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Abstract 

The goal of this proposal is to develop a system identification tool to estimate structure 
and site dynamic properties for the purpose of creating the baseline soil-structure-interaction 
(SSI) model for Robert B. Atwood Building (AB), using state-of-the-art system identification 
and modeling techniques for the building structure and soil site.   

Field experience has shown that SSI can mitigate the most violent seismic accelerations 
experienced during severe earthquakes but can also create unpredictable impacts to large mat 
foundation systems. Current understanding of SSI is limited, and methods for including SSI 
effects in building design and analysis are limited to a few simple procedures identified in 
building codes (NEHRP 2003 and ASCE 7-02).   

One of the major contributing factors to the lack of understanding of SSI effects is the 
limited availability of strong motion data from building instrumentation directly accompanied by 
seismic motion data of the adjacent soil.  The AB and the surrounding site have been 
electronically monitored to record motion during seismic events.  While the NSF EPSCoR 
program sponsored an adjacent downhole array construction, the building and the downhole 
array were fully instrumented through the Advanced National Seismic System (ANSS) of the 
U.S Geological Survey. The building is instrumented to capture horizontal motion in two 
directions on ten floors. Vertical and rocking motion is captured by three sensors. This 
instrumentation presents an enormous opportunity for investigation and research of SSI effects.   

Beyond building and site instrumentation, one of the most critical requirements for SSI 
investigation is the development of a computerized tool to estimate the existing structure and soil 
dynamic properties for the purpose of generating accurate and reliable analysis models for the 
soil-structure system. The objective of the project is to develop a system identification tool to 
identify the structure and site dynamic properties. To achieve this objective, we apply novel 
approaches to: (a) develop a simplified two-dimensional shear-bending type structural model 
suitable for the AB; (b) generate a systematic procedure to complete the structural response data 
from the incomplete recorded data set; (c) develop the system identification tool based on the 
extended Kalman filter (EKF) for single-input multi-outputs (ground-input story-response-
outputs) conditions for the purpose of estimating the inter-story stiffness for a low-rise multi-
story structure; (d) develop the system identification tool for a simplified shear-bending chain 
type structure, like the AB, to estimate the inter-story stiffness from the recorded seismic 
response data;  (e) develop the system identification tool based on the extended Kalman filter 
(EKF) for single-input multi-outputs (bedrock-input downhole-array-outputs) conditions to 
identify the stiffness for layered soil sited. The outcome from this project will provide a tool to 
create simplified structural and site models the AB and similar building in future SSI analysis. 
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1. Introduction 

Assessments of seismic loading for structures must appropriately characterize interaction of 
soil with the structure (SSI). The extent to which the SSI alters the system response varies from 
negligible to profound and is mostly dependent on the stiffness of the soil relative to the 
structure. Many critical questions concerning the dynamic response of SSI systems and failure 
characteristics in an in-situ environment remain unanswered. Simplified substructure-based SSI 
provisions are included in the National Earthquake Hazard Reduction Program codes (NEHRP 
2003; Holmes 2000; ASCE 7-02 2003), but these provisions need to be calibrated against field 
performance data. Quantitative understanding of the effects of ground motion on SSI systems 
can be achieved only by the instrumental measurements of the dynamic response of the SSI 
systems during an earthquake. Many important buildings and structures throughout the United 
States have been instrumented for quantitative measurements of the response and to provide 
detailed understanding of the SSI effect (Celebi, 2000; 2005; 2006).  

 
Anchorage and its surrounding areas belong to one of the most seismically active hazard 

zones in the world. The 0.2 second spectral response acceleration (5% of critical damping) is 
around 1.65g (maximum considered earthquake ground motion) with 2% probability of 
exceedence in 50 years (NEHRP 2003). The megathrust zone lies at a depth of about 35 km 
beneath Anchorage; the Great Alaska Earthquake (MW=9.2) of 1964 was located along this zone. 
The region suffered widespread damage during this great earthquake due to the extensive ground 
shaking.  Various types of soil-related failures occurred including soil liquefaction, subsidence, 
consolidation, cracks, and sand spouts. The typical soil conditions and frequent earthquakes 
make Anchorage an idea place for SSI investigation.  

 
Instrumental measurements should include ground surface, subsurface and structure. In 

Anchorage and the surrounding area, the surface instrumentation network has almost completed 
with more than 40 accelerometer stations on the surface and one station at the hard rock. Several 
instrumented structures include a long bridge, several steel moment frame buildings and one 
multi-story reinforced concrete building. Among these, a 20-story office building, the Robert B. 
Atwood Building (AB) was fully instrumented with 36 accelerometer channels at 10 level in the 
building plus 21 channels in the downhole array near the AB. The completion of the downhole 
array and AB instrumentation makes the system unique for SSI investigation in the natural 
seismic laboratory of Alaska. The proposed project will be a part of efforts of SSI study focusing 
on modeling technique of SSI systems, typically for modeling of the AB downhole array and the 
building system.  

 
There are great analytical challenges in the development of appropriate nonlinear SSI 

modeling techniques. This project is focused on meeting these challenges utilizing the well-
instrumented AB. In this proposal, a new identification tool using the extended Kalman filter 
(EKF) will be developed to identify the structural and site dynamic properties with the recorded 
seismic data from the instrumented building and downhole array.  

 
The identification approach will play a significant role in the calibration of the Finite 

Element (FE) models for the structure of the AB, in the observation of its site response variations, 
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and in the identification of possible damage of the building or unsatisfactory performance of soil 
in future damaging earthquake events.  

 
 
2. The Building and Site Description 

2.1 The Building and Site  
The AB is a steel framed building; the lateral resisting system consists of steel moment resisting 
frames and interior steel shear walls.  The foundation system consists of a concrete mat. The AB 
in the downtown area of Anchorage is owned by the State of Alaska and was designed in 1981 
based on UBC 1979 Edition. The structure is 20 stories (including the mechanical & electrical 
floors, plus a basement that is used for parking) and 81.1m high, 40 m x 40 m square in-plane 
moment resisting steel frame (MRF), with a 15m x 15m in-plan center steel-shear walled core. 
Typical elevation view and floor plan of the building is illustrated in Fig. 2. The foundation 
consists of a 1.5m thick mat below the core and a 1.37m thick mat at the perimeter of the 
building plan that changes on each end with width between 3.4m and 3.7m. The exterior and 
core mats are interconnected with grade beams (Fig. 3).  

 
Building location belongs to site class D with site amplification factor of about 3.0 at 1 Hz 

(Dutta et al. 2000; Martirosyan et al. 2002). The site soil profile consists of layered glacial, 
fluvial, stillwater, and colluvial deposits. The soil profile with shear wave velocity at the AB site 
is shown in Fig. 4. Extensive investigation has been conducted on this site. Nine boreholes with 
the depth varying from 12m to 31m were drilled and logged before the construction of the 
building. Two testing holes were drilled and sampled to test the soil properties in 1981. Seven 
boreholes have been recently finished at a site close to the building to install the downhole array, 
with the deepest extending to the depth of 61m. The site can roughly be divided into five layers. 
The first layer is about 11m thick and consists of poorly graded sand and gravel. The second 
layer extends from 11m to 21m and is mainly composed of silt and lean clay. The third layer 
reaches 35m depth and is mainly consists of glacial deposits of interbedded clay, silt and sand, an 
important Quaternary unit of the Anchorage basin, called the Bootlegger Cove Formation (BCF). 
This type of soil, with a width of several kilometers, underlies lowland areas in west-central 
Anchorage, including downtown area, lost shear capacity due to the seismic shaking, resulting in 
ground failure and a graben in downtown Anchorage during the 1964 Great Alaska Earthquake. 
Below 35m, the soil is stiff with layered silt, sand and clay. Starting from 52m, older, dense and 
hard glacial till is observed and extends to the bottom of boring. These represent typical site 
conditions for downtown Anchorage.  Because of the presence of the soft clay layer beneath the 
building foundation, SSI effects at the AB are expected to be significant and pronounced.  Thus, 
the AB site is an excellent candidate for study of SSI effects.  
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Fig. 2 Typical elevation and plan views of the AB: 

(a) Elevation (b) Parking Garage (c) Typical Floor. 

