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ABSTRACT 
 

Earthquake-induced landslides pose serious threats to lives and property across the world.  
These landslides typically occur in seismically active areas which exhibit steep topography, such 
as mountainous regions of Japan and China and the states of California, Oregon, Washington, 
and Utah within the United States.   

Landslides caused by the 2004 Niigata-Ken Chuetsu earthquake in Japan were mapped using 
high resolution and lower resolution optical satellite imagery as a case study for developing 
semi-automated techniques to rapidly map earthquake-induced landslides.  Post-event 
classification of high-resolution imagery was performed using (1) supervised pixel-based 
classification techniques, including the maximum likelihood, Bayesian pairwise, and Binary 
hierarchical methods, and (2) object-based classification techniques.  The landslide inventories 
developed via satellite imagery were compared with a landslide inventory developed by 
traditional aerial survey.  These comparisons indicated that the Bayesian hierarchal method 
produced the highest quality pixel-based classification, while the object-oriented classification 
produced higher-quality classifications than any of the pixel-based techniques.  Change detection 
performed using pre- and post-event LANDSAT imagery provided a rapid and relatively 
accurate assessment of the landslide distribution across the affected area.  However, the lower 
resolution caused the analysis to miss smaller landslides. 

 

 

NON-TECHNICAL SUMMARY 
 

Earthquake-induced landslides represent a significant earthquake hazard.  Rapid assessments 
of landslide distribution after an earthquake can be obtained from satellite imagery.  
Additionally, these landslide distributions can be used in ongoing research efforts to improve our 
models that predict earthquake-induced landslides.  This study investigated various techniques to 
develop landslide maps from satellite imagery.  Satellite data from the 2004 Niigata-ken Chuetsu 
earthquake in Japan was used for the analyses.  The results showed that earthquake-induced 
landslide distributions can be derived from satellite imagery, but that object-based and change 
detection approaches provide the most accurate results.   
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INTRODUCTION 
 

Earthquake-induced landslides pose serious threats to lives and property across the world.  
These landslides typically occur in seismically active areas which exhibit steep topography, such 
as mountainous regions of Japan and China and the states of California, Oregon, Washington, 
and Utah within the United States. Earthquake-induced landslides pose serious threats in several 
ways.  The direct impact of an earthquake-induced landslide can destroy and bury buildings and 
infrastructure.  Secondary effects may also occur, such as blockage or destruction of vital 
transportation arteries and telecommunication lines.  Secondary effects can be responsible for 
further losses of life due to the difficulties encountered by rescuers who must battle with blocked 
roadways and a lack of communication between affected areas.  

Due to the severe threat posed by earthquake-induced landslides, research into this 
phenomenon is vital.  For earthquake-induced landslides to be adequately researched after an 
event, their locations need to be identified so reconnaissance efforts can be adequately focused.  
Additionally, the developed landslide inventories can be used to validate and improve 
methodologies for predicting earthquake-induced landslides.  

The study of earthquake-induced landslides typically involves the use of aerial photography, 
ground observations, and more recently, satellite imagery and GIS information.  Landslide 
mapping using aerial photography was probably first used after the 1948 magnitude 7.3 Fukri, 
Japan earthquake (Keefer 2002).  Before the advent of aerial photography, landslide mapping 
was limited to ground-based studies by teams of geologists and engineers.  While ground-based 
studies are still an extremely important part of landslide mapping, this approach results in only 
limited observations because of access issues.  Aerial photography, and now satellite imagery, 
allows an entire affected area to be examined, making the developed landslide inventories more 
complete.  

The mapping of earthquake-induced landslides for research and response purposes occurs at 
several different scales.  For immediate use by relief efforts, maps do not need to be 
exceptionally accurate, and only need to show which areas are most damaged and are in need of 
immediate attention.  Maps are also useful for locating secondary threats such as landslide dams 
that create temporary lakes, which may breach and further threaten the lives of people 
downstream.  Maps for this purpose are typically produced using manual interpretation of 
satellite imagery.  Although manual interpretation may be fairly accurate, it can take many hours 
to days to interpret a single scene of satellite imagery or aerial photography.  Human errors in 
interpretation may also occur.  As a result, raw satellite imagery is often distributed to response 
personnel, without any prior manual interpretation performed.  

Due to the amount of time needed to manually interpret satellite imagery and the potential for 
errors in manual interpretation, semi-automated image analysis offers an alternative for rapidly 
producing damage maps.  Even if landslide and damage maps using this approach are produced 
too slowly for immediate response efforts, they can be used by reconnaissance teams visiting the 
area to study the damage.   

The goal of this research is to investigate semi-automated techniques that use satellite 
imagery to generate maps of earthquake-induced landslides from the 2004 Niigata-Ken Chuetsu 
Earthquake in Japan (Mw = 6.6).  A landslide inventory map is available from the Geographical 
Survey Institute (GSI) of Japan, which provides important ground truth data to which to compare 
the results from the analysis of the satellite imagery.  
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THE NIIGATA-KEN CHUETSU EARTHQUAKE IN JAPAN 
 

The October 23, 2004 Niigata-Ken Chuetsu Earthquake (Mw=6.6) was the largest and most 
damaging earthquake to affect Japan after the 1995 Kobe earthquake.  The epicenter was located 
in the Uonuma Hills, an upland region about 80 km south of Niigata City and 195 km northwest 
of Tokyo.  The earthquake caused the deaths of 48 people, injured another 4,160, and 
temporarily displacement nearly 100,000 more.  Several mountain villages were nearly 
completely destroyed, resulting in the permanent displacement of an unknown number of people 
(Scawthorn and Rathje 2006).  

Cities affected by the earthquake include Nagaoka (population 194,000), Ojiya (population 
41,000), Kawaguchi (population 5,748), and Yamakoshi (population 2,222).  Many other small 
villages were also affected.  Figure 1 shows the area affected by the earthquake.  Damage was 
extensive to buildings and infrastructure across the area, with approximately 3,000 building 
collapses and an additional 100,000 buildings damaged.  Approximately 1,000 buildings 
collapsed and 50,000 buildings were damaged in the town of Nagaoka alone.  Roads and 
highways were damaged in over 6,000 locations, mainly due to ground failure and landslides.  A 
Shinkansen (bullet) train, traveling at over 200 km/hr, was derailed by the earthquake.  Other 
transportation structures, such as bridges, performed remarkably well, and no collapses occurred 
due to ground shaking (Scawthorn and Rathje 2006).  

 

 
Figure 1. Location affected by the 2004 Niigata-ken Chuetsu earthquake in Japan  

(Rathje et al. 2006). 
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The earthquake occurred in a region of historically high seismicity.  The epicenter of the 
earthquake is located 4 km east of Ojiya at 37.30° N, 138.84° E.  Recorded ground motions 
include peak horizontal ground accelerations (PGA) as large as 1.75 g and peak horizontal 
ground velocities (PGV) as large as 53.1 cm/s (Scawthorn and Rathje 2006).  

The most striking element of the Niigata-Ken Chuetsu earthquake is the number and extent 
of landslides caused by the event.  Landslides occurred across an area of approximately 250 km2, 
with the densest landslides occurring in an area of roughly 100 km2 around the epicenter.  The 
Niigata Prefecture (local government) officially documented 442 landslides caused by the 
earthquake; however researchers visiting the field noted that more had likely occurred, possibly 
up to 1,000 in number (Scawthorn and Rathje, 2006).  Monetary damages caused by the 
landslides were estimated at U.S. $8 billion (Kieffer et al. 2006). 

The geology of the area is characterized by weak and folded sedimentary rocks (Kieffer et. 
al. 2006).  In addition to the relatively unstable geology, a record-setting typhoon season in the 
months preceding the earthquake elevated groundwater levels across the region, with Nagaoka 
recording 100 mm of rainfall on October 20 and another 13 mm on October 21.  Elevated 
groundwater levels likely contributed to the large number of landslides due to higher than normal 
pore pressures (Scawthorn and Rathje 2006). 

