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ABSTRACT 
 
 The objective of this research is to develop scalar and vector hazard methodologies to 
predict the earthquake-induced sliding displacement of slopes.  This work encompasses 
generation of empirical models that predict sliding displacement as a function of single ground 
motion parameters and vectors of ground motion parameters.  These models also quantify the 
uncertainty (standard deviation) in the sliding displacement prediction.  The most appropriate 
scalar parameters and vectors of parameters are identified, and their ability to minimize the 
standard deviation in the prediction is evaluated.  The scalar and vector probabilistic frameworks 
are outlined and used, along with the developed empirical displacement models, in an example 
calculation for a hypothetical slope.  Comparisons between the different probabilistic 
approaches, as well with a deterministic approach, are provided. 
 
 

NON-TECHNICAL SUMMARY 
 
 Earthquake-induced sliding displacement is the parameter most often used to assess the 
seismic stability of slopes.  The expected displacement can be predicted as a function of the 
characteristics of the slope and the parameters representing the ground motion (e.g., peak ground 
acceleration).  However, there is significant uncertainty in both the prediction of the ground 
motion parameters and slope displacement.  The proposed probabilistic methodology allows for 
a rational incorporation of these uncertainties in the prediction of the earthquake-induced sliding 
displacements of slopes. 
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INTRODUCTION 
 

The seismic performance of slopes and earth structures is often assessed by calculating the 
permanent, downslope sliding displacement expected during earthquake shaking.  Newmark 
(1965) first proposed a rigid sliding block procedure, and this procedure is still the basis of many 
analytical techniques used to evaluate the stability of slopes during earthquakes.  Newmark 
(1965) realized that accelerations generated by earthquake shaking could impart a destabilizing 
force sufficient to temporarily reduce the factor of safety of a slope below 1, leading to sliding 
episodes and the accumulation of permanent, downslope sliding displacement. The original 
Newmark procedure models the sliding mass as a rigid block and utilizes two parameters: the 
yield acceleration (ky, the acceleration in units of g that initiates sliding for the slope) and the 
acceleration-time history of the rigid foundation beneath the sliding mass. A sliding episode 
begins when the acceleration exceeds ky and continues until the velocity of the sliding block and 
foundation again coincide.  The relative velocity between the rigid block and its foundation is 
integrated to calculate the relative sliding displacement for each sliding episode and the sum of 
the displacements for each sliding episode represents the cumulative sliding displacement 
(Figure 1).   
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Figure 1.  Acceleration-time history, sliding velocity-time history, and sliding displacement-time 
history for a rigid sliding block and ky = 0.1. 
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The original rigid sliding block procedure is applicable to thin, veneer slope failures.  
This failure mode is common in natural slopes, while deeper sliding surfaces are common in 
engineered earth structures.  The sliding block displacement methodology has been extended to 
account for the deformable response of deeper sliding masses in earth structures (e.g., Seed and 
Martin 1966, Makdisi and Seed 1978, Bray and Rathje 1998), and to account for the coupled 
interaction between sliding and dynamic responses (Rathje and Bray 1999, 2000).  Nonetheless, 
for natural slopes, rigid sliding block analysis is the most common analytical procedure used to 
predict the potential for earthquake-induced landslides and will be the focus of this work.   

The magnitude of sliding displacement is strongly affected by the characteristics (i.e., 
intensity, frequency content, duration) of the earthquake ground motion.  Various researchers 
have proposed models that predict sliding displacement as a function of ground motion 
parameters (e.g., peak ground acceleration, Arias intensity) and site parameters (ky, site period).  
These displacement models work in a similar way to ground motion prediction models in that 
displacement is predicted as a function of the given input parameters.  The displacement models 
have significant aleatory variability (large standard deviation, σln, for the predicted displacement) 
such that a large range of displacements is predicted for the given input parameters.  In addition 
to this variability, earthquake ground motions also display significant aleatory variability.  Yet, 
current evaluation procedures that use sliding block displacements to evaluate the potential for 
slope instability typically are based on a deterministic approach or a pseudo-probabilistic 
approach, in which the variabilities in the expected ground motion and predicted displacement 
are either ignored or not treated rigorously.  Thus, there is no concept of the actual hazard 
associated with the computed displacement.   

A fully probabilistic assessment of sliding displacement can rigorously account for the 
aleatory variability in the earthquake ground motion prediction and in the sliding displacement 
prediction.  The product of a probabilistic assessment of sliding displacement is a displacement 
hazard curve, which provides the annual rate of exceedance, λ, for a range of displacement 
levels.  The computation of a displacement hazard curve requires a displacement model that 
predicts displacement as a function of ground motion and site parameters, the aleatory variability 
(σln) for the displacement model, and the hazard curve for the ground motion parameter(s) used 
in the displacement model.   

The aleatory variability in the sliding displacement prediction can be significantly reduced if 
more than one ground motion parameter is used in the displacement prediction equation.  In this 
case, a vector hazard approach is required (Bazzurro and Cornell 2002, Yegian et al. 1991a).  
Bazzurro and Cornell (2002) demonstrated the vector approach by computing hazard curves for 
the inter-story drift of a 20-story building, a system whose response is affected by the spectral 
acceleration at its first and second modal frequencies.  For the vector hazard approach, the only 
additional information required is the correlation between the ground motion parameters.  The 
vector hazard approach is potentially important for the permanent deformations of slopes 
because the aleatory variability of the predicted displacement can be significantly reduced when 
more than one ground motion parameter is used.   

This report presents a framework for developing probabilistic seismic hazard curves for 
sliding displacement based on the work of Bazzurro and Cornell (2002), develops the appropriate 
empirical models that predict sliding displacement as a function of different ground motion 
parameters, generates the required correlation information for the ground motion vectors used to 
predict sliding displacement, and applies the probabilistic framework to develop displacement 
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hazard curves.  Details regarding this work can be found in Rathje and Saygili (2008) and Saygili 
and Rathje (2008). 

 
 

PROBABILISTIC FRAMEWORK FOR SLIDING DISPLACEMENTS 
 
 Various deterministic and probabilistic methodologies are used in practice to predict the 
sliding displacement of a slope (Figure 2).  A deterministic approach first requires the selection 
of a design earthquake scenario, defined by the magnitude, M, and distance, R.  This scenario 
may be the maximum magnitude event on the closest fault, or multiple scenarios may be 
specified (e.g., a larger magnitude event at moderate distance and a smaller magnitude event at 
closer distance).  After selection of the earthquake scenario(s), the ground motion (GM) is 
predicted based on a ground motion prediction model and a selected number of standard 
deviations above the median (εGM).  The selection of εGM is somewhat arbitrarily set to 0 or 1, 
and its presence inherently introduces some probability into the analysis, despite it being 
considered “deterministic”.  Finally, the displacement is predicted using the yield acceleration of 
the slope (ky) and the predicted ground motion (GM).  The displacement prediction may be 
derived from a displacement predictive model or chart (e.g., Makdisi and Seed 1978, Franklin 
and Chang 1977), or through a more rigorous procedure that involves selecting a suite of motions 
to fit the GM and computing the displacement for each motion.  Again, the number of standard 
deviations above the median displacement prediction (εD) must be selected, which is used to 
account for the variability into the computed displacement. 
 

Deterministic

Select M, R scenario

Predict Ground Motion (GM) 
GM predictive model, εGM = ?

Predict Displacement (D) 
D predictive model, ky, GM, εD= ?