Fig. 3 Sketch of the foundation of 
the AB.

(a) 

(b)

(c)

 

 

2.2 The Building and Downhole Instrumentation 
The instrumentation of the AB was completed in 2003 under the Advanced National 

Seismic System (ANSS) program of United States Geological Survey (USGS) (Celebi, 2003; 
Celebi et al, 2004). The 32-channel seismic sensors (CH 1 – CH 32) are located in the basement 
garage and on the 1st, 2nd, 7th, 8th, 13th, 14th, 19th, 20th and 21st (roof) floors of the building, as 
shown in Fig. 5. Among the sensors, there are 29 2g-uniaxial (ES-U) and one tri-axial (ES-T) 
Force Balance Accelerometers (Episensors of Kinemetrics) with 1.25V/g sensitivity. The ES-T is 
located at the northwest corner of the basement. As can be seen from Fig. 5, in the parking 
garage view, there are two vertical accelerometers in the northeast and southwest corners, 
respectively. These two sensors are able to capture the rocking vibration of the building. As 
shown in the typical floor view in the same figure, two orthogonal accelerometers (north-south 
and east-west) are placed at the east side and one accelerometer (north-south) is at the west side 
of the building at each floor. This configuration is used to record torsional oscillation of the 
building. 
 

There are three recorders in the data acquisition system, which are housed on the 18th floor 
of the building. Three telephone lines, each attached with an individual unit, are installed to 
enable remote access to each of the three recorders. Each recorder is connected with an 
individual GPS receiver located at the roof of the building, for timing purposes. The recorded 
signal from each recorder is sampled at 200 samples/sec. The recorders are operated in trigger 
mode with triggering thresholds varying from 1 gal at the basement to 40 gal at the roof level. 
The recorder (Recorder #1) connected to the ES-T at the basement has been assigned as the 
Master unit and is connected with other two recorders (Recorders #2 and #3) by a Master-slave 
connection.  
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(including the most recent measurement). kv  and kw  are the expected noise level at time k. The 
linearization coefficients are partial derivatives of the functions f  and  with respect to the 
state and noise variables: 
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The EKF algorithm consists of two main steps: (1) an update step where the current state 
estimate ˆkx  is adjusted based on the most current observed data ky  and the previous state 
prediction, kx ; (2) a prediction step where the next state 1+kx  is predicted based on the most 
current state estimate ˆkx . These two steps can be expressed in the following equations:  
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here, ( )R k  and  are covariance matrices of the noises  and , respectively. ( )Q k kw kv ( )P k  and 

 are the predicted and updated covariance matrices, respectively, for the state variableˆ( )P k kx . 
The EKF works by applying the two equations in (5) alternatively and recursively in k, thus 
obtaining the best state estimate for each time step k as new observed data become available. 
 

The EKF relies on linearization of the state space and observation equations, which 
requires computation of partial derivatives. Since the computation of partial derivatives can be 
expensive for complicated nonlinear functions, the EKF in the form of Eqs. (5) and (6) may not 
be suitable for complex nonlinear systems. However, the derivatives can be replaced by finite 
differences, and a “derivative free” EKF can be developed and applied to soil property 
identification efficiently. This technique is briefly reviewed in the following section. 
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3.2 The First-Order Polynomial Approximations  
 

Nφrgaardetc. (2000 a and b) developed polynomial approximations obtained with an 
interpolation formula for derivatives of state estimators in nonlinear systems. In this method, the 
estimators become more accurate than those based on Taylor approximations, and yet the 
implementation is significantly simpler as no derivative computation is required. Thus, it is 
believed that estimators derived in this way can replace the extended Kalman filter in most 
practical applications. In this study, first-order polynomial approximations are adopted to replace 
linearizations of the EKF method. The following is a brief description of the “derivative free” 
first-order polynomial approximations. 
 

The four linearization coefficients in Eq. (3), expressed in Eq. (4) as the partial derivatives 
of the functions f and g with respect to the state and noise variables are simplified by the first-
order difference approximations. Because all variables are actually vectors, these four 
coefficients are actually matrixes. They are expressed as (h being the difference step):  
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where the { } represents a single column in the matrix. )(),(),(),(ˆ kAkAkAkA ywxyxvxx  and 
corresponds to and in Eq. (4). The )(),(),( kGkFkF xvx )(kGw vxx sss ,ˆ,  and  is the Cholesky 
factors of the covariance matrixes, respectively. The jth columns of 

ws

xs and  are denoted by xŝ jxs ,

and respectively, and similarly for other factors. Then jxs ,ˆ PRQ ,, and P̂  in Eq. (6) are defined as 
follows: 
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To estimate the state space parameters, we first substitute the coefficients obtained from Eq. 

(7) into Eq. (8), and then substitute the results of PRQ ,, and P̂  from Eq. (8) into Eq. (6). 
Subsequently, substitute the results obtained from Eq. (6) into the first part of Eq. (5) to evaluate 
the values of state parameters of kth step. The state parameters at (k+1)th step can be obtained 
from the result at  kth step using the second part of Eq. (5).  In this way, the state parameters at all 
steps can be evaluated recursively.    

6 
 



 
 

 
4.  Modeling and Identification Procedure 
 

The objective of the project is to develop an identification tool for identifying the structural 
and site dynamic properties. The research work includes the following tasks: 

 
(a) develop a simplified two-dimensional (2D) shear-bending model for the actual three-

dimensional (3D) complicate structure;  
 

(b) develop a numerical interpolation procedure to generate more complete response data 
for the purpose of structural identification by EKF;  

 
(c) develop a structural identification procedure for the inter-story stiffness of shear type 

low-rise multi-story structures using the Extended Kalman Filer (EKF) using the single-
input multi-outputs approach, using an example of ground-input five-level-outputs; 

 
(d) develop a single-degree-of-freedom (SDOF) uncoupling technique combining with the 

EKF for the purpose of the identification of inter-story stiffness and damping for high-
rise building structures, like AB; and 
 

(e) develop the system identification tool by the EKF for the soil site (bedrock-input 
downhole-array-outputs conditions) using the recorded data from seismic events at the 
downhole array of AB. 

 

The detailed modeling and identification procedures are organized in the following Appendixes:  
 
Appendix A  
Simplified Two-Dimensional Shear-Bending Structural Model  

Appendix B 
Method of Displacement Interpolation at Intermediate Non-Instrumented Levels 
 
Appendix C 
System Identification of the Inter-Story Stiffness for Shear Type Low-Rise Multi-Story 
Structures Using the Extended Kalman Filer  
 
Appendix D  
System Identification of the Inter-story Stiffness for High-Rise Building Structures Using the 
Extended Kalman Filer and Recorded Seismic Data 
 
Appendix E  
System Identification of Model Parameters for Layered Soils Using the Extended Kalman with 
the Recorded Seismic Data from the Downhole Array of Atwood Building (AB) 
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5.  Conclusion 
 

The identification procedure developed in this study resolves the problems encountered in 
applying the MDOF shear model to simulate the multi story and high-rise building structures and 
layered soil conditions in SSI and site-dependent seismic dynamic response analyses.  