Landslides across the area consisted of many different sizes and types, including translational 
soil slides, deep-seated rotational slumps, debris flows, large block slides in bedrock, and many 
slides that were combinations of several different types.  Landslide concentrations were found to 
be very high in some areas, with up to 35% of the ground surface over a single square kilometer 
being covered by landslides (Kieffer et al. 2006).  Landslide concentrations were found to be 
remarkably similar to the 1994 Northridge earthquake in California, although soil moisture was 
very low when the Northridge earthquake occurred, compared to highly saturated soils during the 
Niigata-Ken Chuetsu earthquake (Kieffer et al. 2006). 
 
 
AVAILABLE SATELLITE IMAGERY 

 
Satellite imagery available for the 2004 Niigata earthquake includes high-resolution 

Quickbird and IKONOS scenes collected after the earthquake and lower-resolution LANDSAT 
scenes collected before and after the earthquake (Table 1).  Although data from the Quickbird 
satellite has the highest spatial resolution of any data available for this event (2.4 m 
multispectral, 0.6 m panchromatic), the imagery was collected at a very poor acquisition angle of 
47° (0° indicates pure vertical acquisition), which resulted in a large amount of distortion in the 
imagery.  The IKONOS data was also collected at a better, but still poor, acquisition angle (36°), 
and the data appears less distorted than the Quickbird data.  Because of the poor imagery from 
the Quickbird sensor, analyses performed using the Quickbird data are not presented in this 
report.  Pre-event high resolution satellite imagery was also available for the affected area, but 
because of the poor acquisition angles of the post-earthquake imagery it could not be co-
registered with the pre-event imagery and for change detection analysis.   

The IKONOS imagery of the affected area is shown in Figure 2.  Only the multispectral 
bands were used for analysis, due to their higher spectral resolutions.  The panchromatic band 
contains wavelengths within the bounds of the visible light and near-infrared bands, and thus 
adds little new spectral information, although the spatial resolution is higher.   
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Data collected from the LANDSAT 7 ETM+ sensor was used to perform a change detection 
analysis over the affected area.  Pre- and post-event imagery were collected on July 5, 2004 and 
November 10, 2004, respectively.  These dates were selected because data acquired on dates 
closer to the earthquake were badly cloud covered.  The area affected by the earthquake is 
included within a single LANDSAT scene, and the imagery exhibited no cloud cover over the 
area of interest in the pre-event data and very little could cover in the post-event data.  The 
LANDSAT data is shown in Figure 3. 
 

Table 1. Satellite imagery used in this study 
Data Type Spatial Resolution Collection Date 

Quickbird Multispectral 
Imagery 

2.4 m multispectral 
0.6 m panchromatic October 24, 2004 

IKONOS Multispectral 
Imagery 

4.0 m multispectral 
1.0 m panchromatic October 24, 2004 

LANDSAT 7 ETM+ 
Multispectral Imagery 

30 m multispectral 
15 m panchromatic 

July 5, 2004 
November 10, 2004 

 

 
Figure 2. IKONOS imagery for Niigata-Ken Chuetsu Earthquake, displayed in true-color format 
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(a)        (b) 

Figure 3.  (a) Pre-event and (b) post-event LANDSAT imagery for the Niigata-ken Chuetsu 
earthquake 

 
 

PIXEL-BASED CLASSIFICATION OF HIGH-RESOLUTION IMAGERY 
 
Land Cover Classes and Training Data 

One of the most important aspects of image classification is the definition of a set of land 
cover classes.  For landslide identification the only land cover of interest is landslides and related 
features, and an accurate classification of other land covers is not needed.  However, to properly 
perform a pixel-based classification, appropriate land cover classes must be selected so that all 
major types of land cover in the imagery are accurately separated from the class of interest (i.e., 
landslides).  

 The area over which imagery was collected can generally be described as a patchwork of 
forest, small villages, and agricultural areas consisting of rice paddies and ponds for the 
production of ornamental koi fish, many of which are terraced into the upland areas (Figure 2).  
Forested land, dissected by roads linking villages, occupies the majority of the upland areas.  
Surrounding the upland area are the alluvial plains of the Shinano and Uono rivers, which are 
mostly covered in rice paddies and other agricultural areas.  Earthquake induced landslides are 
readily visible across the upland areas of the landscape.  The landslides stripped away large 
amounts of vegetation and soil, depositing the subsequent debris in flatter areas adjacent to the 
source zones.  Additional effects of the landslides include muddy water, formed by sediment-
laden runoff.  Shadows are also common in the imagery, with many areas returning low 
reflectance values due to being shaded by slopes. 

A set of classes was designated by visual inspection of the imagery and trial classifications.  
The final hierarchy includes eight classes:  
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1. landslides 
2. landslide debris 
3. muddy water 
4. agricultural 
5. water 
6. urban 
7. vegetation 
8. shadows 

 
These classes were found to cover all of the commonly occurring land visible in the imagery, and 
they include the two land covers of primary interest: landslides and landslide debris.  The 
landslides class is defined as brightly colored regions corresponding to areas of stripped 
vegetation and exposure of soil and bedrock on steep hillsides, and represents the majority of 
landslides visible in the imagery.  The landslide debris class represents darker colored areas 
associated with landslide.  This class represents both debris deposited by landslides (mixtures of 
soil, rock, vegetation, and other debris) and some landslides that are darker than the landsides 
represented by the landslide class.  The landslide debris class is typically found downslope from 
or adjacent to brightly colored landslides, although some landslides may appear more as 
landslide debris in their entirety.  The landslides and landslide debris classes are not combined 
initially due to large amounts of spectral overlap between the landslide debris class and the 
agricultural class, resulting in confusion.  The landslides class is much more spectrally unique 
from the other classes in the imagery, so confusion with other classes is less of a problem.  
Figure 4 shows a small area of imagery with selected areas of each class overlain. 

To provide the most objective comparison between each pixel-based classifier, a common set 
of training data was selected for use with each method.  Training data collection consisted of 
selecting small groups of pixels representative of each class across the imagery.  Care was taken 
not to select edge pixels, or pixels in the transition zone between different classes. A consistent 
number of pixels of training data, between 1000 and 1100, were selected for each class, 
corresponding to a total area on the ground of 16,000 to 18,000 m2 in size.  This amount of data 
was selected to provide an adequate amount of information to produce representative histograms 
and class probability estimates.  Selection of additional training data is very time consuming and 
was not found to increase the accuracy of the classification.  Each individual area of training data 
was typically 40-60 pixels in size.   

Features represent the characteristic of each pixel used in the classification.  Features used 
for classification consisted of the four multispectral bands from the IKONOS sensor, including 
the blue (wavelength 445 – 516 nm), green (506 – 595 nm), red (632 – 698 nm), and near-
infrared (757 – 853 nm) bands.   
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Figure 4.  Land cover classes for pixel-based classification 
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Accuracy Assessment 
Each pixel-based classification technique was used to analyze the post-earthquake imagery 

and place each pixel into one of the eight land cover classes.  Accuracy, which can be defined 
both quantitatively and qualitatively, is one the most important aspects of any classification.  
Quantitative accuracy assessments compare the classified product to ground truth, or accurate 
knowledge of which classes are present at selected locations on the ground.  Ground truth can be 
collected in several ways, with the most robust data obtained by visiting the field and performing 
a survey, noting land cover and geographic coordinates at a number of locations across the 
imagery.  This approach is not always possible due to time and budgetary constraints.  
Alternatively, ground truth can be manually selected directly from the remotely-sensed data 
itself, as long as care is taken to select ground truth data that does not include areas selected as 
training data.  This method of ground truth selection is less desirable than an actual field visit, as 
user errors during selection may occur; however it is far cheaper and easier to perform.   

