameter estimates and their P-values, and MSE for eqation 10, the
Wald and Allen (2007) model (WA07), and the BA08 model.

No. of Intercept Slope Intensity MSE
T , sec Records b0 P-value b1 P-value b2 P-value δ WA07 BA08

PGA 1599 -0.530 0.000 -0.048 0.000 -0.187 0.000 0.318 0.357 0.365
PGV 1599 -0.003 0.936 -0.143 0.000 -0.085 0.000 0.293 0.336 0.302

0.010 1599 -0.530 0.000 -0.048 0.000 -0.188 0.000 0.320 0.360 0.367
0.020 1599 -0.529 0.000 -0.046 0.000 -0.185 0.000 0.325 0.363 0.372
0.030 1599 -0.518 0.000 -0.042 0.000 -0.186 0.000 0.337 0.377 0.387
0.050 1599 -0.493 0.000 -0.031 0.003 -0.190 0.000 0.363 0.406 0.417
0.075 1599 -0.471 0.000 -0.024 0.028 -0.186 0.000 0.388 0.433 0.443
0.100 1599 -0.415 0.000 -0.026 0.016 -0.177 0.000 0.398 0.430 0.446
0.150 1599 -0.374 0.000 -0.027 0.014 -0.181 0.000 0.393 0.423 0.437
0.200 1599 -0.242 0.000 -0.029 0.006 -0.139 0.000 0.362 0.374 0.383
0.250 1599 -0.206 0.000 -0.046 0.000 -0.119 0.000 0.351 0.363 0.364
0.300 1599 -0.148 0.005 -0.055 0.000 -0.094 0.000 0.359 0.373 0.361
0.400 1599 -0.076 0.154 -0.066 0.000 -0.066 0.000 0.356 0.380 0.347
0.500 1598 -0.015 0.789 -0.088 0.000 -0.036 0.006 0.375 0.373 0.357
0.750 1594 -0.079 0.187 -0.131 0.000 -0.024 0.058 0.399 0.408 0.374
1.000 1579 -0.126 0.043 -0.146 0.000 -0.028 0.023 0.404 0.424 0.377
1.500 1564 -0.247 0.000 -0.187 0.000 -0.012 0.303 0.410 0.444 0.388
2.000 1490 -0.342 0.000 -0.218 0.000 -0.003 0.803 0.410 0.460 0.412
3.000 1341 -0.523 0.000 -0.233 0.000 -0.028 0.015 0.375 0.435 0.399
4.000 1084 -0.404 0.000 -0.241 0.000 -0.009 0.447 0.371 0.460 0.403
5.000 1016 -0.374 0.000 -0.233 0.000 -0.012 0.334 0.392 0.480 0.426
7.500 898 -0.304 0.004 -0.196 0.000 -0.022 0.153 0.446 0.507 0.482

10.000 606 -0.417 0.004 -0.150 0.000 -0.064 0.008 0.429 0.456 0.460
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5 Discussion

5.1 Alternative Site Response Variables
This paper has quantified the performance of many different commonly used site response
explanatory variables using the Parkfield dataset. These variables should not only be judged
in terms of correlations with observed amplifications, but also in terms of data availability; An
approximate model that is more widely applicable may be more useful to the scientific and
engineering community than a more accurate model that requires inputs that are difficult and
expensive to estimate.

Note that we choose to useX = ln[δ] rather thanX = ln[V δ
S30]. This is because the ln[V δ

S30]
can only take relatively few discreet values in the Wald and Allen (2007) model. We feel that a
fair assessment of the topographic slope method would allow the full range in variability of δ.

VS30 has become so ubiquitous as a site response explanatory variable that it is sometimes
treated as the response (i.e., dependent) variable of interest, rather than just one possible ex-
planatory (independent) variable (e.g., Pilz et al., 2010). A proper assessment of the accuracy
of an explanatory variable such as δ should compute correlations with some estimate of the
observed site response amplifications rather than VS30. Figures 2 to 5 and Table 3 clearly show
that VS30 is a valuable but imperfect predictor of site response.