 
The simplified 2D shear-bending model is adopted for AB structural in this study; and the 

MDOF shear model is adopted to simplify the soil continuous medium.  The model parameters 
are identified by the EKF technique with DD1 procedure using recorded seismic data. The 
system identification tool was developed for low-rise multi-story and high-rise building 
structures and layered soil sites. The identification tool can be used for identification of structural 
dynamic properties of the building like the AB and the soil properties beneath the building. The 
conclusions from the project include the followings: 
 

(1) Prior to the system identification procedure, a complicated three-dimensional structural 
model has to be simplified. Therefore, a simplified two-dimensional model of the 
building AB was developed based on a shear/flexure type structure.  
 
In this study, using a simplified 2D mode for a multistory or a tall building subject to 
dynamic loads, the AB structure is approximated as linked flexural and shear structures. 
The approximate method of estimating floor accelerations was applied to calculate 
displacements along the height of the AB.  Good agreement between the recorded and 
calculated displacements was achieved. 
 

(2) In order to develop a more continuous representation of the response along the height of a 
multi-story or a tall building, information about the motion of intermediate, non-
instrumented floors is desirable.   Using recorded accelerations at instrumented floors of 
the building, the displacements at intermediate floors were interpolated to develop a 
continuous picture of the motion of the structure along the full height.   

 
The numerical interpolation method using the cubic spline function of displacements for 
intermediate levels was applied for the AB to obtain a complete input and output data for 
the EFK identification procedure.  
 

(3) With regarding the system identification tool, first, a method was developed to identify 
the inter-story stiffness of shear type structures using the extended Kalman filter for the 
low-rise multi-story structures using the single-input multi-outputs approach; an example 
of ground-input five-level-outputs was presented.  

 
Using a simplified 2D, the numerical simulation of the EKF procedure was applied to a 
5-story building. The results show that the modified EKF can identify the inter-story 
stiffness and damping efficiently. Because EKF can track the change of model 
parameters due to structural damage, the modified EKF will be an efficient identification 
tool for structural health monitoring. Comparing the identified stiffness with the initial 
structural stiffness, it is possible to evaluate the structural health condition and possible 
damage in the structure. Based on knowledge of the  condition of the structure, certain 
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preventative measures can be carried out to prolong the service life of the structure and 
prevent catastrophic failure. 
 

(4) Then, the single-degree-of-freedom uncoupling technique combining with the EKF 
identification tool was developed for the purpose of the identification of inter-story 
stiffness and damping for high-rise building structures, like the AB.  
 
A numerical simulation example is given and the comparison between the identified and 
estimated inter-story stiffness are performed. The effects of noise on the identification 
results are also discussed. The results showed that the algorithm and the technology 
presented in this study not only have good identification effectiveness but also have good 
noise robustness.  
 

(5) Finally, the system identification tool by the EKF for the soil site (bedrock-input 
downhole-array-outputs conditions) using the recorded data from seismic events at the 
downhole array of AB was developed. 

 
Using the seismic recorded data from the downhole array, a MDOF shear model was 
successfully adopted in this study to simulate the behavior of layers soil under earthquake 
shaking. An iterative procedure was used to modify the initial values. To a certain extent, 
the procedure can overcome the difficulties in choosing the initial value of parameters in 
the identification procedure. A fourth-order Runge-Kutta method was used to integrate 
state equations to improve the accuracy of state estimator. The parameters of the model 
were identified by the EKF procedure. The results of comparison show that the surface 
acceleration time history simulated by the identified model parameters are better than that 
simulated by the initial model parameters using the general engineering estimation 
method. The results from the identification procedure demonstrate that the EKF 
procedure is practically suitable method to dealing with the layered soil site in SSI and 
site-dependent dynamic response analyses. 
 

(6) The EKF procedure developed in this project can be easily adapted to other type 
structures and soil conditions. As the EKF program matches the recorded outputs, with 
the inputs, the stiffness, mass and damping properties of the system are identified.   
 

(7) Future study to improve the identification procedure and to apply the recorded data for 
different structures, buildings, bridges and site conditions, is still required.  

 
The identification approach will play a significant role in the creation of analytical SSI 

models and in calibration of the Finite Element (FE) models for the structure of AB and its site, 
in the observation of its site response variations, and in the identification of possible damage to 
the building or unsatisfactory performance of soil in the future damaging earthquake events.  
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Appendix A 

Simplified Two-Dimensional Shear-Bending Structural Model 
 

Various simplified modeling methods were developed in the 1960s and 1970s for tall 
buildings.  Heidebrecht and Stafford-Smith (1973) derived the closed form solution to the 
differential equations for a simplified 2D model of a tall building subject to dynamic loads.  The 
structure is approximated as linked flexural and shear beams with uniformly distributed mass and 
stiffness along the height.  A nondimensional coefficient,α, describes the contributions to the 
displacements from pure flexure and pure shear; α = 0 indicating pure flexure, and α = ∞ 
indicating pure shear.  The method relied exclusively on response of the 1st dynamic mode. 

 
Miranda (1999) further developed the simplified 2D continuum model for multistory 

buildings for the purpose of determining displacements for preliminary design of new buildings 
or rapid evaluation of existing buildings.  Modal analysis was incorporated into the method.   
Miranda (2002) derived equations for nonuniform stiffness along the height of the building.  It 
was found that incorporation of decreasing stiffness along the height of the building has a 
practically negligible effect on the calculated displacements.  Miranda (2002) used the method to 
study floor accelerations in real buildings responding to real seismic events.  Further guidelines 
were suggested:  It was found sufficient to use the first three modes of response for most typical 
structures, and typical values for α were provided.  α between 0 and 1.5 was suggested for 
shearwalls and braced frames, α between 1.5 and 5 was suggested for buildings with a 
combination of shearwalls and moment frames, and α between 5 and 20 was given for moment 
frame buildings.   

 
The approximate method of estimating floor accelerations, as developed by Miranda (2005), 

was used to calculate displacements along the height of the AB.  The Miranda method employs 
an assumption of continuous mass and stiffness along the height of the building to develop the 
equation of motion.  The method requires calculating the value for the nondimensional parameter,  

 
 

                               (A.1)
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where H is the building height, G is the shear modulus of the shear walls, Ao is the area of the 
shearwalls, E is the normal strain modulus for bending, and Io is the moment of inertia of the 
bending components.  α  is a measure of the degree to which the building deflection is defined 
by pure flexure ( 0=α ) or pure shear ( ∞=α ).  According to Miranda, buildings with dual 
lateral resisting systems of moment resisting frames and braced frames or shear walls typically 
correspond to 0.5.1 5<<α .  α can be calculated directly for the building under consideration, 
typically using the stiffness properties of the lowest building level.  For the AB, 8.2=α  was 
calculated for the shear-wall/moment-frame system in the east/west direction.  Stiffness 
reduction along the height of the building was ignored.   
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The method then requires solution of the characteristic equation for roots corresponding to 
mode shapes.  The first three mode shapes and modal participation factors were calculated based 
on the mode shape normalized to unity at the top level.    

 
The equivalent modal static response was identified from the response spectra from the 

basement motion using the identified modal periods.   It should be noted that the dynamic 
response for the first mode is very small relative to the 2nd and 3rd modes.  This is due to the 
ground motion being weak and the absence of lower frequencies.  The response to the weak 
ground motion is dominated by higher modes.  Modal displacements were calculated from the 
equivalent modal static response equation:    
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where n is the model number,  is the modal displacement, an is the spectra pseudo-acceleration, 
and  is the modal participation factor.  Modal Participation factors for the AB computed from 
a previously developed three-dimensional Finite Element model are listed in Table A.1:   

nD

nΓ

 
 Table A.1 Modal Participation factors 

Mode Number Modal Participation Factors East-West North-South 

1 Г1 1.471 1.471 

2 Г2 -0.761 -0.761 

3 Г3 0.494 0.494 
 

Pseudo-acceleration for each mode from the response spectra of the small earthquake is listed in 
Table A.2:   

Table A.2   SDOF acceleration for each mode from response spectra 
Mode Number Pseudo-acceleration East-West North-South 

1 a1 (cm/sec2) 0.8 0.5 

2 a2 (cm/sec2) 35.0 25.0 

3 a3 (cm/sec2) 50.0 35.0 
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For the design consideration, the damping ratios used for individual modes are listed in Table 
A.3: 

Table A.3  Damping ratios for individual modes: 
Mode Number Damping Ratio East-West North-South 

1 ξ1 5% 5% 

2 ξ2 5% 5% 

3 ξ3 5% 5% 
 

Square root sum of squares (SRSS) was selected to combine the peak modal responses, 
represented by the solid lines in Fig.s A.1 and A.2.   
 