 Comparison between classified imagery and ground truth can be performed in several 
different ways.  Non-site-specific accuracy represents a comparison of the total areas for each 
class in the ground truth and the classified image over the same spatial area.  Non-site-specific 
accuracy assessments are useful in situations where ground truth is available separately from the 
imagery, such as a map of land cover in the area produced by another study, or where the ground 
truth and classified imagery cannot accurately be georeferenced to one another (Campbell 2007).  
Non-site-specific accuracies may be overly conservative or liberal in their assessments of 
accuracy.  For example, a classification may return 1.5 km2 of a class and the ground truth may 
show 1.6 km2 of the same class, indicating a high accuracy for the classification.  However, these 
areas may not spatially overlap in all areas, and the true accuracy of the classification may be 
less than computed by the non-site-specific accuracy.  As a result, non-site-specific accuracies 
can sometimes mask large classification errors (Campbell 2007).  

Site-specific accuracies offer a more detailed accuracy assessment by taking into account the 
classification of individual pixels or objects relative to their ground truth classification.  High-
precision location information is required for ground truth data to perform a proper site-specific 
accuracy assessment.  Small errors between the actual and recorded locations of ground truth can 
lead to erroneous classification accuracies.  Either ground truth data collection using a site 
survey with detailed GPS locations or accurate collection of ground truth from the same imagery 
used in the classification is required (Campbell 2007).  

For this study, the accuracy of the classified images was assessed using three methods: site-
specific accuracy based on visually identified ground truth from the imagery (but not including 
pixels used in training), non-site-specific accuracy in the form of a landslide density comparison 
using the GSI landslide map, and a qualitative accuracy based on visual comparison of the 
classification and GSI map.  Ground truth for the site-specific accuracy assessment was selected 
in much the same way as training data.  Small groups of pixels, typically 50 to 150 pixels in size, 
were selected across the imagery, with a total of between 2,000 and 2,025 pixels of ground truth 
selected for each class. 
 
Maximum-Likelihood Classification 

Maximum-likelihood classification (MLC) involves developing probability density functions 
for each class using the training data, and then assigning each pixel to the class to which it has 
the highest probability of being a part.  The maximum likelihood classification was performed 
using the image analysis software, ENVI 4.3 (ITT Industries, Inc).   
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Examination of the classified image revealed that many small incorrectly classified groups of 
pixels were present, typically on the order of 1-5 pixels in size.  To remove these small, 
incorrectly classified pixel groups, post-processing in the form of a majority analysis was 
performed.  A majority analysis uses a two-dimensional matrix centered on every pixel, and 
assigns the pixel in the center to the class which occurs most throughout the rest of the matrix.  A 
3x3 matrix was used here so that the classification details were maintained.  Larger matrices 
produced a smoother appearance, but remove much of the original classification detail.   

The site specific accuracy was evaluated through a confusion matrix that compares the 
classes of the ground truth pixels to the classes assigned by the classification analysis.  The 
confusion matrix for the MLC classification is shown in Table 2, and indicates an overall 
accuracy of nearly 87%.  However, there is considerable confusion between the following class 
pairs: landsides and landslide debris; landslide debris and agricultural; and landslides and muddy 
water.  Confusion between the landslide and landslide debris classes are not surprising, and they 
are not of concern because these classes will be combined to develop the landslide inventory.  
Confusion is the largest between the agricultural and landslide debris classes, as nearly 25% of 
the pixels identified as agricultural in the ground truth data were classified as landslide debris by 
the analysis.  This commission error within the landslide debris class is potentially problematic 
because it may lead to overestimation of landslide inventory. 
 

Table 2. Confusion matrix for the MLC classification 
 Ground Truth  
 Landslides 

Landslide 
D

ebris 

Agricultural 

M
uddy W

ater 

Vegetation 

W
ater 

Shadow
s 

U
rban 

C
om

m
ission 

Error 

O
m

ission 
Error 

 
 

Classification 

Landslides 78.1 2.6 0.0 11.2 0.0 0.0 0.0 0.0 15.0 21.9 
Landslide Debris 14.2 74.9 24.9 7.8 0.2 0.2 0.1 0.4 38.7 25.1 
Agricultural 0.2 16.8 75.0 0.4 0.0 0.7 0.0 1.4 20.7 25.1 
Muddy Water 7.0 3.4 0.0 74.8 0.0 0.0 0.0 0.0 12.2 25.2 
Vegetation 0.5 1.4 0.1 0.0 99.8 0.1 2.7 0.4 4.9 0.2 
Water 0.0 0.1 0.0 0.0 0.0 96.0 0.0 0.0 0.1 4.0 
Shadows 0.0 0.0 0.0 0.0 0.0 0.0 96.3 0.0 0.0 3.7 
Urban 0.1 0.9 0.2 5.8 0.0 3.1 1.0 97.9 10.2 2.1 

Total Accuracy 86.6 Kappa 
Coefficient 0.85      

 
Non-site-specific accuracy was evaluated by comparing landslide densities obtained from the 

MLC classification to those from the GSI landslide map.  This analysis was performed by 
georeferencing the landslide map to the IKONOS data and dividing up both the classified image 
and the uplands region of the landslide map into 85, 1-km2 blocks.  The landslide density for 
each map block was computed for the GSI map by taking the total area of landslides in the block, 
defined by all mapped landslides and headscarps, and dividing by the total area (1 km2) of the 
block.  Landslide density for each classification block was computed by summing the total area 
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of both the landsides and landslide debris classes and dividing by the total area (1 km2) of each 
block. 

Landslide densities from the MLC classification (classified) are plotted versus the landslide 
densities from the GSI map (mapped) in Figure 5.  While most of the plotted data does not lie on 
a 1:1 line, 74.1% of the blocks exhibit classified and mapped landslide densities within +/- 5 
percentage points of one another.  The data in Figure 5 show that at mapped landslide densities 
less than about 3%, the classification tends to overestimate landslide density.  At mapped 
landslide densities larger 16% the MLC classification tends to underestimate landslide densities.  
The overestimation of landslide density by the MLC at small mapped landslide densities appears 
to be caused by overestimation of the landslides debris class, mainly due to commission errors 
with the agricultural class.  The underestimation of landslide density by the MLC at larger 
mapped landslide densities appears to be caused by many landslides being covered by intact 
vegetation.  Because the classification relies on stripped vegetation to indentify landslides, it will 
not accurately identify landslides that remain intact with overlying vegetation. 

 

 
Figure 5. Landslide density comparison for MLC classification.   

 
The qualitative accuracy of the MLC classification was determined by visually examining 

the classified image relative to the original multispectral data and GSI map.  Generally the 
classification tended to greatly overestimate the area of landslide debris, mainly due to confusion 
with the agricultural class.  The confusion matrix (Table 2) shows that the problem exists, but 
that it is relatively mild.  Visual examination of the imagery indicates that the total area classified 
as landside debris is many times greater than the actual area of landslide debris.  Other than the 
mass overestimation of landslide debris area, the classification appears to perform adequately, 
and captures most landslides that appear as the brightly colored areas of stripped vegetation and 
bare soil and/or rock.   
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Figure 6 shows a relatively typical subset of the MLC classification.  The classification 
captures most of the landslides in the scene, but greatly overestimates the area of landslide 
debris.  Again, this is due to the large amount of confusion and commission error between the 
landslide debris and agricultural classes.  All other classes seem to be well-defined by the 
classification with relatively few classification errors. 
 

 

 
 

Figure 6. True-color IKONOS imagery and MLC classification over same spatial area 
 
 
Bayesian Pairwise Classification 

Bayesian Pairwise Classification (BPC) is an advanced classification technique that 
decomposes the classification problem containing C classes into  two-class problems.  For 
example, in a classification of landslides, forests, and urban, the BPC would perform separate 
classifications for each pixel for the following two-class problems: landslides vs. forests, 
landslides vs. urban, and forests vs. urban.  The final classification of a pixel is performed by 
voting, where the classification results of each of the two-class problems are tallied and the pixel 
is assigned to the class to which it was classified the most often.  Alternatively, the maximum 
posterior probability can be used to obtain the final classification (Crawford et al. 1999, Kumar 
et al. 1999).  In addition to pairwise classification, the BPC includes a pairwise feature selection 
algorithm in which the most discriminating features are used for each class pair.  The BPC 
classification procedure is implemented in the MATLAB-based Center for Space Research 
Classification Program (CSR-C).  The BPC analysis was performed using the same training data, 
features, and spatial area as the MLC classification.  A majority analysis using a 3x3 matrix was 
also performed on the BPC classification, to remove small incorrectly classified groups of pixels 
across the imagery.   

