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TECHNICAL ABSTRACT 
This study focus on developing methods and procedures to obtain 3D velocity structure 

from the inversion of waveform data. We apply one kind of non-monotone trust-region algorithm 
to solve the nonlinear minimization problem, but with improvements to the search method to 
reduce the likelihood of falling into a local minimum in the objective function. The objective 
function consists of a weighted sum of the difference between the observed and synthetic first 
arrival times (calculated by a cross-correlation method) and the sum of the squared differences of 
the waveforms. By using this objective function we can easily move from a purely travel-time 
based measure to a full waveform-based measure. 

A state-of-the-art 3D finite-difference code will be used to calculate the required Green’s 
functions. This code written by the PI has significant computation-saving advantages (Liu and 
Archuleta, 1999a, 1999b, 2002). First, the code allows for two separate regions, an upper one 
with fine grid spacing, and a lower one with three-times the grid spacing. This feature allows for 
a fine grid space near the surface where shear-wave velocities are low without carrying the fine 
spacing to depth where it is not needed. In addition, the grid spacing can be made to grow in the 
horizontal and vertical directions, giving a further savings in computational effort. In this code 
we also improve the modeling of attenuation. The code has been fully tested and validated.  

A preliminary investigation on the developed algorithms is performed by using the 
synthetic data generated from a simple 3D velocity structure (Figure 1). This testing indicates 
that the quasi-Newton trust region algorithm converges very fast if the initial model is not far 
away from the true model. Although the test problem is simple, it proves that the inversion 
algorithm can escape, at least, from shallow local minima, and move the trial model to the true 
solution. This testing also shows that B.F.G.S updating of the Hessian matrix performs better 
than the SR1 updating for the inversion of waveform data.  
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NON-TECHNICAL ABSTRACT 

The empirical relationship derived in the paper provides an efficient way for the numerical 
modeling community to incorporate the constant Q into their finite difference or finite element 
algorithm. The finite difference code has been used by several institutions (include USGS) to 
study complex wave propagation. The method and procedure developed in this project has 
potential to improve our understanding of 3D velocity structure that in turn can be used to predict 
realistic time history of ground motion from future earthquakes, a key component of the USGS 
Earthquake Hazards Reduction Program. 
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PROJECT DESCRIPTION AND RESULTS 

 
1. Introduction and Motivation 

Ground motions for potentially damaging earthquakes can be estimated from records of 
past events. However, the usefulness of this approach is limited by the available ground motion 
database. Often appropriate records for the magnitude of interest or the geologic setting do not 
exist. Scenario calculations of ground motions must be done for postulated earthquakes to 
augment data available. These calculations require knowledge of crustal velocity structure. In 
recent years experience has been gained from larger earthquakes such as Northridge and Kobe 
show the importance of three dimensional (3D) variations of velocity in controlling ground 
motion. Some of the most important of 3D effects occurr in sedimentary basins. Many at-risk 
urban areas are situated on deep sediment-filled basins. Several studies have demonstrated the 
importance of deep basin structure on strong-ground motions and observed damage patterns (e.g. 
Olsen and Archuleta, 1996; Iwata et al., 1996; Pitarka et al., 1996; Kawase, 1996; Hartzell et al., 
1997; Wald and Graves, 1998; Graves et al., 1998). Calculation of ground motion time histories 
and seismic hazard assessment for urban basins requires knowledge of the 3D velocity structure 
of these basins.  

Seismic reflection/refraction methods can be used to image sedimentary basins, however, 
these surveying methods are very costly. An alternative method is to utilize the waveforms of 
seismic ground motions that have passed through the basin. With the advent of special array 
deployments in urban areas by the USGS and the coming of ANSS, more and more ground 
motion records are being collected in urban areas of interest. This study will develop software 
and procedures for inverting waveform data to recover the 3D velocity structure of basins. The 
improved velocity structure can then be used to calculate more accurate ground motion for 
scenario earthquakes. 