Deterministic

Select M, R scenario

Predict Ground Motion (GM) 
GM predictive model, εGM = ?

Predict Displacement (D) 
D predictive model, ky, GM, εD= ?

All M, R, ε scenarios

Predict Ground Motion (GM) 
GM hazard curve, λGM = ?

Predict Displacement (D) 
D predictive model, ky, GM, εD= ?

Probabilistic Ground Motion

All M, R, ε scenarios

Predict Ground Motion (GM) 
GM hazard curve, λGM = ?

Predict Displacement (D) 
D predictive model, ky, GM, εD= ?

Probabilistic Ground Motion Fully Probabilistic

All M, R, ε scenarios

Predict Ground Motion (GM) 
GM hazard curve

Convolve GM hazard and 
Displacement (D)

D predictive model, ky, all λGM & εD

Predict Displacement (D) 
D hazard curve, λD = ?

Fully Probabilistic

All M, R, ε scenarios

Predict Ground Motion (GM) 
GM hazard curve

Convolve GM hazard and 
Displacement (D)

D predictive model, ky, all λGM & εD

Predict Displacement (D) 
D hazard curve, λD = ?  

Figure 2.  Various methodologies for predicting sliding displacements 

 The variability in the ground motion can be more explicitly considered in this analysis 
through a probabilistic assessment of the ground motion (Figure 2). Here, a seismic hazard curve 
is developed for the ground motion parameter of interest, and this curve defines the mean annual 
rate of exceedance (λGM) for different levels of ground motion.  This hazard curve accounts for 
all potential earthquake/ground motion scenarios (M, R, and εGM), the probability of occurrence 
of each scenario, and the probability that a ground motion level is exceeded given the scenario.  
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The design ground motion is derived from the hazard curve through the selection of an 
acceptable λGM, and this ground motion level is used in the prediction of sliding displacement.  
However, the treatment of the variability in the sliding displacement remains ambiguous. 
 The variability in the ground motion and sliding displacement both can be taken into account 
through a fully probabilistic analysis (Figure 2).  This analysis convolves the full ground motion 
hazard curve, which includes all of the ground motion variability, with the displacement model 
and all of its variability.  The uncertainties in the properties of the slope (e.g., ky) are not taken 
into account, but could also be incorporated.  The result is a displacement hazard curve that 
provides the mean annual rate of exceedance (λD) for different levels of sliding displacement.  
This curve is well-suited for making engineering decisions, as it provides the probability of 
exceedance for a damage measure of the slope (i.e. sliding displacement) given all of the ground 
motion and sliding displacement variabilities.  This fully probabilistic methodology is described 
in detail below. 
 
Scalar Hazard for Ground Motion 
 In traditional probabilistic seismic hazard analysis (PSHA), a relationship is developed 
between the ground motion level (e.g., peak ground acceleration, PGA) and its mean annual rate 
of exceedance (λ or MRE). This calculation is based on all of the faults in the area, all of the 
potential earthquake scenarios on each source (i.e., magnitude recurrence, earthquake location, 
site-to-source distance), and a ground motion prediction model that predicts the ground motion 
as a function of the earthquake scenarios (magnitude, distance, etc.). This calculation can be 
displayed for one source as: 
 

[ ] dmdrrfmfrmzGMPzMREz RM
mr

oGMGM ⋅>⋅== ∫ ∫ )()(,)()( λλ   (1) 

 
where λGM (z), or MREGM (z), is the mean annual rate that the ground motion parameter (GM) 
exceeds a given level (z), λo is the annual rate of earthquakes greater than the minimum 
magnitude (also called the activity rate), m is magnitude, r is distance, and fM(m) and fR(r) are the 
probability density functions for m and r, respectively.  [ ]rmzGMP ,>  is the probability that the 
ground motion level is exceeded for the given earthquake scenario (m and r).  This probability is 
derived from the ground motion prediction relationship and its standard deviation (σln).  Ground 
motion prediction relations assume the ground motion to be log-normally distributed, and thus 
the probability of exceedance calculation can be simply performed using the standard normal 
distribution of the natural log of the ground motion.  To develop a hazard curve, equation (1) is 
used with a suite of ground motion levels (z = 0.05 g, 0.1 g, etc.) to produce a relationship 
between λ and z.   
 
 As a hazard curve is analogous to a complementary cumulative density function, its 
derivative represents the mean annual rate density of the ground motion (MRDGM (z), Bazzurro 
and Cornell 2002) and is analogous to a probability density function: 
 

[ ] dmdrrfmfrmzfzMRE
dz
dzMRD RM

mr
GMoGMGM ⋅⋅⋅⋅== ∫ ∫ )()(),()()( λ  (2) 
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Here, ),( rmzfGM  is the standard lognormal probability density function given by: 
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with the mean (µlnGM) and standard deviation (σlnGM) in natural log units and derived from a 
ground motion prediction relationship. 
 
Scalar Hazard for Sliding Displacement 
 Similar to the probabilistic evaluation of the ground motion hazard, the goal of a probabilistic 
evaluation of permanent sliding displacement is a relationship between sliding displacement 
level (D) and its mean annual rate of exceedance (λD or MRED).  This computation is represented 
by: 
 

[ ] dzzMRDzGMxDPxMREx GMDD ⋅⋅=>== ∫ )()()(λ    (4) 
 
where λD (x), or MRED (x), is the mean annual rate that the sliding displacement (D) exceeds a 
given level (x), [ ]zGMxDP =>  is the probability that the displacement level x is exceeded 
given the ground motion level z (i.e., GM = z), MRDGM (z) is the mean rate density for the 
ground motion, and represents the probability of occurrence of ground motion level z.  
MRDGM(z) is derived from the derivative of the hazard curve (equation 2).  To use equation (4) to 
develop a displacement hazard relationship, the only additional information required beyond a 
ground motion hazard curve is the displacement relation that predicts D as a function of a ground 
motion parameter and that relation’s associated standard deviation (σln).   
 To compute a displacement hazard curve, equation (4) is used with a suite of displacement 
levels (x) to produce a relationship between λD and displacement level.  Because only one 
ground motion parameter is used in (4), this is considered a scalar probabilistic seismic hazard 
analysis.  This framework is similar to the framework of DelGaudio et al. (2003), which 
considered the probability of landslide failures based on probabilistic evaluations of sliding 
displacement. 
 
Vector Hazard for Sliding Displacement 
 If the permanent sliding displacement depends heavily on two ground motion parameters 
(e.g., an intensity and frequency content parameter, see accompanying paper by Saygili and 
Rathje 2007), a vector hazard approach is required (Bazzurro and Cornell 2002).  In this case, the 
displacement hazard calculation becomes: 
 

[ ] dydzyzMRDyGMzGMxDPxMREx GMGMDD ⋅⋅⋅==>== ∫ ∫ ),(2,1)()( 2,1λ  (5) 
 
where [ yGMzGMxDP ==> 2,1 ] is the probability that the displacement level x is exceeded 
given the joint occurrence of two ground motion parameters, GM1 and GM2, 
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),(2,1 yzMRD GMGM is the joint mean rate density of GM1 and GM2, and represents the joint 
probability of occurrence of ground motion levels GM1=z and GM2=y.  Again, the displacement 
probability is determined from the predictive relationship for D, which in this case is a function 
of two ground motion parameters, GM1 and GM2.  The added complexity comes from the joint 
MRD for GM1 and GM2.  The joint MRD is given by (Bazzurro and Cornell 2002): 
 

drdmrfmfrmyzfyzMRD RM
m r

GMGMoGMGM ⋅⋅⋅⋅⋅= ∫ ∫ )()(),,(),( 2,12,1 λ   (6) 

 
where ),,(2,1 rmyzf GMGM  is the joint probability density function for GM1 and GM2 given m 
and r.  This probability density function can be written in conditional form (Bazzurro and 
Cornell 2002): 
 