Landslides Landslide 
Debris

Muddy 
Water

Agricultural Vegetation Shadows Water Urban
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The site specific accuracy of the BPC results was evaluated through a confusion matrix 
(Table 3). The confusion matrix indicates a high overall accuracy of 87.8%.  These values are 
only slightly higher than for the MLC (Table 2).  Further examination shows the greatest amount 
of confusion is between the landslide debris and agricultural classes, with confusion also 
occurring between the landslides class and both the muddy water and landslide debris classes.  
The confusion values are very similar to those from the MLC (Table 3).  The classification error 
between the landslide debris and agricultural classes is large; with 21.6% of the ground truth for 
the agricultural class incorrectly classified as landslide debris.  This confusion is reflected in a 
high commission error for the landslide debris class (~35%).  The classification problem appears 
to be mainly in the overestimation of the landslide debris class area, as only 10.6% of the ground 
truth for the landslide debris class was incorrectly classified as agricultural.  

 
Table 3. Confusion matrix for the BPC classification 

 Ground Truth  
 Landslides 

Landslide 
D

ebris 

Agricultural 

M
uddy W

ater 

Vegetation 

W
ater 

Shadow
s 

U
rban 

C
om

m
ission 

Error 

O
m

ission 
Error 

 
 

Classification 

Landslides 78.9 2.9 0.0 11.7 0.0 0.0 0.0 0.1 15.7 21.2 
Landslide Debris 15.3 82.2 21.6 6.3 0.0 0.2 0.1 0.7 34.8 17.8 
Agricultural 0.2 10.6 77.7 0.2 0.1 0.6 0.0 1.0 14.1 22.3 
Muddy Water 5.2 1.5 0.0 75.4 0.0 0.0 0.0 0.0 8.2 24.6 
Vegetation 0.5 1.0 0.0 0.0 99.9 0.1 3.7 0.6 5.6 0.2 
Water 0.0 0.0 0.0 0.0 0.0 94.7 0.0 0.0 0.0 5.3 
Shadows 0.0 0.0 0.0 0.0 0.0 0.0 95.9 0.0 0.0 4.1 
Urban 0.0 1.7 0.7 6.4 0.0 4.5 0.4 97.7 12.2 2.3 

Total Accuracy 87.8 Kappa 
Coefficient 0.86      

 
 
Non-site-specific accuracy was evaluated by comparing the landslide densities obtained 

from the BPC classification and the landslide densities obtained from the GSI landslide map 
(Figure 7). Approximately 74% of the blocks exhibited classified and mapped landslide densities 
within +/- 5 percentage points of each other.  This result is exactly the same as the MLC, and in 
fact, most of the BPC landslide densities are very similar to the MLC values.  The BPC 
classification tends to overestimate landslide densities at small values of mapped landslide 
densities, typically less than 2%.  These large discrepancies are caused by commission errors 
within the landslide debris class resulting from confusion with the agricultural class.  At 
landslide densities greater than about 15%, the classification tends to underestimate landslide 
area due to some landslides being covered by vegetation.  For mapped landslide densities 
between 2 and 15%, the BPC classification and the GSI landslide map are generally within 5 
percentage points of each other.  
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Figure 7. Landslide density comparison for the BPC classification. 

 
 

The qualitative accuracy of the BPC classification was evaluated by visually examining 
the classified product relative to the original true-color multispectral imagery and GSI map.  
Similar to the MLC results, the BPC classification adequately identified most landslides that 
appear as bright areas of bare rock and soil.  However, large amounts of overestimation of the 
landslide debris class were found across the image due to confusion with agricultural areas.  
Some commission errors in the urban class were also noticed where landslide debris and 
agricultural areas were incorrectly classified as urban.  Figure 8 shows a representative area of 
the imagery classified using the BPC and it is the same area shown in Figure 6 for the MLC.  
Overestimation of the landslide debris area can be seen across the imagery, generally due to 
confusion with the agricultural class.  However, the BPC identified more agricultural area than 
the MLC (Figure 6) making it somewhat more accurate.  
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Figure 8. True-color IKONOS imagery and BPC classification over same spatial area. 

 
 
Binary Hierarchical Classification 

Binary Hierarchical Classification (BHC) is an advanced classification technique that divides 
a problem with C classes into a problem consisting of (C-1) two-class problems.  The BHC 
automatically generates a class hierarchy using a top-down approach, where all classes are first 
lumped together and then split into smaller and smaller subclass groups until the desired classes 
are obtained.  The BHC produces a decision tree consisting of C leaf nodes, each representing 
the original classes, and C-1 internal nodes, where feature extraction and classification are 
performed (Kumar et al. 2002).  The BHC classification procedure is also implemented in the 
MATLAB-based Center for Space Research Classification Program (CSR-C).  The BHC 
analysis was performed using the same training data, features, and spatial area as the other 
classification techniques.  A majority analysis using a 3x3 matrix was also performed on the 
classified product.   

The site specific accuracy of the BPC results was evaluated through a confusion matrix 
(Table 4).  The confusion matrix indicates a total accuracy of 83.1%, which is slightly smaller 
than the MLC and BPC. Considerable confusion exists between landslide debris and agricultural, 
landslides and landslide debris, and muddy water and landslides class pairs.  The largest amount 
of confusion is between the landslide debris and agricultural classes.  Both commission and 
omission errors are high for the landside debris class, at nearly 48 and 45%, respectively.  These 
values are about 15 and 25% larger than for the MLC and BPC classifications.  The largest 
problem appears to be a gross overestimation of the landslide debris class, resulting from 
confusion with the agricultural class.  This is reflected by the high commission error.  Omission 
errors are also fairly large for the landslide debris class, meaning fairly large amounts of 
landslide debris were incorrectly classified as agricultural.   
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Table 4. Confusion matrix, BHC classification 

 Ground Truth  
 Landslides 

Landslide 
D

ebris 

Agricultural 

M
uddy W

ater 

Vegetation 

W
ater 

Shadow
s 

U
rban 

C
om

m
ission 

Error 

O
m

ission 
Error 

 
 

Classification 

Landslides 81.3 2.9 0.0  5.6 0.0 0.0 0.0 2.1 11.6 18.7 
Landslide Debris 11.3 55.1 32.0 5.1 0.0 0.0 0.0 2.3 47.7 44.9 
Agricultural 2.1 27.2 65.9 7.7 0.0 0.3 0.0 5.6 39.6 34.1 
Muddy Water 4.5 4.1 0.0 81.0 0.0 0.0 0.0 0.1 9.7 19.0 
Vegetation 0.7 5.5 0.1 0.0 100 0.0 4.19 1.9 11.1 0.0 
Water 0.0 2.3 2.1 0.5 0.0 99.7 0.0 1.8 6.2 0.3 
Shadows 0.0 0.1 0.0 0.0 0.0 0.0 95.7 0.0 0.1 4.3 
Urban 0.1 2.8 0.0 0.1 0.0 0.0 0.2 86.1 3.5 13.8 

Total Accuracy 83.1 Kappa 
Coefficient 0.81      

 
Non-site-specific accuracy was assessed by comparing classified and mapped landslide 

densities in the same manner as for the BPC and MLC classifications (Figure 9).  The data in 
Figure 9 shows that 72.8% of the blocks exhibit classified landslide densities within +/- 5% of 
the mapped values.  While this value is similar to that obtained for the MLC and BPC methods, 
the data in Figure 9 shows a more systematic underestimation of landslide density.  The BHC 
classification tends to underestimate landslide density in many cases where the mapped landslide 
density exceeds about 8% and in all cases where the mapped density exceeds 13%.  Overall, the 
landslide density plot indicates that the BHC tends to underestimate landslide density when 
compared to the mapped landslide density.  This does not necessarily indicate poor performance, 
as the mapped landslide extents may be partially covered by vegetation or other land covers, 
which would not be classified as landslides. 