∑=
m

nDD
1

2)(                                                                                   (A.4) 

                        
Maximum positive and negative recorded relative displacements are plotted at each floor level 
against the calculated displacement.  Good agreement between the recorded and calculated 
displacements was achieved.   Maximum variation is less than 0.1 cm and occurs at levels 6 and 
7.   Fig. A.1 displays East-West displacement.  The solid line shows the calculated maximum 
position; and the samples represent the maximum position from the recorded or interpolated data. 
The recordings are taken at the center of mass.  Fig. A.2 displays the North-South displacement 
recordings taken at the East and West sides of the building.  There is some difference between 
the maximum displacements at each floor level, indicating that the AB is subject to torsional 
motion.    
 

 

Fig. A.1:  East-West Displacement (Relative) 
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 Fig. A.2:  North South Displacement (Relative) 

 

Next, acceleration time history for individual floors was predicted by the simplified method:    

∑
=

Γ+≅
m

i
iiig tDxtutxu

1
)()()(),( &&&&&& φ                                                      (A.5)  

Good agreement between the recorded and predicted values was achieved and is plotted 
in Fig. A.3 for the Roof and Fig. A. 4 for 13th level.  The small differences between the recorded 
and calculated displacements can be attributed to simplifications present in the 2-D model, and to 
the use of only the first three mode shapes. 
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Fig. A.3:  Roof Acceleration (Relative). 

Fig. A. 4: Acceleration (Relative) for 13th level.  
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Appendix B 

Method of Displacement Interpolation at Intermediate Non-Instrumented Levels 
 
In order to develop a more continuous representation of the response along the height of the 
building, information about the motion of intermediate, non-instrumented floors is desirable.   De 
La Llera and Chopra (1998) developed a method using cubic spline interpolation of 
displacements for intermediate levels.   This method was used for the AB. Total acceleration was 
recorded at instrumented levels:  basement, 1st, 2nd, 7th, 8th, 13th, 14th, 19th, 20th and roof.  Total 
displacements were calculated by integrating the total acceleration data twice.   The relative 
displacements at instrumented levels were produced by subtracting the displacement at the 
basement level.  Relative displacements at non-instrumented levels (3rd, 4th, 5th, 6th, 9th, 10th, 11th, 
12th, 15th, 16th, 17th and 18th) were interpolated by a cubic spline function using MATLAB.  
Relative accelerations were then calculated by twice differentiating the displacements.  The flow 
chart of the procedure is shown in Fig. B.1.  
 

Recorded (total) accelerations (BSMT, 1, 2; 7, 8; 13, 14; 19, 20) 

Determine (total) displacements at recorded floors by 
integrating (total) accelerations twice

Calculate (relative) displacements at recorded floors by 
subtracting total displacement at BSMT level 

Calculate (relative) displacements at intermediate levels using 
cubic spline function (3, 4, 5, 6; 9, 10, 11, 12; 15, 16, 17, 18) 

Calculate (relative) accelerations at intermediate levels by 
differentiating (relative) displacements twice

Low Pass Filter 

(Relative) Accelerations 

Fig. B.1:  The flow chart of the interpolation 
 

Fig. B.2 shows an example of the recorded and interpolated data for an earthquake. 
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Fig. B.2:  Recorded and Interpolated Accelerations 
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In Fig. B.2, the horizontal axes are “Time” with unit of second; and the vertical axes are 
“Recorded or Interpolated Acceleration” data with unites of cm/s/s.   
 

Using the interpolated acceleration response data in the following EKF identification 
procedure, the complete the input and output data are available.    
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Appendix C 

System Identification of the Inter-Story Stiffness for Shear Type Low-Rise Multi-Story 
Structures Using the Extended Kalman Filer 

 

The paper, “Identification of the inter-story stiffness of shear type structures using the extended 

Kalman filer”, was published at the “World Forum on Smart Materials and Smart Structures 

Technology” Chongqing & Nanjing, China, May 22-27, 2007 
 
Authors: He Liu, Mansheng Wang, Yibin Zheng and Xiyuan Zhou 
 

See the paper in a separate file.   
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Appendix D 

System Identification of the Inter-story Stiffness for High-Rise Building Structures 
Using the Extended Kalman Filter and Recorded Seismic Data 

 

D.1 Introduction 
 

In this project, the direct identification approach is applied for high-rise buildings. We 
propose an adaptive tracking technique, based on the EKF approach, to identify structural 
parameters, inter-story stiffness and damping, and their variations with time in case of possible 
nonlinear structural response during an earthquake for high-rise buildings.  

 
A numerical simulation example is given and the comparison between the identified and 

estimated inter-story stiffness are performed. The effects of noise on the identification results are 
also discussed. The results showed that the algorithm and the technology presented in this study 
not only have good identification effectiveness but also have good noise robustness. 

 
To describe the identification procedure and numerical example easily, in the following 

discussion, a typical 20 story shear-bending building structure is the assumed identification 
target.  
 

D.2 Identification Procedure  
 
The identification procedure includes follows:  

 
(1) The structure was simulated as a mass-spring-damper system. The degree-of-freedom (DOF) 

was reduced from the original several thousands in a three-dimensional (3D) Finite Element 
analysis (FEA) model into 20 DOF in a two-dimensional (2D) model, namely each DOF for 
each floor.  

 
(2) It was assumed that the accelerometers were only deployed at 10 floor levels; therefore the 

recorded data were incomplete. The necessary seismic response data in other 10 stories 
without accelerometers were generated using the numerical interpolations.  

 
(3) A decoupling algorithm for the simultaneous equations of motion of the mass-spring-damper 

system was applied to the mass-spring-damper system. The advantages of the algorithm are 
simple, fast-solving and highly accurate.  

 
(4) The extend Kalman filter (EKF) was used in this study because of its applicability to 

nonlinear time-varying processes. The input signals used in the EKF procedure were 
recorded accelerations at the accelerometer-station in the ground level; whereas the output 
signals were “recorded” (see detail in the following example) and interpolated seismic 
response signals at the 20 floor levels.  
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(5) To improve the computational efficiency and accuracy, the first-order polynomial 
approximations for derivation of state estimators was applied in the EKF procedure. Because 
of the advantages of using polynomial approximations obtained with an interpolation formula 
for derivation of state estimators, the estimators are more accurate than estimators based on 
Taylor approximations, and yet the implementation is significantly simpler as no derivatives 
are required. 