The main advantage of the SRI method over VS30 is that it can capture the period depen-
dence of the site response amplifications. The values of r in Table 3 confirm this expectation:
the r for both methods are identical at T = 0.75 sec, and the SRI method performs better than
VS30 as the period diverges from this value (with an exception at T = 0.05 sec). The substantial
decrease in r for X = aSRI(T ) at T = 10 sec is expected because the Vs profiles do not extend
to depths where aSRI(T = 10 sec) can be computed, and so the aSRI(T ) for the largest possible
T is used. The performance of the SRI method can be improved at larger periods by collecting
profiles that extend to larger depths.

Space limitations require that we focus on a single T for Figures 8 and 9. These figures are
necessary for visualizing the method that we propose, but are not helpful for judging the overall
performance of one explanatory variable over another. We see that s2f0(T ) is substantially larger
than s2SRI(T ) and s2δ(T ) in Figure 9. But notice that |r| for ln[f0] is larger at other periods, as
indicated by Table 3 which will decrease the the variance of âf0(T ). At most periods ln[f0]
slightly underperforms ln[aSRI(T )], but f0 is an easier explanatory variable to obtain for GMPE
development: ln[aSRI(T )] requires a Vs profile, which is costly and time consuming, while
the computation of f0 can be automated and only requires that a previous earthquake has been
recorded at the station of interest. Thus, f0 may be preferred over aSRI(T ) in many applications.

5.2 Fundamental Site Frequency
The period dependence of b1 for X = ln[f0] is worth discussing further. Note that b1 is closely
related to r (Table 3) through a positive proportionality constant (though the magnitude of the
constant will vary with period). Thus, it is clear that b1 < 0 for larger periods and b1 > 0 for
smaller periods. One might expect that b1 < 0 at all periods because larger values of f0 are
associated with stiffer soils, which are in turn associated with less site amplification. This is
consistent for b1 at T ≥ 1.0 sec, but there is a clear gradual increase in b1 as T decreases; For
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Figure 12: b1 for X = ln[f0] versus the number of sites that fulfill the inequality ∆T > 0.

T ≤ 0.75 sec, b1 > 0.
This trend can be explained by defining the difference between the fundamental period of

the soil (T0 = 1/f0) and the fundamental period of the SDOF system (T ) for which the PSA is
computed: ∆T = T − T0. As the absolute value of ∆T decreases, the resonance of the soil
will align with the resonance of the SDOF so a(T ) will increase.

Assume ∆T < 0 for all n observations of a(T ). Under this condition, ∆T decreases as T0
increases (and f0 decreases); Thus a(T ) increases as T0 increases. The inequality ∆T < 0 is
more likely to be fulfilled for small values of T .

Now assume ∆T > 0 for all n observations of a(T ). Under this condition, ∆T increases as
T0 increases (and f0 decreases); Thus a(T ) decreases as T0 increases. The inequality ∆T > 0
is more likely to be fulfilled for large values of T .

It follows from these two scenarios that b1 < 0 is expected for large values of T and b1 > 0
is expected for small values of T . For intermediate cases, where the inequalities ∆T > 0 or
∆T < 0 are not true for all n observations of a(T ) will give a mixture of the two previously
described scenarios. This is qualitatively supported by the trend of r with T for X = ln[f0] in
Table 3.

To check this in a more quantitative manner, we plot b1 against the number of sites that
fulfill the inequality ∆T > 0 in Figure 12. The trend is what we would expect, showing that
as the number of sites where ∆T > 0 increases, the value of b1 decreases. Note that when the
number of sites where ∆T > 0 is approximately n/2, then the b1 ≈ 0.