The qualitative accuracy of the BHC classification was assessed by visually comparing the 
classified imagery with the multispectral data.  It was found that, in general, the BHC accurately 
identified landslides appearing as brightly-colored areas of bare soil and rock, and confusion 
between the landslides class and other classes was relatively low.  Additionally, there was 
relatively little overestimation of landslide debris area due to confusion between with the 
agricultural class, when compared to the MLC and BPC classifications.  One interesting feature 
to note is that many commission errors were present in the water class, with some agricultural 
areas and even landslide debris being classified as water. However, the area of landslide debris 
misclassified as water is very low. Figure 10 shows representative area of the imagery classified 
using the BHC and it is the same area shown in Figures 6 and 8 for the other pixel-based 
classifications.  The BHC accurately identifies all landslides in the imagery as landslides, and the 
overestimation of landslide debris is relatively low.  Thus, while the confusion matrix indicated 
that the BHC classification had the same accuracy as the MLC and BPC, the qualitative 
assessment indicates that the BHC was superior. 
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Figure 9. Landslide density comparison for BHC classification.  

 

 

 
Figure 10. True-color IKONOS imagery and BHC classification over same spatial area. 
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OBJECT-BASED CLASSIFICATION OF HIGH-RESOLUTION IMAGERY 
Object-oriented classification, performed using Definiens Developer 7.0 software from 

Definiens AG, offers the ability to overcome many of the weaknesses common with pixel-based 
classification methods.  Object-oriented classification methods classify image objects rather than 
individual pixels, and can be performed on objects of varying size and shape.  Object-oriented 
classifications can also utilize GIS-like post-classification procedures and rules, which can result 
in a final classified product optimized for the highest overall accuracy.  The object-oriented 
classification performed for this research utilized the same multispectral IKONOS imagery as the 
pixel-based classifications. 

 
Segmentation and Classification Procedures 

The object-oriented classification utilizes only four final classes: landslides, landslide debris, 
vegetation/shadows, and “other”.  The landslides and landslide debris classes consist of similar 
land cover as the same classes used for the pixel-based classification, with the landslides class 
corresponding to brightly-colored areas of bare soil and rock, and the landslide debris class 
corresponding to darker areas of soil, rocks, trees, and other debris.  The vegetation and shadows 
class contains all types of vegetation (trees, shrubs, grasses, etc) and shadows, and the “other” 
class contains all land covers that do not fall into the previously defined classes (i.e. other 
represents water, agricultural, urban, other, etc).  As the goal of this classification is to identify 
only landslides and related features such as landslide debris, there is no need to further separate 
between classes of non-interest such as agricultural and urban.  This approach also allows the 
sample selection process to be simplified, as samples for only four classes are required.  This 
class hierarchy is considerably simpler than the eight class hierarchy used for the pixel-based 
classifications.  The four-class hierarchy was selected due to the framework of the nearest-
neighbor classifier, as opposed to the statistical classifiers used in the pixel-based classifications.  
As a result, classes can be constructed occurring over a wide range of land covers and spectral 
responses, provided that training samples are selected such that all representative spectral 
responses of each class are captured.  The nearest-neighbor classifier does not model probability 
density functions, and therefore the histograms of each class can have any shape and an accurate 
classification can be performed, provided that proper sample selection is performed.   

Segmentation is the first step in the object-oriented classification process.  The goals of 
segmentation for this classification were to produce image objects of small size and 
homogeneous spectral properties that best represent the various types of land cover.  To meet 
these goals, segmentation was performed using the four multispectral IKONOS bands, each set 
with an equal weighting of 1.  The shape and compactness parameters were both equally set at 
0.1, which resulted in image objects exhibiting homogeneous spectral properties and uneven 
shapes.  The scale parameter was set at 1, which produced relatively small-sized image objects.  
Figure 11 shows a portion of the imagery before and after segmentation, and shows that the 
image objects tend to exhibit a size where individual rice paddies, ponds, and small landslides 
are each represented by a single image object. 

Two nearest-neighbor classifications, a primary and a secondary, were performed (Figure 
12).  This process was selected to simplify the final classification between landslides and all 
other land cover types.  The primary classification was performed to separate the 
vegetation/shadows class from all remaining land cover, and this internal class was named “non-
vegetation/shadows”.  All nearest neighbor classifications were performed using the mean value 
of the IKONOS multispectral data within an object.  



 20

 
Figure 11. IKONOS imagery, before segmentation (left) and after segmentation (right) 

 

 
Figure 12. Nearest-neighbor classification flowchart 
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The primary classification was performed by selecting samples for each class, with care 
taken to select samples near histogram edges to accurately define the feature space.  The 
secondary classification was performed only on objects previously classified as non-
vegetation/shadows.  This secondary classification focused on identifying the landslides, 
landslide debris, and “other” classes.  Again, the classification was performed using a feature 
space containing the mean object value of the IKONOS multispectral data.  Unlike the initial 
classification, an iterative sample selection approach was performed to produce the highest 
quality classification.  Initially, classification was performed using only about five samples per 
class.  The classification was examined, and several incorrectly classified objects were selected 
as samples for their correct class, and a classification was again performed using the updated 
training samples.  The procedure was repeated until a high-quality classification was produced.  
Ultimately, 41 samples were selected for the vegetation/shadows class, 53 for the non-vegetation 
shadows class, 38 for the landslides class, 24 for the landslide debris class, and 162 for the 
“other” class. 

One of the main advantages of the object-oriented classification method is the ability to 
utilize GIS-like post-classification rules to increase the accuracy of a classified image.  The goal 
of post-classification rules is to emulate the process that the human brain uses to discriminate 
between different land cover types.  For example, the human brain can distinguish a rice paddy 
from landslide debris because the rice paddy typically exhibits somewhat of an oval shape, and is 
often surrounded by other rice paddies, while an area of landslide debris generally is close to a 
landslide, has an irregular shape, and is often surrounded by vegetation.  Rules can be 
implemented to improve the classification accuracy using quantified versions of such 
observations.  The following five rules were used to increase the accuracy of the classification.   

 
Rule 1: All landslide objects occurring at a distance of greater than or equal to 40 m 
from the nearest vegetation/shadow object are re-classified as “other”.  This rule is 
implemented to remove confusion related to muddy water in large expanses of 
agricultural areas that is incorrectly classified as landslides.  Because the vast majority of 
landslides occur very close to or adjacent to vegetated areas, this rule removes the 
incorrectly classified objects. 
 
Rule 2: All landslide debris objects with a relative border to vegetation/shadow of 
greater than 50% are re-classified as landslides.  This rule was applied to include darker 
appearing landslides as part of the landslides class, rather than the landslide debris class.  
While eventually the landslide and landslide debris classes will be combined to compute 
landslide density, subsequent rules (e.g. Rule 4) will attempt to identify landslide debris 
based on their proximity to landslide objects.  The success of these subsequent rules 
requires application of Rule 2 such that the majority of the landslide area is classified in 
the landslides class.  The relative border refers to the percentage of the total border length 
of an object which borders objects of another particular class.  As most landslides are 
surrounded by vegetation, this rule re-classifies darker landslides as landslides rather than 
landslide debris.  Generally, the rule did not inadvertently re-classify agricultural areas as 
landslides because agricultural areas are typically surrounded by little or no vegetation.   
 
Rule 3: All landslide debris objects adjacent to landslides are re-classified as landslides.  
Because the landslide debris class represents a different spectral response than the 
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landslides class, this rule re-classifies landslide debris objects as landslides if they are 
directly adjacent to a landslide object.   
 