This study focuses on developing methods and procedures to obtain 3D velocity structure 
from the inversion of waveform data. We apply one kind of non-monotone trust-region algorithm 
to solve the nonlinear minimization problem, but with improvements to the search method to 
reduce the likelihood of falling into a local minimum in the objective function. The objective 
function consists of a weighted sum of the difference between the observed and synthetic first 
arrival times (calculated by a cross-correlation method) and the sum of the squared differences of 
the waveforms. By using this objective function we can easily move from a purely travel-time 
based measure to a full waveform-based measure. 

A state-of-the-art 3D finite-difference code will be used to calculate the required Green’s 
functions. This code written by the PI has significant computation-saving advantages (Liu and 
Archuleta, 1999a, 1999b, 2002). First, the code allows for two separate regions, an upper one 
with fine grid spacing, and a lower one with three-times the grid spacing. This feature allows for 
a fine grid space near the surface where shear-wave velocities are low without carrying the fine 
spacing to depth where it is not needed. In addition, the grid spacing can be made to grow in the 
horizontal and vertical directions, giving a further savings in computational effort. In this code 
we also improve the modeling of attenuation. The code has been fully tested and validated.  

A preliminary investigation on the developed algorithms was performed using the 
synthetic data generated from a simple 3D velocity structure (Figure 1). We have tested the 
effects of initial velocity model on the inversion results. We also tested different formula for 
updating the Hessian matrix. 
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2. Formulation of the inversion problem 
In this section, we define the inverse problem in terms of an objective function and derive 

the expression for the Frechet derivative of the objective function. 
The velocity structure model parameters c(x) (P-wave velocity, α(x), or S-wave velocity, 

β(x)) are determined from the inversion of recorded seismograms by minimizing the following 
objective function: 

 2 21( ) ( ) [ ( , ; ) ]
2

rs rs
T m W m m r s

s r m s r m

E W T W W u t dt⎧ ⎫= Δ + Δ⎨ ⎬
⎩ ⎭

∑∑∑ ∑∑∑ ∫M x x  (1) 

where, 

 2

( , ; ) ( , ; ) ( , ; ),

1 [ ( , ; )] ,
m r s m r s m r s

rs
m m r s

u t u t o t

W o t dt

Δ = −

= ∫
x x x x x x

x x
 

and M is the vector of velocity model parameters; ( , ; )m r su tx x  is the mth component of synthetic 
displacement at receiver x r generated by a seismic source at x s; ( , ; )m r so tx x  is the 
corresponding observed displacement; and rs

mTΔ = cal syn( , ) ( , )m r s m r sT T−x x x x  is the difference 
between the observed and calculated first arrival time; WT and WW are used to adjust the weight 
of the contribution to the objective function from the fitting of the travel-times and waveforms. 

In practice, seismic travel-times can be found either by hand-picking the first arrival time 
or by some automated method. However, picked times corresponds to the arrival of the highest-
frequency observable waves. The widespread availability of broad-band digital data has led to 
the recent development of automated travel-time measurement techniques, based upon the cross-
correlation of observed body wave phases with the corresponding synthetics (e.g., Luo and 
Schuster, 1991; Marquering et al. 1999). First we define the cross-correlation of the synthetic 
and observed waveform as 
 ( ) [ ( , ; ) ( , ; )]rs

m m r s m r sf T W u t o t T dtΔ = + Δ∫ x x x x . (2) 

Then the travel-time difference rs
mTΔ  is directly determined by finding the maximum of Equation 

(2), that is 
 max max( ) max{ ( ) [ , ]}rs

mf T f T T T TΔ = Δ Δ ∈ −Δ Δ . (3) 

Here ΔTmax is the estimated maximum travel-time difference between the observed and synthetic 
seismograms. 