D.3 Decoupling Algorithm for the Mass-Spring-Damping System 
 
In the 2D shear-bending structural model, the floor masses are represented by concentrated 

masses, the lateral inter-story stiffness and damping are represented as springs and dampers as 
shown in Fig. D.1. For this structural model, considering only one horizontal degree of freedom, 
the mass, damping and stiffness matrixes can be simplified and expressed as follows:  
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Fig. D.1: Mass-Spring  

Its equations of motion due to ground motions can be expressed as  

gxMIKXXCXM &&&&& −=++                                                   （D.1） 
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where X is relative displacement, with respect ground, vector of masses at floor levels; X& and 
X&& are corresponding velocity and acceleration vectors, respectively; I is the unit vector and gx&&
the ground acceleration time function in the horizontal direction. 

is 

 
Defining is the absolute horizontal displacement of  andix im gn xx =+1 , then, the relative 

displacement between masses i and ijx j can be represented as： 
 

],,,[ 11211 +++ −−−= ••• nnn xnxxxxxX T 

jgigjiij xxxxx −=−=  
 

Based on these relationships, Bao et al (1990) developed equations of motion for the multi-
degree-of-freedom (MDOF) mass-spring-damping system as  

∑
−

=
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•••••••

−−=++
1

1
11,1,1,

l

j
jjlllllllllll xmxmxkxcxm ， nl ,...,2,1=           （D.2） 

and validated the equations by the mathematic induction approach.    
Reorganizing Eq. (D.2), we can get  
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Using the simplified notation 
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1

1
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−= ； lell xx =+1, , 

 
the Eq. (D.3) can be rewritten as 
 

glllellellel xmxkxcxm
•••••

−=++ ， nl ,...,2,1=                               （D.4） 
 

where represents the equivalent seismic acceleration of the mass l  and the differential 
displacement response between the mass l and 

glx
••

lex
1+l due to the corresponding equivalent seismic 

force.  
 
If the masses and the corresponding equivalent seismic responses are known, the Eq. (D.4) 

is completely uncoupled. It means that the seismic response of the MDOF mass-spring-damping 
system can be decomposed into the responses from a multi single-degree-of-freedom (SDOF) 
system under the same equivalent seismic excitation force. It can be seen easily that the 
decoupling calculation reduces the computation effort significantly.  
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D.4  Extended Kalman filter for the Decoupled SDOF system 
 
Based on Eq. (D.4), we can define the state variable matrix as 
 

TssssS ][ 4321=                                    （D.5） 
 
where ， ， ，lexs =1 lexs

•

=2 lks =3 lcs =4 .  
 
Therefore, the Eq.’s (D.4) can be rewrite as  
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The Eq.’s (D.6) are nonlinear state equations of the state variables. We can rewrite them as 

a dispersed equation, Eq. (D.7), and add the observation equations, Eq. (D.8), as 
 

),( kkk tSFS =
•

                                                   （D.7） 
 

{ } { }kkkkle vtShx += ),(                                           （D.8） 
 
where is the observation function vector, and is a random observation noise vector 
with zero mean.  

),( kk tSh v

 
By linearization around the filtered estimating values, that means, using the incremental 

linear equations instead of the original nonlinear equations in a sampling time interval, the state 
functions of a system by extended Kalman filter (Li et al, 2002) can be obtained as follows.  

 
State estimation equation: 

dttSFSS k

k

t
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                                        （D.9） 

where is estimated state value of at time interval k , and is expected state value of
at time interval .  
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State transfer matrix:  
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22 
 



 
 

where ]
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s
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∂

∂
= .  represents the derivative of the component of function F with 

respect to the component of variable ; 

ijA thi

thj js I is the unit matrix; and tΔ is the sampling interval.  
 
Error covariance expectation equation:  
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= . R is the covariance matrix of the observation noise .  v

 
State filter equation:  
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Error covariance filter equation:  
 

1
~

111 )( ++++ −= kkkk PHKIP                                      （D.14） 

D.5  Simulation Example  
 
It was assumed that a 20 story shear-bending type building which could be simulated as a 

mass-spring-damper chain system with 20 DOF as shown in Fig. D.1. Also it was assumed that 
the structural story masses were known as shown in Table D.1 and D.2. The purpose of the 
structural identification was to estimate the inter-story stiffness and damping.  

 
In this simulation example, the ground motion was assumed as the Taft earthquake and the 

recorded structural responses at 10 stories were assumed as the calculated structural response.  In 
the EKF identification procedure, the inter-story stiffness and damping are nonlinear parameters 
to be identified; however, for the purpose of generating the simulated structural time-history 
response, as so called “recorded data”, we had to pre-assume the inter-story stiffness and 
damping for the structure. The assumed inter-story stiffness is shown in Table D.1.  

 
For the structural damping properties, it was assumed that inter-story damping follows 

Rayleigh damping assumption with mass proportional coefficient 0.2 and stiffness coefficient 
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0.012

i 1 2 3 4 5 6 7 8 9 10 

5.  In addition, it was assumed there were 10 accelerometers deployed at 10 levels with 
locations shown in Table D.2. In Table D.1 and D.2, i is the order of the story levels from top 
down with i=1 showing the roof level and i=21 showing the ground level. The check marks in 
Table D.2 indicate the instrumented levels. Since the observed data, namely the “recorded” 
structural response, were not complete, we used the limited observed response data at the 10 
levels (for i=1, 2, 3, 8, 9, 14, 15, 19, 20 and 21, note that the data at level 21 were recorded 
ground motion input) to estimate the missing response at other levels (for i=4, 5, 6, 7, 10, 11, 12, 
13, 16, 17 and 18) through numerical interpolation by cubic spline function. 
 
Table D.1 Structural mechanical parameters  

m ) 13  2  20  20  20  20  20  20  20  2  i (T 0.6 08.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 08.1
ki 

(KN/M) 20700 34000 34000 34000 34000 34000 34000 34000 34000 34000 

i  11 12 13 14 15 16 17 18 19 20 

im (T) 208.1 208.1 208.1 208.1 208.1 208.1 208.1 224.5 268.4 284.7 

i
/M) 

k
(KN

34000 34000 34000 34000 34000 34000 34000 35000 36400 45000 

 

able D.2 Deployment of accelerometers  

 
 r entioned, the ground input motion was u d as the Taft earthquake with 

uration 60 seconds, sampling rate 0.02 second. Fig. D.2 shows the recorded acceleration time 
histo
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ry of Taft earthquake.  
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Fig. D.2: Acceleration time history of Taft earthquake 
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First, we used the numerical dynamic analysis to obtain the structural
for the stories with accelerometers deployed (for i=1, 2, 3, 8, 9, 14, 15, 19 and 20). Then, we 

 

 was also identified. The results are sens
values. Additional work on the damping identification is required in the fu

 

 

 time history response 

itive to the initial assume
ture study.  

used
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these response data to estimate the structural response at the stories without accelerometers 
(for i=4, 5, 6, 7, 10, 11, 12, 13, 16, 17 and 18) by numerical interpolation via cubic spline 
function. Thus, we got the complete observation data for the EKF identification. Fig. D.3 and 
D.4 show the true response acceleration time histories and estimated via interpolation at mass 
levels 5 and 8, respectively.  

 
The inter-story damping
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Fig. D.3:  Comparison of actual acceleration time history with the 
estimated interpolation results at the mass level 5.  
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Fig. D.4:  Comparison of actual acceleration time history with the         
estimated interpolation results at the mass level 8.  
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Using the aforementioned uncoupled SDOF algorithm and the EKF identification procedure, 
we got the identified inter-story stiffness and damping. The resulting inter-story stiffness is 
shown in Table D.3.  In Table D.3 the error is defined as  

 

%)100(
valueActual

valueAcvalueIdentified − tualErrortionIdentifica =   (D.15) 

 
 

able D.3 Inter-story stiffness and its error  
i  1 2 3 4 5 6 7 8 9 10 

T

Identified 
i  k 20481 33 7 34 0 34203 33935 33752 33644 33519 33 7 3  

(KN/M)  
69 65 92 3994

Error 1.06% 0.89% 1.91% 0.60% 0.19% 0.73% 1.05% 1.41% 0.21% 0.02% 
i  11 12 13 14 15 16 17 18 19 20 

Identified 
k 3  3  3  3  3  3  3  3  4  5  i  

(KN/M)  
3954 3807 3361 3136 2932 3582 5493 9109 3664 9310

Error 0.14% 0.57% 1.88% 2.54% 3.14% 1.23% 1.41% 7.44% 2.97% 1.15% 
 

From .   t m m n r t is
.44% whereas most of errors are less than 3%. Considering the identification procedure was 

based

recorded data are always with noise, whereas the assumed calculated 
structural responses are without the noise. To simulate the actual effects of the noise on the 
ident

Table D 3 it can be seen hat the aximu  error i  the inte -story s iffness  about 
7

 on estimated interpolation of structural response at 11 mass levels, we can believe that the 
identification procedure is stable, reliable and the results are acceptable for engineering 
applications. If the complete structural response data are available, the expected errors should be 
less.  