Rule 4: All “other” objects with a relative border to landslide objects greater than or 
equal to 20% are re-classified as landslides.  Because some omission errors in the 
landslide debris class exist (i.e. landslide debris objects are classified as “other”), this rule 
seeks to include these objects in the landslides class.  This rule re-classifies all “other” 
objects as landslides if they share 20% or more of their border with landslides.  Rule 4 
significantly increases the landslide area, because many of the objects classified as 
“other” which border landslides are now classified as landslides. 
 
Rule 5: All landslide debris objects occurring more than 120 m from the nearest landside 
object are re-classified as “other”.  This rule seeks to remove commission errors within 
the landslide debris class, because agricultural areas are often incorrectly classified as 
landslide debris.  Because landslide debris is generally very close to an area classified as 
landslides, this rule was selected to remove incorrectly classified objects occurring at 
distances of 120 m or more from a landslide object.    

 
Accuracy Assessment 

The accuracy of the object-oriented classification was assessed using site-specific, non-site 
specific, and qualitative accuracy assessments, following nearly the same procedure as the 
accuracy assessments utilized for the pixel based classifications.  However, because only four 
final classes were used instead of eight, slight differences exist in the computation of the site-
specific and non-site specific accuracies. 

Site-specific accuracy was computed using the same ground truth data as the pixel-based 
classifications.  However, the simpler class hierarchy necessitated the combination of several of 
the ground truth classes.  The separate vegetation and shadows classes were combined into a 
single vegetation/shadows class.  The agricultural, muddy water, water, and urban classes were 
combined to create the “other” class.  The landslides and landslide debris classes were not 
altered.  As a result, roughly 2,000 pixels of ground truth were available for the vegetation and 
shadows classes, 4,000 pixels were available for the “other” class, and 1,000 pixels each were 
available for the landslides and landslide debris classes. 

The confusion matrix for the object-oriented classification (Table 5) shows an overall 
accuracy of 78.9% and a kappa coefficient of 0.68.  The landslides class exhibits remarkably low 
confusion, with 94% of the ground truth pixels correctly classified.  Confusion is highest within 
the landslide debris class, principally between the landslides class and the “other” class, with 
44.7% of the ground truth pixels of the landslide debris class being classified as landslides and 
39.0% being classified as “other”.  Omission errors were very high within the landslide debris 
class, with 89.8% of the landslide debris ground truth pixels being classified as another class.  
Both the landslides and landslide debris classes exhibited similar commission errors, of 52%.  
However, these poor values are not truly representative of the actual accuracy, as many areas 
which spectrally resemble the landslide debris class were included in the landslides class due to 
rule implementation.  The true accuracy to a user in the field is significantly higher, as landslides 
and landslide debris represent the same type of land cover, and discrimination between the two 
classes is not important for the production of a useful classification.  
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Table 5. Four class confusion matrix, object-oriented classification 
 Ground Truth   
 Landslides 

Landslide 
D

ebris 

O
ther 

Vegetation 
and Shadow

s 

C
om

m
ission 

Error 

O
m

ission 
Error 

 
 

Classification 

Landslides 93.6 44.7 14.0 0.0 52.0 6.4 
Landslide Debris 0.0 10.2 2.8 0.0 52.1 89.8 
Other 6.0 39.0 82.1 0.0 12.1 17.9 
Veg. & Shadows 0.4 6.1 1.1 100 5.2 0.0 

Total Accuracy 78.9 Kappa Coefficient 0.68  
 
To more accurately assess landslide identification, a confusion matrix was generated that 

combines the landslides and landslide debris classes in both the classification and ground truth 
data for a site specific accuracy assessment (Table 6).  In this case, the overall accuracy increases 
to 84.6%, due to the reduction in errors between the landslides and landslide debris classes.  
However, the landslide and landslide debris classes were left separate in the interest of the final 
user of the classification.  Objects classified as landslides have a much higher probability of 
actually being landslides than the objects classified as landslide debris because they may be 
agricultural areas that were not removed through implementation of the post-classification rules.  
The combination of the classes increases the total errors within the landslide class, with only 
74.2% of the ground truth pixels of the combined landslide and landslide debris class correctly 
classified, compared to 93.6% of the landslide only ground truth pixels being correctly classified 
as landslides when the classes are left separate.  

 
Table 6. Three-class confusion matrix, object-oriented classification 

 Ground Truth   
 Landslides 

Vegetation/     
Shadow

s 

O
ther 

C
om

m
ission 

Error 

O
m

ission 
Error 

 
 

Classification 

Landslides 74.2 0.0 16.8 31.1 25.8 
Veg. & Shadows 3.2 100 1.1 5.2 0.0 
Other 22.6 0.0 82.1 12.1 17.9 

Total Accuracy 85.6 Kappa 
Coefficient 0.76  

 
A non-site specific accuracy assessment in the form of a landslide density comparison 

between the object-oriented classification and the GSI landslide map was performed (Figure 13).  
The landslide and landslide debris classes were combined when computing landslide density.  
Approximately 74.1% of the blocks exhibited classified landslide densities within +/- 5 
percentage points of the landslide map.  For mapped landslide densities less than approximately 
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13%, the classified and mapped landslide densities agree well.  For mapped landslide densities 
above approximately 13%, the classification tends to underestimate landslide area considerably. 

A qualitative accuracy assessment of the object-oriented classification was performed by 
visually examining and comparing the classification to the true-color IKONOS multispectral 
imagery.  Overall, it was found that the object-oriented classification identified landslides well, 
with relatively few classification errors. Figure 14 shows a portion of the classified and the true-
color imagery for the same spatial area.  The classification identifies nearly every landslide 
visible in the imagery, with only minor amounts of confusion between the landslides class and 
other types of land cover.  Additionally, most of the landslides are identified in their entirety 
rather than as a combination of landslides and landslide debris.  

Examination of the entire classified image shows that the object-oriented classification 
accurately identifies medium to large-sized landslides appearing as brightly-colored areas of 
stripped vegetation.  However, smaller landslides, covering approximately 1500 m2 or less, are 
sometimes omitted from the classification.  This occurs because small landslides are typically 
below the heterogeneity threshold used in the formation of image objects, and therefore were 
lumped into image objects consisting of other land cover types, such as vegetation and shadows.  
Further examination of the classification reveals some confusion between the landslides class 
and muddy water, generally consisting of commission errors within the landslides class.  Several 
errors were also observed where roads were incorrectly classified as landslides.  Commission 
errors within the landslide debris class resulting from confusion with agricultural areas are 
notably absent from the classification, mainly due to the post-classification rules that were 
implemented to improve the overall classification accuracy. 

 

 
Figure 13. Landslide density for the object-oriented classification,  
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Figure 14. Object-oriented classification (right) and multispectral imagery (left) 
 
 

COMPARISON OF PIXEL-BASED AND OBJECT-BASED CLASSIFICATIONS 
To compare the object-oriented classification and the pixel-based classification methods, a 

system was developed to rate the qualitative accuracy of each classification as compared to 
visual interpretation of the multispectral imagery and the GSI landslide map. 

The same 1-km2 blocks used for the non-site-specific accuracy assessments were used for 
this qualitative comparison between methods.  However, the original eight-class hierarchy from 
the pixel-based classifications was revised to a four-class hierarchy by combining the urban, 
muddy water, agricultural, and water classes into an “other” class.  Combining classes was 
required so that all classification methods would employ the same four-class hierarchy as the 
object-oriented classification.  Each 1-km2 block was examined relative to both the original true-
color multispectral imagery and the GSI landslide map, and was rated on its qualitative 
classification accuracy using a five-bin scale, including Very Good, Good, Fair, Poor, and Very 
Poor.  Additionally, the classification method that produced the best relative classification for 
each block was identified.   