),,(),(),,( 1212,1 rmzyfrmzfrmyzf GMGMGMGMGM ⋅=    (7) 
 
The first term in this equation, ),(1 rmzfGM , is the probability density function for GM1 
conditional on m and r (same as scalar PSHA, equation 3) and is derived from the ground motion 
prediction equation for GM1.  However, the second term, ),,(12 rmzyf GMGM , is the probability 
density function for GM2 conditional on m, r, and a GM1 value of z.   
 The conditional probability density function for GM2 in equation (7) is still assumed to be 
lognormal (Bazzurro and Cornell 2002) and can be described with the probability density 
function in equation (3).  However, the probability density function utilizes modified values of 
the mean (µln) and standard deviation (σln) that are based on the mean values for lnGM1 and 
lnGM2, the standard deviations of lnGM1 and lnGM2, the value of GM1 = z, and the correlation 
(ρ) between parameters GM1 and GM2.  Specifically (Benjamin and Cornell 1970): 

 

( )rmGM
rmGM

rmGM
rmGMrmzGM z ,1ln

,1ln

,2ln
,2ln,,2ln ln µ

σ

σ
ρµµ −⋅+=   (8) 

2
,2ln,,2ln 1 ρσσ −⋅= rmGMrmzGM     (9) 

 
For equations (8) and (9), the ground motion prediction equations for GM1 and GM2 provide the 
parameters rmGM ,1lnµ , rmGM ,2lnµ , rmGM ,1lnσ , and rmGM ,2lnσ .  Thus, the only additional 

information required is the correlation coefficient, ρ. 
 In summary, if only one ground motion parameter is used to predict the permanent sliding 
displacement, equation (4) is used to compute the displacement hazard.  The information 
required for this analysis is the displacement predictive equation, its standard deviation (σln), and 
the hazard curve for the ground motion parameter.  If two ground motion parameters are required 
to predict the sliding displacement, equations (5) through (9) are used to compute the 
displacement hazard.  The information required for this analysis is the sliding displacement 
predictive equation, its standard deviation, and the MRD for the vector of ground motion 
parameters.  The MRD calculation requires the predictive equations for the ground motion 
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parameters, the standard deviations for these relationships, and the correlation coefficient 
between the ground motion parameters.   
SLIDING DISPLACEMENT MODELS APPROPRIATE FOR PROBABILISTIC 
ANALYSIS 

 
Many researchers have proposed models that predict rigid block sliding displacement as a 

function of ground motion parameters (e.g., peak ground acceleration, Arias intensity) and 
site/slope parameters (ky, site period).  Newmark (1965) computed rigid block displacements for 
four earthquake motions and showed that displacement was a function of ky, peak ground 
acceleration (PGA), and peak ground velocity (PGV).  Franklin and Chang (1977), Ambraseys 
and Menu (1988), Yegian et al. (1991), and Ambraseys and Srbulov (1994) developed charts 
and/or predictive equations for rigid sliding block displacements using different ground motion 
datasets.  However, these models were developed based on somewhat limited datasets and the 
resulting predictive equations displayed very large variability (σln > 1.0). 

Recent research has used larger ground motion datasets to develop displacement 
predictive models and developed better estimates of the variability (σln) in the predictions.  
Jibson et al. (2000) developed a predictive model for rigid block conditions using 555 
components of ground motion from 280 recording stations from 13 earthquakes. The Jibson 
model is a function of the Arias intensity (Ia) of the ground motion and ky of the slope, and the 
standard deviation (σln) for their proposed equation is 0.86.  Watson-Lamprey and Abrahamson 
(2006) developed a model for rigid block displacement using a large dataset consisting of 6,158 
recordings scaled with seven different scale factors and computed for three values of yield 
acceleration. Their displacement model is a function of various parameters including PGA, 
spectral acceleration at a period of 1 second (SaT=1s), root mean square acceleration (ARMS), ky, 
and the duration for which the acceleration-time history is greater than the yield acceleration 
(Durky).  However, a standard deviation for the predictive model was not presented, although this 
information was available for preliminary versions of the model and ranged from 0.3 to 0.7 in 
natural log space (Abrahamson, personal communication).   

Bray and Travasarou (2007) presented a predictive relationship for earthquake-induced 
displacements of rigid and deformable slopes.  Displacements were calculated using the 
equivalent-linear, fully–coupled, stick-slip sliding model of Rathje and Bray (1999, 2000). 688 
earthquake records (2 orthogonal components per record) obtained from 41 earthquakes were 
used to compute displacements for ten values of ky and eight site geometries (i.e., fundamental 
site periods, Ts).  Displacements for the two components of orthogonal motion were averaged 
and values less than 1 cm were set equal to zero because they were assumed to be of no 
engineering significance.  The model input parameters include ky, the initial fundamental period 
of the sliding mass (Ts), the magnitude of the earthquake (Mw), and the spectral acceleration at a 
degraded period equal to 1.5Ts, called Sa(1.5Ts).  When considering shallow, rigid sliding 
surfaces, Sa(1.5Ts) is taken as PGA and Ts = 0.  The standard deviation (σln) for the predictive 
model is 0.66. 

Of the current models, the Jibson et al. (2000) and Bray and Travasarou (2007) models 
are the most appropriate for PSHA because they were developed using large datasets and 
rigorous regression techniques, and they provide estimates of the σln of the displacement 
prediction.  Yet, the Jibson et al. (2000) model has significant aleatory variability (σln) such that 
a large range of displacements are predicted for the given ground motion and site/slope 
parameters. The σln for the Bray and Travasarou (2007) model is smaller than for Jibson et al. 
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(2000); however, it does not take advantage of multiple ground motion parameters to predict the 
displacement and further reduce σln.  The goal of this study is to develop rigid block 
displacement predictive equations that utilize multiple ground motion parameters in an effort to 
reduce the aleatory variability (σln).  These displacement predictive equations can be used to 
develop hazard curves for sliding displacement using either the scalar or vector approach.  

 
 

FRAMEWORK FOR DISPLACEMENT MODEL DEVELOPMENT 
 
Rigid sliding block displacements were computed using the rigid sliding block programs 

developed by Jibson and Jibson (2003, 2006). The computed displacement values were then used 
to develop predictive relationships for displacement as a function of ky and different 
combinations of ground motion parameters, with the goal of identifying the combination(s) of 
ground motion parameters that produce the smallest variability in the prediction of sliding 
displacement.  The developed displacement models can be used to compute hazard curves for 
earthquake-induced permanent displacement, can be used as predictive tools for deterministic 
earthquake scenarios, or can be used to rapidly predict the likelihood of earthquake-induced 
landslides after an earthquake using recorded ground motions.  
 