 
Practically the actual 

ification results, we added the artificial noise onto the structural response data for both the 
“recorded” from 9 levels and the “interpolated” at 11 levels. The noise was generated by normal 
distributed white noise with zero mean as shown below 

 

)1(
~

prRR kkk ⋅+=
••

&&                                                              （D.16） 
 

Where and kR
••

kR
~
&& are structural responses at time step

respec is a normal distributed random variable with zero mean and unit standard 
 k before and after adding the noise, 

tively.
n. 

 rk
deviatio p is the noise level. In this example, the noise level was determined as 10% which 
represented a very strong noise interfere.  

 
Using the structural response data including the 10% noise as observed signal in the EKF 

procedure, we re-did the identification. The resulting inter-story stiffness is listed in Table D.4. It 
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can b

able D.4 Inter-story stiffness and its error with strong noise interfere 
i  1 2 3 4 5 6 7 8 9 10 

e seen that except the top two stories, the errors of inter-story stiffness in most stories are 
less than 7.5 %.  
 
 
T

Identified 
i  k 13973 28614 33857 31504 31985 33 9 31971 33949 31476 3  

(KN/M)  
22 5554

Error 132.5% 5.84% 0.42% 7.34% 5.93% 2.27% 5.97% 0.15% 7.42% 4.57% 
i  11 12 13 14 15 16 17 18 19 20 

Identified 
k 3  3  3  3  3  3  3  3  4  5  i  

(KN/M)  
3948 3635 2213 2892 2553 3573 5771 9003 3679 9310

Error 0.15% 1.07% 5.26% 3.26% 4.26% 1.26% 2.20% 7.15% 2.94% 1.15% 

 
D.6  Conclusion 

dentification of the inter-story stiffness and damping of high-rise structures 
uring an earthquake event, a series of algorithms was adopted: the EKF technology, the first-

order

series of algorithms for the identification are reliable and valuable for practical 
engineering. 
 

 
For online i

d
 polynomial approximation, the simplified shear-bending type 2-D structure, the decoupling 

algorithm of equation of motion for the mass-spring-damper chain system and the cubic spline 
interpolation. A test of numerical simulation to the algorithms was carried out with the noise 
interference considered in the observation data. The identification results were comparatively 
satisfied.  

 
The 
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Appendix E 

System Identification of Model Parameters for Layered Soils Using the Extended 
Kalman with the Recorded Seismic Data from the Downhole Array of Atwood Building 

 

E1. Introduction 
 

The catastrophic aftermath of several recent earthquakes in different parts of the world has 
posed a serious challenge to the structural engineers to understand critically various aspects of 
the seismic performance of soil-structure interaction (SSI) systems. Various simulation models 
for SSI systems are developed. There are two main approaches for analyzing SSI, namely the 
direct method and substructure method (Wolf, 1985, 1988). In substructure method, many 
researchers developed simple mechanical models with only limited number of degrees-of-
freedom for soils (Wolf J. P., 1985; Wolf J. P. and Somaini D. R., 1986; De Barros F. C. P. and 
Luco J. E., 1990; Luan M. and Lin G., 1995). Among the available mechanical models for soils 
in SSI and site-dependent dynamic response analyses, the shear type multi-degrees-of-freedom 
(MDOF) model for layered-soils is well-known in time-domain analysis, because it has good 
trade-off of accuracy and simplicity (Xie, 1987).  

 
There is much literature on how to determine the parameters of these shear type mechanical 

models for layered-soils. However, all of the available methods are based on experienced 
assumptions. As for realistic layered-soils or complex site, it is impossible to determine the 
actual parameters of simple mechanical models by experienced assumptions.  To identify the 
associated model parameters, we suggest applying the modified Extended Kalman Filter (EKF) 
in this project to identify the equivalent parameters in layered soil conditions because of its 
applicability to nonlinear time-varying processes. (Zheng et al, 2004; Liu et al, 2005; Wang  et al, 
2003). 

 
In current years, downhole arrays have been operated in many places to provide essential 

seismic data for studying the effects of local soil conditions. Downhole arrays are an efficient 
tool for seismic analyses of site response and amplification. For this reason, the recorded seismic 
data from the downhole array of AB are used in this study to identify the model parameters.  

 
In this project, we apply the system identification method based on the extended Kalman 

filter (EKF) with DD1 (first-order approximation divided difference) to determine the inter-layer 
parameters for the shear type MDOF model. A realistic identification example is given for the 
soil site of AB using the available recorded seismic data from the downhole array. To improve 
the accuracy of state estimator in the EKF procedure, we use the fourth-order Runge-Kutta 
method to integrate the state equations. An iterative process is also developed in this project to 
create more meaningful initial parameters. The results of the example demonstrate the feasibility 
and practicality of the proposed identification technique.  

 
The shear type MDOF model can be used in time-domain nonlinear analysis of SSI for 

layered or complex soil conditions. The identified parameters of layered-soils can improve the 
calculating accuracy of seismic analysis involving SSI and site-dependent dynamic response. It 
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is also shown from this project that the simulation models can be better identified by the 
instrumental measurements from the recorded seismic data.  

 
The identification technique developed in this paper provides a useful basis for analyzing 

SSI and site-dependent seismic response analysis for uniform or layered soils. If the mechanical 
model of the super-structure is available, the complete model of the coupled soil-structure system 
can be constructed by assembling the super-structure model and the shear type soil model.  
 
 
E2.  Multi-degrees-of-freedom shear model and its application to layered soil 

The MDOF shear type model is adopted to simulate the soil dynamic characteristics in this 
study. Fig. E.1 shows the MDOF shear model for layered-soil in consideration. The following 
assumptions are made for the shear type model in this project:  

 
(1) The soils are considered as 

horizontally uniformly layered. A 
soil “column” with unit cross-
sectional area in each layer is 
extracted from the site to represent 
the layered soil in infinite large 
area.  
 

(2)  Assume that the horizontal, vertical 
and rocking vibrations of soil 
layers are independent each other, 
that is, the coupling effects among 
the horizontal, vertical and rocking 
vibrations are negligible. For the layered-soil in the study, only the horizontal vibration is 
considered.  

Fig. E.1:  MDOF shear model for layered-soil

 
(3)  The mass in each layer is assumed lumped at the top surface of the layer.  

 
(4)  Inter-layer shear stiffness and damping coefficient of each layer in the soil “column” are 

represented by a spring and a dashpot. 
 

(5)  The interface between the soil column and the bedrock is horizontal without a slope.  
 

In this model, each layer consists of one oscillator mass, one spring, and one dashpot as 
shown in Fig. E.1. The equations of motion of the MDOF shear model can be written as 

 
 

PKUUCUM =++ &&&                                                                        (E.1)  

where, M, C, K are the mass, damping and stiffness matrixes, respectively; U and P are 
displacement and excitation force vectors, respectively, expressed as follows: 
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where  is the input earthquake acceleration at the bedrock.  ru&&

This shear type model provides simplicity, however, not accuracy for the following reasons:  
 

(1)  Actual conditions of the soil site are not pure horizontally layered; rather, the geotechnical 
conditions are much complex comparing with aforementioned layered model.  
 