Figure 15 displays the classification that was identified as producing the best classification of 
each block.  The object-oriented classification consistently produced the best classification for 
the individual blocks, with 64.7% of the blocks best-classified by the object-oriented method.  
21.7% of the blocks were best-classified by the BHC classification, 7.1% were best-classified by 
the BPC classification, and only 1.2% were best-classified by the MLC classification.  These 
results agree well with the preliminary qualitative accuracy assessments for each of the 
classification methods, although they disagree with the more quantitative accuracy assessments 
(e.g. confusion matrices).  The high rating of the object-oriented classification is primarily due to 

Landslides Landslide Debris Other Vegetation and Shadows



 26

the lack of large-scale commission errors within the landslide debris class caused by confusion 
with agricultural areas.   

 

 
Figure 15. Classification type identified as producing the best classification of each block 
 
A more detailed analysis of the object-oriented classification (Figure 16) shows that 14.1% of 

the blocks were rated as very good and 43.5% were rated good, resulting in 67.6% of the blocks 
being rated good or very good.  24.7% were rated fair, and the remaining 17.6% of the blocks 
were rated as poor or very poor, primarily due to commission errors within both the landslide 
and landslide debris classes, due to confusion with muddy water and agricultural areas, 
respectively.   

 

 
Figure 16. Ratings of blocks classified using the object-oriented method 
 
The rating of the classification produced using the BHC method indicated that only 12.9% of 

the blocks were classified as very good and another 24.7% were classified as good, leading to 
36.6% of the blocks being classified as good or very good.  The percentage of blocks classified 
as good or very good drops by nearly half, from 67.6% to 36.6%, as compared to the object-
oriented analysis.  37.5% of the blocks were classified as fair and the remaining 25.9% of the 
blocks were classified as either poor or very poor.  This indicates that the BHC method produces 
a lower quality classification than the object-oriented method.   

The ratings of blocks classified using the BPC method indicates that only 2.4% of the blocks 
were classified as very good and another 20% were classified as good, leading to 22.4% of the 
blocks being classified as good or very good.  35.3% of the blocks were classified as fair and the 
remaining 42.4% of the blocks were classified as poor or very poor.  This result indicates that the 

64.7%
1.2%

7.1%

27.1%

Object-Oriented

BPC

MLC

BHC

14.1%

43.5%

24.7%

12.9%
4.7%

Very Good

Good

Fair

Poor

Very Poor



 27

BPC method produces a lower quality classification than either the object-oriented or BPC 
classifications. 

The ratings of the blocks classified by the MLC method indicated that only 3.5% of the 
blocks were rated very good and 18.8% of the blocks were rated good, leading to 22.3% of the 
blocks being rated good or very good.  35.3% of the blocks were rated fair and the remaining 
42.3% of the blocks are rated poor or very poor.  This result indicates that the MLC method 
produces a lower quality classification than the object-oriented, BHC, and BPC methods.   

Figure 17 shows all classification methods over the same spatial area, along with the 
multispectral imagery and interpreted GSI landslide map.  Immediately obvious is the very large 
prevalence of commission errors in the landslide debris class with the MLC method.  The BPC 
method produces a similar classification as the MLC, but with fewer commission errors.  Out of 
the pixel-based methods, the BHC has the lowest prevalence of commission errors within the 
landslide debris class, yet it tends to correctly classify only portions of landslides. The object-
oriented classification has few commission errors within the landslide debris class compared to 
the other methods, and also identifies most landslides in their entirety.  There are, however, some 
commission errors within the landslides class, due to confusion with muddy water. 
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CHANGE DETECTION OF LANDSAT IMAGERY 
 
Change Detection Analysis 

Data collected from the LANDSAT 7 ETM+ sensor was used to perform a change detection 
analysis over the area affected by the Niigata-Ken Chuetsu earthquake in an effort to identify the 
earthquake-induced landslides.  Pre- and post-event data were collected on July 5, 2004 and 
November 10, 2004, respectively.  These dates were selected because data acquired on dates 
closer to the earthquake were badly cloud covered.  The area affected by the earthquake is 
included within a single LANDSAT scene, and the imagery exhibited no cloud cover over the 
area of interest in the pre-event data and very little could cover in the post-event data.  

Band selection for change detection analysis focused on determining which spectral band 
best identified changes in reflectance caused by the removal of vegetation and the exposure of 
bare soil and rock.  To determine which band best identifies landslides, red-green-blue change 
detection images (i.e. pre-event imagery loaded as blue and green bands and post-event imagery 
loaded as the red band) were produced using the visible light, NIR, and MIR bands (Figure 18).  
Increases in the band reflectance will appear red, decreases will appear blue-green, and no 
change will appear in gray scale.  Examination of the resulting images shows that the red band 
best identifies landslides from the surrounding land covers (Figure 18c).  The green and blue 
bands both work reasonably well for landslide identification (Figures 18a and b), but the changes 
in reflectance caused by the removal of vegetation appear larger when the red band is used 
relative to the other visible light bands (Figure 18c).  Landslides are either faintly or not 
observable using the NIR and MIR bands (Figure 18d and e), most likely due to changes in 
reflectance caused by seasonal changes in vegetation.  This effect can be seen between the pre- 
and post-event true-color imagery (Figure 18f and g), as vegetation appears much greener in the 
pre-event imagery.  As a result, the red band was selected for the change detection analysis. 

Reflectance conversion was performed on both pre- and post-event imagery to utilize the 
data in its most robust format.  Histogram matching was also performed by matching the post-
event imagery to the pre-event imagery.  Histogram matching was performed so each image 
would exhibit similar brightness distributions, causing landslides to exhibit the largest possible 
changes in reflectance relative to other land covers.  Figure 19 shows red-green-blue change 
detection images produced using both original and histogram matched imagery.  In Figure 19, 
the landslides stand out from the surrounding terrain far better when histogram matching is 
performed.   
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                         (a)              (b)    (c)  

  
                                           (d)             (e)  

  
             (f)              (g) 
Figure 18. RGB change detection images derived from (a) blue, (b) green, (c) red, (d) NIR, and 

(e) MIR data.  (f) Pre-event and (g) post-event true color multispectral imagery.  Scene size is 9.6 
km by 10.9 km 
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                                  (a)                (b) 
Figure 19. Red-green-blue change detection images produced on the red band, using (a) original 

and (b) post-to-pre-event histogram matched data.  Scene size is 9.6 km by 10.9 km. 
 

The red-green-blue change detection images indicated that changes in reflectance in the flat-
lying alluvial areas near the two large rivers in the area were sometimes similar to landslides 
(note red areas close to rivers in Figure 19b).  Because landslides cannot occur in these flat areas, 
these areas were masked from the final change detection analysis.  A difference map (Post minus 
Pre) was produced at intervals of reflectance changes of 0.02 (e.g. 0.00 to +0.02, +0.02 to +0.04, 
etc.) from the post- and pre-event imagery.  Figure 20 shows areas defined as landslides using 
change detection thresholds of >+0.10, >+0.14, and >+0.18, overlain on the post-event 
multispectral imagery.  The change detection threshold of >+0.10 tends to overestimate landslide 
area when compared with observations from the pre- and post-event multispectral imagery, while 
the threshold of >+0.18 tends to underestimate landslide area.  A change detection threshold of 
>+0.14 change in reflectance was selected to identify landslides, as it accurately identified most 
landslides while minimizing commission errors between landslides and other types of land cover.   
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                         (a)              (b)    (c)  

  
             (f)              (g) 

Figure 20. Change detection thresholds of (a) >+0.10, (b) >+0.14, and (c) >+0.18, overlain on 
post-event multispectral imagery.  (d) Pre-event and (e) post-event true color multispectral 

imagery.  Scene size is 9.6 km by 10.9 km.  
 

Accuracy Assessments 
The effectiveness of the change detection analysis was evaluated by performing a non-site-

specific accuracy assessment utilizing ground truth data in the form of the GSI landslide map.  
The qualitative accuracy was evaluated through visually inspecting the landslides identified by 
the analysis relative to the multispectral imagery.  