Ground Motion Database 

Variability in the expected ground motion is the biggest contributor to the variability in 
the displacement prediction; thus, using a large, high-quality dataset of strong motion records is 
essential to developing a robust displacement model.  Currently the number of available records 
is considerable and one significant dataset is readily available from the Next Generation 
Attenuation (NGA) strong motion database of the Pacific Earthquake Engineering Research 
Center <http://peer.berkeley.edu/nga>  

The initial dataset included motions from earthquakes ranging from Mw = 5 to 7.9 and 
distances from 0.1 to 100 km. Motions recorded at soft soil sites, on the crest or abutments of 
dams, underground, not at the ground floor of a building, or in buildings larger than 4 stories 
were removed from the database. Additionally, motions with high-pass filter corner frequencies 
larger than 0.25 Hz or low-pass filter corner frequencies less than 10 Hz were removed. The 
resulting dataset included 2,383 motions. Rigid sliding block displacements were computed for 
ky values of 0.05, 0.1, 0.2, and 0.3, which encompasses typical values for earth slopes.  For each 
motion, displacements were calculated for positive and negative polarities, with the largest 
displacement used for the model development.  Displacements computed from orthogonal 
components recorded at the same station during the same earthquake were treated as separate 
data points for the model. 

Approximately 25% of the initial ground motion dataset had values of PGA less than 0.05 
g, and thus these motions do not predict any displacement for the ky values used. To further 
populate the database at larger values of PGA, displacements were also calculated for each 
motion scaled by factors of 2.0 and 3.0.  To ensure that unreasonable PGA values were not used 
when scaling the motions, the motions were capped at PGA = 1.0 g.  However, regressions were 
also performed using motions up to PGA = 2.0 g, and similar results were obtained.  The final 
displacement dataset when capping PGA = 1.0 g included approximately 14,000 non-zero 
displacements. The distribution of records in the final ground motion dataset in terms of 
earthquake magnitude, closest distance, and various ground motion parameters is given in Fig. 3. 
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Figure 3: Distribution of records used in displacement model in terms of earthquake magnitude, 

closest distance, and various ground motion parameters 
 

Ground Motion Parameter Selection 
The sliding displacement of earth slopes is a function of various features of the expected 

ground motion such as intensity, frequency content, and duration of shaking. These key ground 
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motion characteristics cannot be easily quantified in a single ground motion parameter; instead, 
an optimal vector of ground motion parameters is employed.  The ground motion parameters 
considered in this study are (Figure 3): peak ground acceleration (PGA in g), peak ground 
velocity (PGV in cm/s), mean period (Tm in seconds), Arias intensity (Ia in m/s), and two 
definitions of duration based on the build-up of Arias Intensity (D5-95 and D5-75 in seconds).  

The selection of optimal ground motion parameters is based predominantly on the 
‘efficiency’ criterion proposed by Cornell and Luco (2001). The term ‘efficiency’ is related to 
the variability of the random error obtained from the regression.  In this sense, ground motion 
parameters that produce less variability (σln) in the displacement prediction are considered more 
efficient.  Cornell and Luco (2001) also specify a ‘sufficiency’ criterion for predictive equations 
for engineering demand parameters, such that the selected ground motions can sufficiently 
predict the engineering demand parameter without the need for specifying the earthquake 
magnitude or site-to-source distance. 

Consider the prediction of sliding displacement for a rigid slope with ky = 0.05.  The 
efficiency of different scalars and vectors of ground motion parameters to predict the 
displacement of this slope initially can be tested by fitting the following 2nd-order polynomials to 
the calculated displacements: 

 
( )2

321 )ln()ln()ln( GMGMD ααα ++=   (SCALAR)  (10a) 
 

( ) ( 2
54

2
321 )2ln()2ln()1ln()1ln()ln( GMGMGMGMD ααααα ++++= )   

(VECTOR) (10b) 
 

For the vectors of ground motion parameters, PGA was used as GM1 and coupled with the 
remaining parameters.  PGA was explicitly used as GM1 in the vector because when it is 
compared with ky it provides a direct assessment of whether the displacement will be greater than 
zero (i.e., if PGA > ky, then D > 0). 
 Sliding displacements for ky = 0.05 are plotted versus the six considered ground motion 
parameters in Figure 4, along with the curves fit using equation (10).  Based on the standard 
deviations of the predictions shown in Figure 4, Ia is the most efficient ground motion parameter 
(σln = 0.97), followed by PGA (σln = 1.20) and PGV (σln = 1.39). The frequency content and 
duration ground motion parameters (Tm, D5-95, and D5-75) display weak correlation with sliding 
displacement. This result is due to the fact that intensity predicts the onset of sliding, and thus 
initially is more important than either frequency content or duration in predicting sliding 
displacement.  

The computed values of standard deviation for scalar and vector regressions using the 
various ground motion parameters and different values of ky are given in Figure 5. Considering 
the standard deviations for the scalar models, Ia is the most efficient scalar ground motion 
parameter for ky = 0.05, while for ky ≥ 0.1 PGA is the most efficient scalar parameter.  These 
results are similar to those of Bray and Travasarou (2007).  PGA is generally the most efficient 
because its value in relation to ky indicates (1) whether the motion is strong enough to induce 
sliding and (2) the intensity of the induced sliding velocity and thus sliding displacement (Figure 
1).  Ia is slightly more efficient at very low ky because in these cases a large portion of the 
acceleration-time history is sampled during the displacement calculation and Ia provides 
information about the intensity, frequency content, and duration of the motion. The scalar 
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standard deviations in Figure 5 generally increase with increasing values of ky, particularly for Ia 
and PGV.  Again, this result is caused by the fact that the portion of an acceleration-time history 
sampled by the displacement calculation varies with ky.  Little of the motion is sampled at large 
ky, such that the additional information provided by parameters such as Ia and PGV does not 
improve the displacement prediction.   

 

 

 

 
 

Figure 4: Regression of sliding displacement for quantifying scalar efficiencies of different 
ground motion parameters (ky = 0.05)  
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Figure 5: Standard deviation of regression models for sliding displacement for different values 

of ky and different ground motion parameters  
 

The vector standard deviations in Figure 5 indicate that the efficiency significantly 
improves when vectors of two ground motion parameters are used.  Using more than one ground 
motion parameter enables the model to capture additional significant features of the motion that 
affect sliding displacement (e.g., intensity and frequency content) rather than address only one 
feature (e.g., intensity or frequency content).  From the efficiency point of view, the most 
inefficient vector model is more efficient than the most efficient scalar model (Figure 5).  PGA 
and Ia are the two most efficient scalar ground motion parameters, yet the combination of PGA 
and PGV is the most efficient vector model. This result is due to the multicollinearity between 
PGA and Ia. That is, both ground motion parameters have significant explanatory power, yet they 
overlap so significantly that they essentially provide almost the same information to the 
regression. Correlation coefficients between parameters are helpful in detecting multicollinearity. 
The correlation coefficient between PGA and Ia (ρPGA,Ia) is approximately 0.8 (see next section), 
while ρPGA.PGV is about 0.6. A smaller value of ρ indicates that the two parameters provide more 
complementary information about the ground motion, and consequently the combination of these 
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ground motion parameters captures additional information that leads to a smaller standard 
deviation in the displacement prediction.  

The (PGA, PGV) and the (PGA, Ia) models are the two most efficient vector models for 
relatively weaker slopes (ky < 0.1); while the (PGA, PGV) model and the (PGA, Tm) model are 
the most efficient vector models for relatively stronger slopes (ky ≥ 0.1).  Nonetheless, all three 
of these vector models (PGA, PGV; PGA, Ia; and PGA, Tm) have very similar standard 
deviations, and these models are more efficient than either of the PGA-duration models (Figure 
5).  The concept of efficiency will be used to assess the final displacement models developed in 
the next sections. 