Because synthetic seismograms are nonlinearly related to the velocity of the earth 
structure, the objective function defined in equation (1) contains many local minima. While a 
global optimization method, such as simulated annealing or genetic algorithm (e.g., Sen and 
Stoffa 1995), may seem to be a good technique to minimize this objective function, it is 
impractical to perform this kind of inversion at present because the global method needs to 
evaluate the objective function for many different model parameters. As an alternative, a 
generalized gradient method, such as steepest descent or quasi-Newton (e.g., Fletcher, 1987; 
Tarantola, 1987), is often used to invert for velocity structure. The disadvantage of gradient 
methods is that they are likely to converge to one of the local minima instead of the global 
minimum. However they have the advantage of being very efficient. 
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Regardless of which kind of gradient method is used, it always requires at least the first 
order derivative of the objective function with respect to the model structure parameters, which 
is given by 

 ( , ; )( ) ( , ; )
rs

rs rsm m r s
T m W m m r s

s r m s r m

T u tE W T W W u t dt
c c c

∂ ∂∂
∂ ∂ ∂

Δ
= Δ + Δ∑∑∑ ∑∑∑ ∫

x xx x , (4) 

where ∂ΔT/∂c and ∂u/∂c are the Frechet derivative of travel-time difference and displacement, 
respectively. Luo and Schuster (1991) present an explicit expression for the Frechet derivative of 
a seismic travel-time measured by the cross-correlation of an observed and a synthetic 
waveform. This Frechet derivative is of the form 

 ( , ; )[ ( , ; ) ]
( )

rs
rs rsm m r s
m m r m s

T u tD o t T dt
c c

∂ ∂
∂ ∂
Δ

= + Δ∫
x xx x

x
 (5) 

where 
1 [ ( , ; ) ( , ; )]rs rs

m m r m s m r sD o t T u t dt= + Δ∫ x x x x . 
Marquering et al. (1999) independently derived an equivalent form of the Frechet derivative of 
travel-time difference. From equation (5) we find that the Frechet derivative of travel-time 
difference is calculated from the Frechet derivative of displacement. Substitution of equation (5) 
into equation (4) gives 

 ( , ; )[ ( , ; ) ( , ; )]rs rs rs rs m r s
T m m m r m s W m m r s

s m r

u tE W D T o t T W W u t dt
c c

∂∂
∂ ∂

⎧ ⎫= Δ + Δ + Δ⎨ ⎬
⎩ ⎭

∑∑ ∑∫
x xx x x x  (6) 

In the following we derive the expression for the Frechet derivative of synthetic 
displacement. Let u(x, t;x s) be the three-component displacement response of the elastic earth 
model at location x to a body force F applied at time t=0 at a source point x s, then the response 
can be described by the wave equation 
 ( ) [ ( )]m m i i i i m m i mu u u u Fρ ∂ λ∂ ∂ μ ∂ ∂− − + =      m=1, 2, 3, and t ∈ [0, T], (7) 

subject to the free surface boundary condition and the initial conditions 
( ,0; )=0  , and ( ,0; )=0m s m su ux x x x  

where 
2

2 , , and m m
m m i

i

u uu u
t t x

∂ ∂ ∂∂
∂ ∂ ∂

= = = ; 

and the summation convention for repeated subscripts is assumed (e.g. 1 1 2 2 3 3i iu u u u∂ ∂ ∂ ∂= + + ); 
ρ, λ, and μ are the density and Lame parameters of the earth model, respectively. If F is the 
equivalent body force of the seismic moment tensor, then u is the displacement wave generated 
from a seismic point source. If F is a unit impulse applied in the nth direction, the displacement 
um  is denoted as the Green’s function ( , ; )n

m sg tx x . 
According to the Born approximation, a small perturbation in Lame parameters of the 

earth model parameters, 
( ) ( ) ( ),        ( ) ( ) ( )λ λ δλ μ μ δμ→ + → +x x x x x x , 

will produce a wave field 
( , ; ) ( , ; ) ( , ; )m s m s m su t u t u tδ→ +x x x x x x . 
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If we assume that the Lame parameters are subject to a perturbation in the volume Ω, the 
corresponding perturbation of displacement ( , ; )m r su tδ x x  can be represented (e.g. Marquering et 
al, 1999; Zhao et al, 2002) as  

 

( , ; ) 2 [ ( , ; )] [ ( , ; )]

4 [ ( , ; )] [ ( , ; )]