The non-site-specific accuracy of the landslide map produced by the change detection 
analysis was evaluated by comparing the total landslide area obtained from the analysis to that 
obtained from the GSI landslide map.  The change detection analysis identified 2.66 km2 of 
landslide area, compared to 6.30 km2 identified by the GSI landslide map.  The identified 
landslides from these two datasets are shown in Figure 21.  Overall, the change detection 
analysis tends to produce landslide distributions similar to that shown in the GSI landslide map, 
although the GSI landslide map identifies over twice the landslide area as the change detection 
analysis.  Examination of Figure 21 shows that the differences are primarily due to the 
differences in the size of landslides shown in each method, rather than the lack of identification 
of landslides in the change detection analysis.  The landslides appear much larger in the GSI 
landslide map than in the multispectral imagery, typically due to large portions of the mapped 
landslides being covered with displaced vegetation, which leads to no change in reflectance 
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relative to the land cover before the earthquake occurred.  Despite the large difference in total 
landslide area, the landslide map derived from the LANDSAT data shows a consistent trend of 
landslide distribution relative to the JGSI map.  Specifically, the larger density of landslides in 
the eastern section of the imagery is identified. 

 

 
(a) 

 
(b) 

Figure 21. Landslide distributions from (a) LANDSAT change detection analysis and (b) GSI 
landslide map.  Landslides overlain in red.  Scene size is 9.6 km by 10.9 km. 
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Qualitative accuracy assessment via examination of the landslide distribution from the 
change detection analysis overlain on the post-event imagery (Figure 22) reveals that the change 
detection analysis accurately identifies landslides which stripped away vegetation from hillsides 
across the imagery.  No landslides visible in the imagery appear to be omitted from the change 
detection analysis; however the coarse resolution of the data and relatively small spatial areas of 
landslides makes visual identification of smaller landslides in the imagery somewhat difficult.   

 

 
Figure 22. Post-event LANDSAT true-color imagery with landslides obtained from change 

detection analysis overlain in red.  Scene size is 9.6 km by 10.9 km. 
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CONCLUSIONS 
 

This report presents the methodology, results, and assessment of the use of remotely sensed 
imagery for mapping landslides caused by the 2004 Niigata-Ken Chuetsu, Japan earthquake.  
The main goals of this research were to explore the use of semi-automated techniques to produce 
post-disaster damage maps showing the locations of landslides caused by earthquakes.  Visual 
interpretation of post-event imagery, semi-automated classification of post-event imagery, and 
change detection analyses between pre- and post-event imagery were explored for their relative 
ease of use and accuracy.  

Post-event high-resolution imagery for the Niigata-Ken Chuetsu earthquake from the 
IKONOS satellite sensor was classified using pixel-based (MLC, BPC, and BHC) and object-
oriented classification techniques.  Out of the pixel-based classification methods, the BHC 
produced the highest-quality classification.  Both the BPC and MLC methods exhibited 
substantial amounts of confusion between agricultural areas and the landslide debris class, with 
the BPC method exhibiting slightly less confusion.  The BHC method, however, produced far 
fewer commission errors within the landslide debris class, which is the principal reason for its 
selection as the best pixel-based classifier used in this research.  The object-based classification 
produced a superior assessment of the landslide distribution relative to the pixel-based methods.  
The improved identification of landslides is mainly due to the application of post-classification 
rules that move incorrectly classified objects to their correct class based on their relationship to 
the classification of other objects. 

Landslide density comparisons between the classified post-event imagery and the GSI 
landslide map showed that all classification methods substantially underestimated landslide 
densities, particularly at larger landslide densities (i.e., greater than 10 to 15%).  However, these 
large differences in the mapped and classified landslide densities were caused by the fact that 
many of the landslides were covered by some or significant vegetation.  Due to this discrepancy, 
the landslide density derived from classification methods should only be considered a 
preliminary assessment of the landslide density.  Manual interpretation of the full landslide 
extents should follow the semi-automated assessments. 

Although the semi-automated classification methods were able to provide decent estimates of 
landslide distributions, they have many shortfalls.  The amount of time required to define a class 
hierarchy, perform classifications of the imagery, and troubleshoot the classifications was found 
to be far greater than the amount of time required to manually interpret the imagery.  
Additionally, manual interpretation is often more accurate than semi-automated classification.   

Change detection analysis was performed using pre- and post-event imagery from the 
LANDSAT satellite (28.5 m spatial resolution) for the Niigata-Ken Chuetsu earthquake.  The 
low spatial resolution of the LANDSAT data allowed landslides to be mapped over large areas in 
a short amount of time.  Change detection analyses are fundamentally simple to perform in that 
accurate class hierarchies and classification schemes do not need to be developed.  Rather, 
change detection analysis only involves data pre-processing and the determination of a change 
detection threshold.  The spatial distribution of landslides produced by the change detection 
analysis is similar to that found in the GSI map, indicating that the change detection analysis was 
generally effective for determining broad landslide distributions in this area.  However, the total 
area of landslides was underestimated relative to the GSI map.   

For imagery analysis of future earthquakes exhibiting a large amount of earthquake-induced 
landslides, it is recommended that low to medium resolution data, such as LANDSAT, be used 
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for quick, large-scale landslide mapping.  Manually interpreted high-resolution data can be used 
for mapping smaller areas in greater detail.  Semi-automated post-event classification is often too 
time consuming to be of use for landslide mapping, as manual interpretation can be performed 
far quicker and more accurately. 
 
 
REFERENCES 
Campbell, James B. 2007. Introduction to Remote Sensing. New York: The Guilford Press 
Crawford, M.M., S. Kumar, M.R. Ricard, J.C. Gibeaut, and A. Neuenschwander 1999. “Fusion 

of Airborne Polarimetric and Interfermetric SAR Data for Classification of Coastal 
Environments,” IEEE Trans. Geoscience and Remote Sensing, vol. 37, 1306-1315. 

Geographical Survey Institute of Japan. 2004. “Disaster Map – October 23, 2004 Niigata-Ken 
Chuetsu Earthquake at 1:30,000 scale”. (2004. In Japanese) 

Keefer, David K. 2002. “Investigating Landslides Caused by Earthquakes – A Historical 
Review.” Surveys in Geophysics 23: 473-510. 

Kieffer, D.S., Jibson, R., Rathje, E.M., and Kelson, K. 2006. “Landslides triggered by the 2004 
Niigata Ken Chuetsu, Japan, Earthquake” Earthquake Spectra 22 (S1): S47-S73. 

Kumar, S., Crawford, M.M., and Ghosh, J., 1999 “A Versatile Framework for Labeling Imagery 
with a Large Number of Classes,” Proceedings of the International Joint Conference on 
Neural Networks Washington, D.C., July 10-16. 

Kumar, S., Ghosh, J., and Crawford, M.M., 2002. “Hierarchical Fusion of Multiple Classifiers 
for Hyperspectral Data Analysis,” International J. Pattern Analysis and Applications vol. 
5, no.2, pp. 210-220. 

Rathje, E.M., Kayen, R., and Woo, K.S. 2006 “Remote Sensing Observations of Landslides and 
Ground Deformation from the 2004 Niigata Ken Chuetsu Earthquake.” Soils and 
Foundations, Japanese Geotechnical Society 46(6):831-842. 

Scawthorn, C. and Rathje, E.M. 2006. “The 2004 Niigata Ken Chuetsu, Japan, Earthquake.” 
Earthquake Spectra 22 (S1): S1-S8. 

 
PUBLICATIONS RESULTING FROM THIS WORK (TO DATE) 
Carr, Lucas (2009)  The Application of Remote Sensing for Mapping Earthquake-Induced 

Landslides from the 2008 Wenchuan, China and 2004 Niigata-Ken Chuetsu, Japan 
Earthquakes, M.S. Thesis, University of Texas, Austin, TX, 298 pp. 

 