If the resulting displacement relationship for a given scalar and/or vector of ground 
motions is independent of earthquake magnitude and distance, then the ‘sufficiency’ criterion is 
satisfied (Luco and Cornell 2001). In that case, the seismic hazard is conditioned only on the 
ground motion parameter(s). This allows decoupling of the seismic hazard and system response 
evaluation, and significantly simplifies the computational effort. The ‘sufficiency’ of scalar 
ground motion parameters and vectors of ground motion parameters is addressed for the final 
regression models, given in the next sections. 

 
 

SCALAR PREDICTIVE MODEL  
 
Functional form of the predictive equation 
 To develop a generalized predictive model that is appropriate for different values of ky, a 
functional form that encompasses the ratio of ky to PGA was employed. The ky/PGA term allows 
zero displacements to be explicitly assigned when ky/PGA is greater than 1.0, and non-zero 
displacements assigned otherwise. The displacements show a higher order shape with respect to 
ky/PGA in semi-log space.  Up to 5th order terms were considered for ky/PGA using: 
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The selection of the necessary higher order terms was based on the bias in the displacement 
predictions when using 3rd, 4th, and 5th order polynomials in equation (11)  Generally, the 
inclusion of higher order terms did not significantly change the standard deviation of the 
predictions.   

Figure 6 plots the mean residuals for the 3rd, 4th, and 5th order polynomial equations 
computed for different ky/PGA bins.  While the mean residuals for the full data set are very close 
to zero, Figure 6 shows that for each functional form the mean residuals vary with ky/PGA.  This 
trend generally indicates that the data vary with a higher order than that used in the regression.  
For the 4th and 5th order polynomials, the binned mean residuals in Figure 6 are generally within 
±0.1 (in natural log units) for ky/PGA ≤ 0.75, indicating biases less than 10%. Each functional 
form reveals noteworthy bias at ky/PGA > 0.75.  However, at these levels of ky/PGA, the 
predicted displacements are generally small and the level of bias is not of engineering 
significance.  To minimize the potential bias in the model but to maintain a relatively simple 
equation, the 4th order polynomial functional form was selected for use in the developed 
predictive models. 
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Figure 6: Mean of residuals versus ky/PGA for different functional forms of the regression 
model 

 
Scalar predictive equation 

Using the 4th order polynomial in equation (11), an initial regression was performed.  The 
residuals (lnDobserved – lnDpredicted) for the resulting model varied with PGA; thus, an additional 
PGA term was included in the scalar predictive equation. The resulting scalar displacement 
model using only one ground motion parameter (PGA) is; 
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where D is the sliding displacement (cm), ky is the yield acceleration coefficient in units of g, 
PGA is the peak ground acceleration in units of g, σln is the standard deviation in natural log 
units, and ε is the standard normal variate with zero mean and unit standard deviation.  The 
coefficients a1 through a6 and their standard errors are given in Table 1, along with the standard 
deviation (σln). To calculate the median displacements using equation (12), ε is set to zero, while 
for one standard deviation above the median, ε is equal to +1, etc.  

Figure 7 shows all of the displacement data versus ky/PGA, along with the predicted 
median displacement from equation (12) for PGA values of 0.1 g and 0.5 g. By including the 
additional effect of PGA, Figure 7 shows that for a given value of ky/PGA, the displacement 
increases by more than a factor of 3 when the PGA increases from 0.1 to 0.5 g. Adding an 
additional PGA term in the model reduced the total standard deviation from 1.20 to 1.13.  
Nonetheless, this standard deviation is very large and thus vectors of ground motion parameters 
were considered.  

 16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

ky/PGA 

S
lid

in
g 

D
is

pl
ac

em
en

t (
cm

)

All data
PGA=0.1g
PGA=0.5g

 

Figure 7: Rigid sliding block displacement versus ky/PGA 
 

 
Vector predictive equations 

In an effort to reduce the standard deviation of the predicted sliding displacements, 
various ground motion parameters were considered for inclusion in the predictive model.  As 
noted previously, these parameters are PGV, Ia, Tm, D5-75, and D5-95, and they represent intensity, 
frequency content, and duration parameters.  

To investigate which ground motion parameters have the biggest effect on the computed 
displacements, the means of the residuals (lnDobs – lnDpred) with respect to equation (12) are 
plotted versus each of the omitted ground motion parameters in Figure 8. It is clear that each of 
the omitted ground motion parameters affects sliding displacement because the residuals increase 
with increasing values of each parameter. The residuals vary most strongly with Tm and PGV, 
both of which represent measures of frequency content. A similar result was found by 
Ambraseys and Srbulov (1994).  Frequency content affects sliding displacement because motions 
with more long period energy have longer sliding episodes that lead to more displacement. The 
residuals also vary with Ia, D5-75, and D5-95, although not as strongly as with Tm and PGV. 
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Table 1: Model parameters and standard errors of the model parameters (in parentheses) for the 
proposed sliding displacement predictive equations  

 
Scalar model  

(eqn 12) 
2 parameter vector models 

(eqn 13) 
3parameter vector models 

(eqn 13) 

 
PGA 

GM1=PGA 
GM2=PGV

GM1=PGA 
GM2= Tm

GM1=PGA 
GM2= Ia

GM1=PGA 
GM2=PGV 

GM3= Ia

GM1=PGA 
GM2=Tm  
GM3= Ia

a1
5.52 

(0.09) 
-1.56 

(0.068) 
6.62 

(0.059) 
2.39 

(0.063) 
-0.74 

(0.063) 
4.27 

(0.054) 

a2
-4.43 
(1.09) 

-4.58 
(0.63) 

-3.93 
(0.69) 

-5.24 
(0.70) 

-4.93 
(0.57) 

-4.62 
(0.55) 

a3
-20.39 
(4.01) 

-20.84 
(2.34) 

-23.71 
(2.56) 

-18.78 
(2.59) 

-19.91 
(2.10) 

-21.49 
(2.04) 

a4
42.61 
(5.79) 

44.75 
(3.38) 

49.37 
(3.70) 

42.01 
(3.73) 

43.75 
(3.03) 

46.53 
(2.95) 

a5
-28.74 
(2.83) 

-30.50 
(1.65) 

-32.94 
(1.81) 

-29.15 
(1.83) 

-30.12 
(1.48) 

-31.66 
(1.44) 

a6
0.72 

(0.017) 
-0.64 

(0.013) 
0.93 

(0.011) 
-1.56 

(0.019) 
-1.30 

(0.016) 
-0.57 

(0.019) 

a7 -- 1.55 
(0.009) 

1.79 
(0.012) 

1.38 
(0.0097) 

1.04 
(0.012) 

1.14 
(0.012) 

a8 -- -- -- -- 0.67 
(0.011) 

0.86 
(0.0095) 

σln 1.13 Figure 9a / Table 2 Figure9b / Table 2 
 
 

The ground motion parameters PGV, Ia, Tm, D5-75, and D5-95 were added to the scalar 
predictive equation with PGA. The functional form of these models is: 
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where GM2 and GM3 are the ground motion parameters included in addition to PGA. For the 
models with two ground motion parameters, the GM3 term is not utilized.  