5.3 Topographic Slope
Figure 11 shows that directly regressing ln[δ] against the observed amplifications in the NGA
flatfile is more accurate than the Wald and Allen (2007) model. This improvement comes
from removing the intermediate step of estimating VS30, and then using the Borcherdt (1994)
equations to estimate a(T ).
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Table 4 shows the Wald and Allen (2007) model exhibits smaller MSE than the BA08 model
for small periods (T ≤ 0.25 sec). However, the MSE of the Wald and Allen (2007) model is
significantly larger than the BA08 model for larger periods and PGV. But the improvements
that we achieve by regressing ln[δ] directly against ln[a(T )] have similar or smaller MSEs than
the BA08 at all periods except 0.5 ≤ T ≤ 1.5. This is consistent with the observations from
Parkfield: This is the passband where VS30 performs the best at Parkfield (see Table 3). It is
particularly encouraging that the regression results reported in Table 4 perform well for PGV
because earthquake damage has been shown to be more strongly correlated with PGV than
PGA Boatwright et al. (2001).

The relatively poor performance of Equation 10 at 0.5 ≤ T ≤ 1.5 is a small sacrifice
considering (1) the gain in spatial coverage and (2) the savings in terms of time and cost of field
investigations that are required to achieve the VS30 values in the NGA database. The relatively
good performance of Equation 10 leads us to recommend that the regression coefficients in
Table 4 can be used to account for site effects in rapid response maps and probabilistic seismic
hazards analysis.

The comparison to the BA08 amplifications is not straight forward because site response
is estimated from many different sources including downhole Vs profiles and the Wills and
Clahan (2006) site conditions map. In fact, only about 35% of the NGA records are associated
with site specific measurements of the VS profile, while the rest are inferred (Douglas et al.,
2009). As most in the engineering seismology community would likely expect, the Parkfield
data demonstrate that VS30 estimated from an SASW survey is a more accurate predictor of
site response than the surficial geology. Thus, the MSE reported for the BA08 model is likely
a mixture of the model uncertainty with the estimation uncertainty. BA08 will most likely
perform better when the estimate of VS30 is derived from a site specific measurement of the Vs
profile. If these data were available then the MSE values reported in Table 4 for BA08 would
be smaller. But this is not possible for hazard mapping, and so the more logical comparison
to the topographic slope method would be to use only VS30 values that are inferred from the
Wills and Clahan (2006) model. This increases the estimation uncertainty, and thus this would
increase the MSE values reported in Table 4 for BA08 which would emphasize the value of the
topographic slope method further.

6 Conclusions
A wide variety of methods have been proposed for mapping site response amplifications. Each
has been developed with a different purpose in mind: Thompson et al. (2010a) sought to char-
acterize a single urban region while Wills and Clahan (2006) sought a map with coverage of
the entire state of California and Wald and Allen (2007) sought an estimate of site response for
the entire globe. Each of these methods uses a different explanatory variable as a site response
proxy. The methodology that we propose takes advantage of the inherent benefits of each of
these different methods of mapping site response. Addressing the estimation and model uncer-
tainty of these widely varying methods is only possible with the aid of the unique dataset of
the densely spaced strong motion stations in Parkfield.

Our analysis shows that the Wald and Allen (2007) method of correlating site response with
topographic slope performs surprisingly well considering the simplicity of the method and the
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spatial coverage that it attains. Indeed, topographic slope correlates better with the Coalinga
amplifications than the surficial geology for T ≤ 0.5. More accurate results can be achieved
with local geophysical surveys of the near surface Vs profiles. Linking the Vs profiles to site
response amplifications with the square-root-of-impedance method improves the correlation
with observed site response amplifications compared to VS30. Although this improvement is
not extreme, the effort that is required to achieve this gain is minimal and thus we feel that the
effort is warranted. We also find that f0 provides complementary information to the Vs profile,
especially for small periods. Interestingly, we see that f0 exhibits a direct relationship with
amplification for small periods and an inverse relationship with amplification for large periods.

Correlations of topographic slope with the site response amplifications observed in the
NGA flatfile allow us to create new regression equations for estimating site response. We show
that the Wald and Allen (2007) method agrees well with the observed site response in the NGA
flatfile, and we show our newly developed regression equations are a significant improvement
over the Wald and Allen (2007) method. These equations provide complete coverage of the
globe at a pixel size of approximately 1 km by 1 km with only minimal sacrifice in the accuracy
of the predictions compared to the Boore and Atkinson (2008) method.
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