(2)  The soil material and dynamic properties are very complicated, showing non-layered, 
heterogeneity, anisotropy and nonlinearity, which can’t simply be represented by a spring 
and dash pot.  
 

(3)  The soil site is continuous medium with mass distributed and varied in three dimensions. 
The soil can be seen as the physical medium connecting the super-structure and the 
bedrock. The identification procedure should reflect the transmission of seismic energy 
among the bedrock, subsoil and super-structure. The concentrated mass assumption may 
cause a significant error in the modeling and numerical calculation. Since an earthquake 
induces the propagation of seismic waves through the continuous soil medium, the lumped 
mass, spring and dashpot system can’t simulate the main features of the dynamic properties 
of soil body properly.  

 

E3. Identification of the parameters of MDOF shear model using recorded seismic data 
 
E3.1 Input and observation data 
 

In this study, the single-input and multi-outputs identifying technique is used. The 
earthquake acceleration records at the bedrock were used as single-input signal and at the each 
layered-soil (at downholes) as observation signals. 
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E3.2  The state equation and the observation equation  
 
When we apply the EKF with DD1 to identify the parameters of MDOF shear model using 

recorded seismic data, the model can be described by a non-linear state space equation and an 
observation equation. Both equations can be linearized using the “derivative free” technique 
described in the previous section. In this study, the parameters of the soil model are considered as 
the state parameters of the system. Specifically, the state vector can be defined as, 

 
],,,,,,),(),(,),(),([ 11111 nnnnn

T ckmckmtxtxtxtxX L&L&=                          (E.3) 
 
where,  are displacements and velocities of oscillators in the soil mechanical 
model, respectively, are the parameters of layered-soil in the model, respectively. 
The nonlinear state equation of model can be expressed as follows,  

L& ),(),( 11 txtx L,1m
L,,, 111 ckm
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T = .                                 (E.4) 
 
In Eq. (E.4), the acceleration vector of all oscillators in the model can be calculated using 

the Eq. (E.1),    
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)()()( kkrkr tvtutu += &&&&  
 
where  is the input earthquake acceleration at the bedrock and is the noise of input 
earthquake signal. Note that although all parameters of the soil mechanical model are assumed 
constant a priori in the state equation, their estimates are allowed to vary with time in the EKF 
with DD1 procedure. The displacement and velocity responses of all oscillator  were used 
as the observation vector with observation noise  (i=1, 2). The observation equation is 
then, 
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where N is the number of samples,  is the observation vector at)( ktg kdttk = . The state vector in 
Eq. (E.3) can be integrated by using the state equation (E.4). In this study, the state equations 
(E.4) are integrated using a fourth-order Runge-Kutta method, which is a commonly used and 
stable numerical integration method. Moreover, when integrate equations (E.4) by Runge-Kutta; 
we don’t consider any assumptions, such as, the constant acceleration assumption. From Eq. 
(E.3), one can see that the output signals in the state equation are velocity and displacement. 
Since the earthquake recorded data are accelerations in general, it is necessary to numerically 
integrate the acceleration data to obtain the corresponding velocity and displacement prior to the 
identification procedure.  

E3.3 Initial values of state victors  
 
The number of identified parameters of state vectors in the system depends on number of 

soil stratums in the site. Convergence to a reasonable estimate may not be obtained if the initial 
guess is too poor or if the perturbations are so large that the linearization is inadequate to 
describe the system. To determine the initial values of state victors, the method to estimate the 
parameters of MDOF shear type model in literatures (Xie, 1987; Shou et al, 1982) was used.  

 
The initial displacement and velocity were calculated based on the integration of 

acceleration from the downhole array at the end of the first time step t=dt for oscillators 
mn. The spring stiffness of each layered-soil can be estimated by the simplified formula  

L,1m

 
iii hGK /=                                                                      (E.7) 

 
where  and  are the shear modulus (iG ih siii VG ρ= ) and the depth of each layered soil stratum, 
respectively. The damping coefficient can be assumed as Rayleigh damping 
 

                           iii KMC
ω
λωλ +=                            

(E.8)
 
             

           
where ω  and λ  are the predominant frequency and the 
damping ratio (assumed as 5% to all soil stratums) of 
realistic site respectively. In this study, an approximate 
formula of the site predominant frequency  
 

H
V

T
s

s 4
22 ππω ==

                                    (E.9)
 

 
was used, based on the site profile of shear wave velocity.  
 

The initial values of the covariance of state 
parameters may also affect the identification results. In 
this study, an iterative procedure was used to improve the 
approximation of all of initial values (see Fig. E.2). 

Fig. E.2:  Weight iterative 
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Because the iterative procedure can adjust the rough initial values of parameters more close to 
the actual values, the ‘adjusted’ initial values will improve the identified accuracy and stability in 
the DD1 filter identification procedure. In this study, using the iterative procedure, the estimated 
values of state parameters and covariance at time step tk+1 were used as the new initial values and 
then the state parameters were re-identified at time step tk+1 until convergence was reached. In 
general, the number of iterative loops can be chosen as a small number when initial values of 
parameters and covariance are reasonably chosen. In Fig. E.2, the symbol w (in general, more 
than 1) is the weight of estimated covariance in order to expand the area of estimation of state 
parameters. Since the identification technique is robust, the initial values do not need very close 
to the “true” values. It is demonstrated from the example in the following section that as long as 
the initial values in the similar order of magnitude, the identification procedure will adjust the 
variables recursively and converge to the “best 
fit” values quickly and stably. 
 
E4. Identification example  

 
The identification procedure is illustrated 

in the following example. The AB office 
building is located in downtown Anchorage. The 
subsoil under the foundation is roughly divided 
into five major layers according to the site soil 
profile. Shear wave velocity profile at the site is 
shown in Fig. E.3. The first layer is about 10 m 
thick and consists of poorly graded sand and 
gravel. The second layer extends from 10 m to 
17 m and is mainly composed of silt and lean 
clay. the third layer reaches 48 m and is mainly 
composed of soft, locally sensitive clay and silty 
clay, which belongs to Bootlegger Core 
Formation (BCF).     Fig. E.3: Shear wave velocity of the 

 

Fig. E.4: Downhole array profile

In order to improve the accuracy of model, 
the third layer soil is divided into two stratums 
based on the shear wave velocity (see Fig. E.3).  
Below 48 m, the soil becomes very stiff with 
layered silt, sand and clay. The older, dense and 
hard glacial till is encountered below 55 m, 
which extends to the bottom of drilled hole. The 
downhole array (see Fig. E.4) is located at about 
100 m south of the AB in the Delaney Park.  The 
array includes six tri-axial strong motion sensors 
located at the bottom of six boreholes of 3 to 68 
m depths. In addition to this, the array also 
includes one tri-axial surface sensor. The real 
time data acquisition system of the array consists 
of four high dynamic range digital recorders.         
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The array has been operational since September 2004. (He Liu et al 2006). The deepest 
senso

he February 16, 2006 Earthquake in Alaska (M=4.7, 35 km depth at Anchorage distance 
of 14

 

r located in the glacial till formation has shear wave velocity more than 900m/s, 
corresponding to engineering bedrock. In this study, the recorded acceleration at this level was 
used as the system input. In Fig. E.4, the numbers 1-7 denote the sensors at different depths. It 
should be pointed out that the number 6 sensor did not work when the seismic event (used in this 
study) happened. 4-layers shear model was created to simulate the site, in which the seismic data 
from sensor 7 were used as the input and the seismic data from sensor 1, 3, 4 and 5 were the 
output for the first to fourth layer of the shear model, respectively. The reason to choose recorded 
data at sensor 1, 3, 4 and 5 as the output signals is because these sensors are almost located at the 
top of layered soil stratums, which are corresponding to the location of mass for each layer.  