To compare the various models based on the efficiency criterion, the standard deviations 
of the predicted displacements are plotted versus ky/PGA in Figure 9.  Figure 9a shows the results 
for vectors of two ground motion parameters, while Figure 9b shows the results for vectors of 
three ground motion parameters.  By adding additional ground motion parameters, the standard 
deviation decreases significantly, particularly at smaller values of ky/PGA.  The standard 
deviation is reduced most at small values of ky/PGA because here the displacement episodes 
sample more of the ground motion, and thus the information provided by the additional ground  
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Figure 8: Mean residuals from equation (12) plotted with respect to omitted ground motion 

parameters 
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Figure 9: Variation of standard deviation with ky/PGA for the proposed (a) scalar and two 

parameter vector models, and (b) the three parameter vector models 
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motion parameters reduces the standard deviation in the displacement prediction.  At large values 
of ky/PGA, there are few displacement episodes and each episode is very short, such that little of 
the ground motion is sampled and adding more ground motion parameters does not reduce the 
standard deviation.  Thus, for all of the models considered, the standard deviation at ky/PGA > 
0.9 was never reduced below about 0.8.  

Considering the two ground motion models (Figure 9a), combining PGA with the 
duration parameters (D5-75, D5-95) only reduced the standard deviation 10 to 20%, while 
combining PGA with PGV, Tm, or Ia reduced the standard deviation by 40 to 60% at moderate to 
low values of ky/PGA.  These results are similar to those in Figure 5.  For the two ground motion 
parameter models, the combination of (PGA, PGV) provides the smallest values of standard 
deviation.  Nonetheless, the (PGA, Tm) and (PGA, Ia) models are also adequate.  The model 
parameters a1 through a7 for the (PGA, PGV), (PGA, Tm), and (PGA, Ia) models are provided in 
Table 1, along with the standard error for each model parameter.  The variation of σln with 
ky/PGA for these three models can be approximated by the linear relationships given in Table 2. 

Considering the three ground motion models (Figure 9b), the combinations of (PGA, 
PGV, Ia) and (PGA, Tm, Ia) produced standard deviations that were 50 to 75% smaller than the 
scalar (PGA) model and 15 to 40% smaller than the two ground motion parameter models.  In 
these cases, Ia is providing additional information regarding the duration of motion, which is not 
included in either the (PGA, PGV) or (PGA, Tm) models.  Using the duration parameters (D5-75, 
D5-95) in a three ground motion parameter models only reduced the standard deviation by 2 to 5% 
from the two ground motion parameter models.  Thus, for sliding displacement, it appears that Ia 
is more efficient at providing duration information than either D5-75 or D5-95.  The model 
parameters a1 through a8 for the (PGA, PGV, Ia) and (PGA, Tm, Ia) models are given in Table 1, 
and the linear relationships for σln versus ky/PGA for these models are given in Table 2. 

The sufficiency criterion can be addressed by considering the magnitude and distance 
dependence of the residuals for each predictive model.  Figure 10 plots the residuals for the 
scalar (PGA) model, the (PGA, PGV) two parameter vector model, and the (PGA, PGV, Ia) three 
parameter vector model.  The mean residuals are shown for overlapping magnitude and distance 
bins.  For the PGA model, the mean residuals do not vary with distance, but they significantly 
increase with increasing magnitude.  This trend indicates that PGA alone does not sufficiently 
predict sliding displacement because it does not fully describe the ground motion and its 
variation with magnitude.  However, the addition of the second and third ground motion 
parameters to the displacement predictive model results in residuals that do not vary significantly 
with magnitude or distance.  Thus, the vector models satisfy the sufficiency criterion for 
probabilistic seismic hazard analysis.   
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Table 2: Standard deviations for the proposed sliding displacement predictive equations  
 

Model Standard Deviation 

2GM (PGA, PGV) ⎟
⎠

⎞
⎜
⎝

⎛⋅+=
PGA
k y52.041.0lnσ

2GM (PGA, Tm) ⎟
⎠

⎞
⎜
⎝

⎛⋅+=
PGA
k y26.060.0lnσ

2GM (PGA, Ia) ⎟
⎠

⎞
⎜
⎝

⎛⋅+=
PGA
k y56.046.0lnσ

3GM (PGA, PGV, Ia) ⎟
⎠

⎞
⎜
⎝

⎛⋅+=
PGA
k y79.020.0lnσ

3GM (PGA, Tm, Ia) ⎟
⎠

⎞
⎜
⎝

⎛⋅+=
PGA
k y75.019.0lnσ
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Figure 10: Mean residuals with respect to magnitude and distance for (a) scalar (PGA) model, 
(b) two parameter (PGA, PGV) vector model, and (c) three parameter (PGA, PGV, Ia) vector  

model 
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GROUND MOTION CORRELATION 
To implement the vector hazard approach, the correlation coefficient (ρ) between the ground 

motion parameters used in the sliding displacement model (GM1, GM2) is required (equations 8 
and 9).  The correlation coefficient takes on values between -1.0 and +1.0; positive values 
indicate that the values of GM1 and GM2 for a ground motion both tend to be large (or small), 
while negative values indicate that when one GM is large then the other GM tends to be small (or 
vice versa).  A correlation coefficient of 0.0 indicates that the two parameters are not correlated. 

The correlation coefficient was computed for the pairs of ground motion parameters 
identified for the predictive equations of sliding displacement.  Using the methodology outlined 
by Baker and Cornell (2006a), the correlation coefficients were computed using the normalized 
residuals (εGM) for each ground motion parameter with respect to a ground motion prediction 
equation using: 

 

GM

predictedobserved
GM

GMGM
σ

ε
lnln −

=        (14) 

 
where lnGMobserved is the natural log of the observed ground motion, lnGMpredicted is the natural 
log of the predicted ground motion from the ground motion prediction equation, and σGM is the 
standard deviation from the ground motion prediction equation.  The use of the normalized 
residuals removes the effects of magnitude, distance, site conditions, etc., as well as any 
heteroscedasticity, from the variations in the observed ground motion parameters. 

The linear relation between εGM and the ground motion value implies that the correlation 
coefficient calculated using εGM also applies to the ground motion parameters themselves (Baker 
and Cornell 2006a).  Therefore, the correlation coefficients between the ground motion 
parameters can be computed using the values of εGM and the point estimate for the sample 
correlation coefficient (Devore 2000): 
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where 2,1 GMGMρ  is the correlation coefficient between GM1 and GM2, iGM 1ε  and iGM 2ε  are the 

ith observations of εGM1 and εGM2, 1GMε and 2GMε are the sample means of εGM1 and εGM2, and n 
is the total number of observations. 

The developed models use the ground motion parameters PGA, peak ground velocity (PGV), 
Arias Intensity (Ia), and mean period (Tm).  The correlation coefficients between each pair of 
these parameters were computed using currently available ground motion prediction equations 
(Table 3).  To investigate the impact of different ground motion prediction models, three 
different models for PGA were coupled with the other models.   
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Table 3. Ground motion prediction equations used in correlation analysis 

GM Model No. Motions 

PGA BA: Boore and Atkinson (2006) 901 

PGA CB: Campbell and Bozorgnia (2006) 901 

PGA CY: Chiou and Youngs (2006) 901 

PGV BA: Boore and Atkinson (2006) 901 

Ia T: Travasarou et. al. (2003) 765 

Tm R: Rathje et. al. (2004) 544 
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Figure 11. Scatter plot of normalized residuals for (a) PGA, PGV and (b) PGA, Tm used to 
compute correlation coefficient 

To compute the normalized residuals, lnGMpredicted and σGM were calculated for each motion 
using the ground motion prediction equation and the magnitude, distance, and additional 
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parameters (e.g., site class, fault type), while lnGMobserved was calculated directly from the 
recording.  The two horizontal components of each ground motion were combined using the 
methodology outlined in each ground motion prediction equation before being used in equation 
(14). 

The initial number of unscaled motions used to develop the displacement models was over 
2,000, which includes separate horizontal components.  Combining the two horizontal 
components and removing single components reduced the total number of data to 1,011 motions.  
Further reductions in the data were caused by removing motions where all parameters in the 
ground motion prediction equation were not available (e.g., Joyner-Boore distance missing) or 
beyond the limitations of the prediction equation (e.g., distance greater than 100 km).  The 
resulting datasets include 901 motions for PGA and PGV, 765 motions for Ia, and 545 motions 
for Tm.  Examples of the data used to compute the correlation coefficients for PGA, PGV and 
PGA, Tm are shown in Figure 11.  The PGA, PGV data in Figure 11 fall in a relatively small band 
and the computed value of ρ PGA,PGV is 0.68.  The PGA, Tm data show significantly more scatter 
and the data have a slight negative slope.  The resulting value of ρPGA,Tm is -0.27.  

The calculated values of correlation coefficient are summarized in Table 4.  PGA and Ia  
display the highest correlation (ρPGA,Ia = 0.83), which is not surprising because Ia is derived from 
the integral of the square of the acceleration-time history.  A similar value was reported by Baker 
(2007).  PGA and PGV are also highly correlated (ρPGA,PGV ~ 0.6), as are Ia and PGV (ρIa,PGV = 
0.64).  The range of values computed for ρPGA,PGV when using different combinations of ground 
motion prediction equations was somewhat large (ρPGA,PGV =0.54 to 0.68), but demonstrates the 
uncertainty in the computed values.   

The other combinations of ground motion parameters exhibit less correlation.  Tm displays 
negative and low levels of correlation with both PGA and Ia (ρPGA,Tm = -0.27, ρIa,Tm = -0.19), 
which is clearly indicated in the scatter plot in Figure 11.  The negative values of correlation for 
ρPGA,Tm and ρIa,Tm are due to the fact that high intensity records, particularly those with large 
PGA, are generally associated with more high frequency content and thus smaller values of Tm. 
The smaller values of correlation are a result of Tm being a parameter that is not affected by 
intensity, while PGA and Ia are significantly affected by intensity.  Finally, PGV and Tm display 
some positive correlation (ρPGV,Tm = 0.24), which is due to the fact that PGV is affected by the 
motion at moderate periods and Tm provides information about frequency content. 

The correlation coefficients reported here should be considered preliminary estimates of the 
true ground motion correlation.  Various issues related to inter-event and intra-event correlation 
have not been addressed as they are beyond the scope of this paper, but will be considered in 
future work.  Nonetheless, the correlation coefficients presented here allow for an initial 
application of the vector hazard approach to predict displacement hazard curves. 
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Table 4. Correlation coefficient values for various ground motion parameters 

GM Pair  ρGM1,GM2
Predictive Models 

Used 

PGA, Ia 0.83  BA, T 

PGA, PGV 

0.68 
0.58 
0.60 
0.54 
0.62 
0.61 

BA, BA 
CB, CB 
BA, CB 
CB, BA 
CY, BA 
CY, CB 

PGA, Tm -0.27 BA, R 

PGV, Ia 0.64 BA, T 

PGV, Tm 0.24 BA, R 

Ia, Tm -0.19 T, R 

 
 
DEVELOPMENT OF DISPLACEMENT HAZARD CURVES 

To demonstrate the development of scalar and vector displacement hazard curves, a 
hypothetical example is developed.  A shallow, infinite slope with ky = 0.1 is considered and the 
sliding displacement predictive equations presented in this study are used.  Specifically, the PGA 
model and the PGA, PGV model are used.  The seismological model is very simple and based on 
an exercise in Kramer (1996).  A point source is considered at a distance of 5 km with discrete 
magnitude probabilities of 0.675, 0.225, 0.075, and 0.025 for magnitudes of 4, 5, 6, and 7, 
respectively.  The activity rate (λo) is 0.2.   

 
Ground Motion Hazard 

Using the ground motion prediction equations of Boore and Atkinson (2006) for rock 
conditions (Vs = 760 m/s), the resulting scalar hazard curves (MRE) for PGA and PGV are shown 
in Figures 12a and b, respectively. The MRE hazard curves traditionally are used to develop 
design ground motion levels for a selected return period, typically either 475 years (λ = 0.0021 
1/yr, 10% probability of exceedance in 50 years) or 2,475 years (λ = 0.0004 1/yr, 2% probability 
of exceedance in 50 years).  For the curves shown, the ground motion levels with a 475 year 
return period are PGA=0.5 g and PGV=38 cm/s, while the 2,475 year ground motion levels are 
PGA=0.8 g and PGV=68 cm/s.  The derivatives of the PGA and PGV scalar hazard curves, which 
represent the scalar mean rate densities (MRD) for the two parameters, also are shown in Figure 
12.  These MRD curves, which are analogous to probability density functions, demonstrate the 
likelihood of different values of PGA and PGV.   
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Figure 12.  Scalar representation of MRE hazard for (a) PGA and (b) PGV; MRD hazard for (c)  

PGA and (d) PGV  
 

For the scalar approach using only PGA to predict sliding displacement, the PGA MRD curve 
(Figure 12c), which represents the probability of occurrence of each value of PGA, is used with 
equation (4) to compute the hazard for a range of displacement levels.  For the vector approach, 
the scalar PGA and PGV MRD curves are not used, but rather the MRD of the joint occurrence of 
PGA, PGV pairs are computed using equation (6).  Figure 13 shows the joint MRD for PGA, 
PGV for this example using ρPGA,PGV = 0.0 and 0.6.  The MRD is shown as contours because it is 
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a 3D surface with PGA and PGV on the x and y axes, and the rate occurrence on the z axis.  
When ρ = 0.0 (Figure 13a), the occurrence of PGA and PGV are assumed independent and the 
MRD contours are circular for each event.  When each event is combined and weighted by its 
probability of occurrence, the final MRD displays a ‘tail’ at the larger values of PGA and PGV 
because of the lower probability of the large events.  When ρ = 0.6 (Figure 13b), the MRD 
contours are oval-shaped for each event, resulting in an oval shape for the full MRD, although a 
‘tail’ is still observed at large PGA, PGV pairs.  Comparing the MRD contours in Figure 13, ρ > 
0.0 produces larger rates of joint occurrence of large values of PGA and PGV, but smaller rates 
of joint occurrence of large values of PGA coupled with small values of PGV (and vice versa).  
Thus, the positive correlation denotes that it is more likely that large (or small) values of PGA 
and PGV jointly occur at the same location during the same earthquake.   
 

(a)  

(b)  
 

Figure 13.  Vector representation of MRD PGA, PGV hazard for (a) ρ = 0.0 and (b) ρ = 0.6 
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Displacement Hazard Curves 

The displacement hazard curves derived from the scalar MRD for PGA (Figure 12) and the 
vector MRD for PGA, PGV (Figure 13) are shown in Figure 14.  It is clear from Figure 14 that 
the vector approach reduces the displacement hazard substantially.  The hazard is reduced when 
using multiple ground motion parameters due to changes in both the median displacement 
prediction and the standard deviation of the prediction.  For the developed displacement models, 
the median displacement is smaller when using the PGA, PGV predictive equation and the 
standard deviation is also smaller (Figure 9).  Both of these characteristics result in a smaller 
hazard.   