 
T
 km) was chosen as the seismic event in this study.  The peak ground acceleration at 

downhole near the AB was about 12.15 cm/s2. The accelerometers at the downhole stations 
recorded motions in three orthogonal directions including vertical and two orthogonal horizontal 
directions. The data sampling rate in the accelerometers was 200 samples per second. For the 
recording duration of 120 seconds, the total computational steps were 24,000. From Fig. E.5, it 
can be seen that the seismic P-wave arrived at about 30th second and the S-wave at 36th second, 
respectively. The acceleration and displacement time histories in the HNE direction from the 
downholes and free surface are shown in Fig’s E. 5 and E. 6, respectively. The velocity and 
displacement time histories of the oscillators in the model were obtained by integrating the 
recorded acceleration signals. The output displacement time histories in the HNE direction are 
shown in Fig. E.6.  

 

Fig. E.5: Acceleration time histories in the HNE direction recorded at the downhole array 
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The initial parameters, vectors and the covariance matrix of the state space variables need 
ined as described as aforementioned. The convergent paths of all the parameters in 

the m

Fig. E.6:  Displacement time histories in the HNE direction integrated from the accelerations 

 

to be determ
odel are shown in Fig. E.7.  The initial and identified results of the model parameters in the 

HNE direction are shown in Table E.1. It can be seen in Fig. E.7 that the identified parameters 
vary with time mainly start from the time of S-wave arrival, that is about 36th second after 
recording data. As expected, there were differences between the initial and the identified values, 
especially in the mass quantities. It is also observed that the recursion procedure is very stable. In 
this example, the parameters converge to almost constants and do not exhibit obvious further 
variation with time, indicating that the earthquake shaking was quite weak and the soil behavior 
was apparently linear.  
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        Table E.1 Initial and identified results of the model parameters. 
 

Parameter 
First  layer Second  layer 

M1 
(kg) 

K1 
(kN/m) 

C1 
(kN-S/m) 

M2 
(kg) 

K2 
(kN/m) 

C2 
(kN-S/m) 

Initial Value 1.372650 
e+004 

2.196240 
e+007 

1.101522 
e+005 

1.690990 
e+004 

3.744753 
e+007 

1.843496 
e+005 

Identified Final 
Value 

 
1.101997 

e+004 

 
2.194391 

e+007 

 
1.174604 

e+005 

 
1.141795 

e+004 

 
3.742653 

e+007 

 
1.874575 

e+005 

 
Parameter 

Third  layer Fourth  layer 
M3 
(kg) 

K3 
(kN/m) 

C3 
(kN-S/m) 

M4 
(kg) 

K4 
(kN/m) 

C4 
(kN-S/m) 

Initial Value 2.450840e
+004 

5.461997e
+006 

3.865890e
+004 

3.501168e
+004 

1.701575e
+007 

9.835928e
+004 

Identified Final 
Value 

 
1.215573e

+004 

 
5.527112e

+006 

 
4.486154e

+004 

 
4.482056e

+004 

 
1.696716e

+007 

 
1.039582e

+005 
 

 

(a) Variation of the parameters in the first layer (left) and the second layer (right) 

  

(b) Variation of the parameters in the third layer (left) and the fourth layer (right) 
Fig, E.7:  Evolution of the identified parameters in the model. 
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Fig. E.8 shows the comparison of observed (from the recorded data) and identified 
displacement time histories of all oscillators in the model. A good agreement in the displacement 
time histories between the observed from the recorded data and the identified via the EKF 
procedure can be found.   

 

 
Fig. E.8: Comparison of displacement time histories in the HNE direction 

In this example, all identified parameters converged quickly and remained stationary. 
These results demonstrate that identification accuracy is efficient and reliable when the EKF 
method is combined with the first-order polynomial approximation technique.  

E5. Verification of identified results 
 

Since the soil response was mainly linear during the seismic event in the previous example, 
we may compare the identified results in time and frequency domains with other available 
methods. For this purpose, we first simulate the seismic wave propagation from the bedrock to 
the surface using the initial and identified MODF shear model by Wilson-θ integration method 
using the recorded acceleration at bedrock is used as input. Fig. E.9 shows the comparison of the 
surface seismic acceleration between the recorded data and the simulated results by the initial 
and identified MODF shear model, respectively.  It can be seen, in Fig. E.9, that the simulated 
acceleration time history from the identified model parameters more close to that from the initial 
model values. The simulated acceleration time history from the identified parameters has the 
closed peak value with the recorded; and the peak values of both accelerations occur at the same 
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time. The comparison demonstrates that the identified model is more reasonable than the initial 
model to simulate layered-soil dynamic characteristics.    

  

 

      Fig. E.9: Comparison of recorded and simulated acceleration time histories in HNE direction. 
 
 

The site prominent frequency is estimated as 10.68 Hz by using the approximate formula 

(
H
V

T
s

s 4
22 ππω == ) based on the shear wave velocity profile, where Vs is an average shear wave 

velocity of the site.  If the site prominent frequency is calculated from the MODF shear model, 
the result is 10.29 Hz by using the identified parameters and 8.23 Hz by using the initial 
parameters. Therefore, the identified parameters are more trustworthy than the initial parameters 
using the general engineering estimation method.  

 
Although the MDOF shear model is simple and acceptable for preliminary study in 

practical applications, the model is naturally with too many assumptions as aforementioned, 
which may not satisfy the actual conditions. For example in this study, the soil condition is more 
complex with the overall “layers” not uniform and the surface of bed rock not horizontal. This 
significantly simplified model may cause the identified results not accurately reflecting the site 
dynamic characteristics. Further study in the modeling technique is necessary.        
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E6. Conclusions 
 
The MDOF shear model is adopted in this study to simplify the soil continuous medium.  

The model parameters are identified by the EKF technique with DD1 procedure using recorded 
seismic data. The identification procedure developed in this study resolves the problems 
encountered in applying the MDOF shear model to simulate layered soil conditions in SSI and 
site-dependent seismic dynamic response analyses. The following are specific conclusions drawn 
from this study: 

 
1. The MDOF shear model was successfully adopted in this study to simulate the behavior of 

layers soil under earthquake shaking. The parameters of the model were identified by the 
EKF procedure. The results from the identification procedure demonstrate that the EKF 
procedure is a powerful and reliable technique in the application of identification of soil 
dynamic parameters.  

 
2. The first-order polynomial approximations are adopted to replace the linearization of the 

EKF method. In this derivative-free method, the estimators become more accurate than that 
based on Taylor approximations, and yet the implementation is significantly simpler as no 
derivative computation is required.  

 
3. Using the seismic recorded data from the downhole array to identify the soil parameters of 

the MODF shear model is practically suitable method to dealing with the layered soil site in 
SSI and site-dependent dynamic response analyses.  

 
4. The practical example using the realistic seismic recorded data demonstrates the efficiency of 

the identification technique for layered soils. The results of comparison show that the surface 
acceleration time history simulated by the identified model parameters are better than that 
simulated by the initial model parameters using the general engineering estimation method.  

 
5. An iterative procedure was used to modify the initial values. To a certain extent, the 

procedure can overcome the difficulties in choosing the initial value of parameters in the 
identification procedure. A fourth-order Runge-Kutta method was used to integrate state 
equations to improve the accuracy of state estimator.  

 
6. The MDOF shear model is significantly simpler than actual complex soil conditions. The 

model assumptions may cause the identified results not accurate. Further study in the 
modeling technique is necessary.  
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