The hazard curves in Figure 14 are used to assess the displacement levels for different levels 
of hazard.  The displacement with a 10% probability of exceedance in 50 years is about 55 cm 
when using the scalar PGA model, but it is reduced to 17 cm when using the vector PGA, PGV 
model.  The displacement with a 2% probability of exceedance in 50 years is greater than 200 cm 
when using the scalar model, but only 65 cm when using the vector model.  For this example, the 
use of the vector model reduces the displacement hazard by more than 50%.   
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Figure 14.  Displacement hazard curves from scalar and vector approaches 

 
Some engineers use a ground motion for a specific hazard level in an analysis and assume 

that the response of the system to this motion has the same level of hazard as the ground motion 
(Figure 2, Probabilistic Ground Motion approach).  However, this is not the case because it 
ignores the uncertainty in the displacement prediction.  For example, if the 10% in 50 year PGA 
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of 0.5 g (Figure 12) is used in the scalar displacement model, the predicted median displacement 
is 37 cm, as opposed to the 10% in 50 year displacement of 55 cm from the scalar model in 
Figure 14.  Using the 2% in 50 year PGA of 0.8 g, the scalar model predicts a median 
displacement of only 96 cm, as opposed to the 2% in 50 year displacement of 233 cm.  The fully 
probabilistic values from Figure 14 are larger in this case because they consider the significant 
aleatory variability in the displacement prediction.  When considering the vector (PGA, PGV) 
model, the 10% in 50 year ground motion levels predict a median displacement of 22 cm while 
the vector hazard curve in Figure 14 indicates a value of 17 cm.  At 2% in 50 years, the ground 
motions predict a median displacement of 74 cm while the vector hazard curve predicts 65 cm.  
In this case, the fully probabilistic displacements using the vector model are smaller than the 
median displacements predicted from the probabilistic ground motions.  This result, which is the 
opposite from what was observed for the scalar case, is caused by the smaller σln for the vector 
model and the fact that the correlation between PGA and PGV was taken into account when 
performing the fully probabilistic analysis and ignored when using the probabilistic ground 
motions.  These comparisons demonstrate that using a ground motion for a given hazard level in 
a sliding displacement calculation does not produce a displacement with the same hazard level.  
As the goal in performance-based engineering is to predict the performance of a slope for given 
hazard level, the displacement hazard curve is suited for this purpose.   
 The correlation coefficient between the ground motion parameters used in the vector analysis 
plays a significant role in the hazard calculation (equations 8 and 9).  Figure 15 displays 
displacement hazard curves from the PGA, PGV vector model using values of ρ equal to -0.8, 
0.0, and + 0.8.  A positive value of ρ increases the hazard, while a negative value decreases the 
hazard as compared with the curve for ρ = 0.0.  Because positive correlation indicates that large 
values of GM1 are coupled with large values of GM2 and because displacement increases with 
increasing values of GM1 and GM2, positive values of ρ result in larger computed values of 
displacement.  Negative correlation indicates that large values of GM1 are coupled with small 
values of GM2, and thus smaller displacements are calculated and the hazard is reduced.   
 In the previous sections, three different two-parameter vector models were developed for 
sliding displacement.  Although the PGA, PGV model is recommended for use because its 
standard deviation is the smallest, the other models (PGA, Ia and PGA, Tm) display only slightly 
larger values of standard deviation.  Figure 16 presents displacement hazard curves all three of 
these three two parameter vector models.  When using the appropriate correlation coefficient 
between the pairs of ground motion parameters (ρPGA,PGV = 0.6, ρPGA,Ia = 0.83, ρPGA,Tm = -0.27; 
Table 2), the three models produce remarkably similar displacement hazard curves (Figure 16a).  
This result appears quite fortuitous and it is not clear whether similar results would be found for 
vector hazard analyses for other applications.  The displacement hazard curves for the three 
vector models are shown for ρ = 0.0 in Figure 16b.  Here a clear difference is observed, with 
PGA, PGV and PGA, Ia displaying similar curves and PGA, Tm displaying a larger hazard.  These 
differences are due to the fact that the PGA, Tm model predicts very large displacements when 
large values of PGA and Tm jointly occur.  However, large values of PGA and Tm are not likely to 
occur because of the negative correlation between these ground motion parameters (Table 4).  
Thus, the resulting displacement hazard curves are only meaningful when the appropriate 
correlation between the input ground motion parameters is modeled.   
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Figure 15. Effect of ρ on displacement hazard curve 
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Figure 16.  Displacement hazard curves developed from different vector models  

(a) ρ ≠ 0 and (b) ρ=0 
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CONCLUSIONS 
 

A fully probabilistic assessment of sliding displacement of slopes is a valuable tool because it 
rigorously accounts for the variability in the ground motion and the variability in the sliding 
displacement prediction.  Both of these sources of variability, as quantified by σln, are significant 
and ignoring them may result in non-conservative estimates of sliding displacement.  The fully 
probabilistic approach produces a displacement hazard curve, and can be formulated in terms of 
a scalar or vector of ground motion parameters.  The vector framework is based on the work of 
Bazzurro and Cornell (2002) who applied it to the hazard assessment of inter-story drift of a 20-
story building.  Beyond the requirements of a scalar probabilistic seismic hazard analysis, the 
only additional information required for a vector analysis is the correlation coefficient between 
the ground motion parameters used in the model of sliding displacement.   

This report describes the development of empirical predictive models for rigid block sliding 
displacement that are a function of multiple ground motion parameters.  Multiple ground motion 
parameters are used in an effort to reduce the standard deviation of the displacement prediction.  
Compared with the scalar model using only one ground motion parameter (PGA), vector models 
using two ground motion parameters result in a 40 to 60% reduction in the standard deviation.  
The vector (PGA, PGV) produces the smallest standard deviation, while the vectors (PGA, Tm) 
and (PGA, Ia) produce slightly larger values.  The duration parameters D5-75 and D5-95 do not 
significantly reduce σln.  For each of these vectors, the reduction in σln is most significant at 
smaller values of ky/PGA because at smaller values of ky/PGA more of the ground motion is 
sampled during the displacement calculation and thus the information provided by the additional 
ground motion parameters improves the displacement prediction.  The three parameter vector 
models (PGA, PGV, Ia and PGA, Tm, Ia) further reduce σln by 15 to 40% at smaller values of 
ky/PGA.  Based on their ability to significant reduce σln for the displacement prediction, the two 
parameter vector model of (PGA, PGV) and the three parameter vector model of (PGA, PGV, Ia) 
are recommended for use. 

A hypothetical example was used to demonstrate the vector framework for sliding 
displacement.  Displacement hazard curves were developed for a yield acceleration of 0.1 g 
using scalar and vector models.  For this example, the displacement hazard was reduced by as 
much as 50% when using the vector approach as opposed to the scalar approach.  This reduction 
in hazard is due to the reduction in the standard deviation of the displacement prediction when 
using a vector model, as well as the change in the median displacement prediction.  The 
displacement hazard curve was used to identify displacement levels for different hazard levels 
(10% in 50 years and 2% in 50 years), and it was shown that using ground motions for a given 
hazard level does not produce a displacement level with the same level of hazard.   

The fully probabilistic assessment of the sliding displacement of slopes represents a step 
forward because it accounts for the main sources of variability in the problem and it quantifies 
the probability of exceedance for different displacement levels.  In the future, the framework 
described here may be used on a regional scale to assess earthquake-induced landslide hazards or 
on a local scale to assess the performance of engineered slopes and earth structures. 
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