2 [ ( , ; ) ( , ; )] [ ( , ; )]

m
m r s i i s k k r

m
i i s k k r

m
i k s k i s i k r

u t u t g t d

u t g t d

u t u t g t d

δ δα ρα ∂ ∂

δβ ρβ ∂ ∂

δβ ρβ ∂ ∂ ∂

Ω

Ω

Ω

= − ∗ Ω

+ ∗ Ω

− + ∗ Ω

∫
∫
∫

x x x x x x

x x x x

x x x x x x

 (8) 

where symbol * denote the temporal convolution. Implicit in the above relationship is that the 
density distribution is known. We make this assumption because (1) seismic travel-time is 
insensitivity to density; (2) the fewer the number of free parameters, the more stable the velocity 
inversion will be; and (3) empirical relations between velocity and density are available. 
 We know that equation 

 ( , ; ) ( , ; )( , ; ) m r s m r s
m r s

u t u tu t ∂ ∂δ δα δβ
∂α ∂β

= +
x x x xx x  (9) 

is defined for any δα and δβ. From this equation and equation (8) we can obtain the derivative of 
displacement used in equation (6). However, in most cases we will not explicitly compute the 
Green’s function gk

m(x,t;x r)  used in equation (8) (Tarantola, 1987). Instead, similar to the study 
of Tromp et al. (2005), we introduce the back-propagation wavefield ( , ; )stΨ x x  defined as 

 ( , ; ) ( , ' ; )[ ( , ' ; ) ( , '; )] 'm rs rs rs rs
k s k r T m m m r m s W m m r st x g t t x W D T o t T W W u t dtψ = − Δ + Δ + Δ∫x x x x x x . (10) 

Based on equations (6), (8) and (10), the variation of the objective function due to a perturbation 
δα(x) and δβ(x) can be represented as 

 

{

}

[ ( )] 2 [ ( , ; )][ ( , ; )]

                             4 [ ( , ; )][ ( , ; )]            
                          2 [ ( , ; ) ( , ; )][ ( , ; )]

i i s k k s
s

i i s k k r

i k s k i s i k r

E dt u t t

u t t
u t u t t

δ ρα ∂ ∂ ψ δα

ρβ ∂ ∂ ψ δβ
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= −

+

− +

∑∫M x x x x x

x x x x
x x x x x x

 (11) 

For the convenience of computing the Frechet derivatives with a staggered-grid finite difference 
scheme, we reorganize the above equation and finally get the derivatives of the objective 
function as 

 

2 2 2

4 2 2 4

2 2 2 3
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where τ and σ are the stresses, 

 
( , ; ) ( , ; ) ( ( , ; ) ( , ; )

( , ; ) ( , ,; ) ( ( , ; ) ( , ; )
ij s k k s ij i j s j i s

ij s k k s ij i j s j i s

t u t u t u t

t t t t

τ λ∂ δ μ ∂ ∂

σ λ∂ ψ δ μ ∂ψ ∂ ψ

= + +

= + +

x x x x x x x x

x x x x x x x x
, (13) 
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In the following section we will present a procedure to calculate these stresses, as well as the 
displacements and velocities at recording stations from seismic sources. 
 
3. Calculations of Synthetic Wave Fields 

The three-dimension seismic wave propagation problem is currently solved by discrete 
numerical methods such as finite-difference, finite-element, spectral-element, and pseudospectral 
methods. In general there are two ways to apply these methods to calculate the 3D synthetic 
seismograms or Green’s functions. First, applying forces at a point source, the seismograms can 
be obtained at various receivers. Second, using reciprocity relationship of Green's functions, 
body forces are applied at a receiver location and the seismograms can be calculated for all 
sources. Liu and Archuleta (1999a, 2003) have already applied reciprocity to calculate 3D 
Green’s functions using the finite difference method for their inversion of the rupture process of 
large earthquakes. 

To solve the inverse problem defined in this report, we need to compute the three-
component seismic displacements and velocities at all recording stations, and stresses at all the 
locations where material velocities will be perturbed. Let us assume that there are NP point 
sources and NR receivers in our study. Based on the above discussion, if 2•NP is greater than 
3•NR, we will calculate the Green’s functions by applying an impulse body force separately for 
each component of each receiver. This reciprocity requires 3•NR computations to obtain all the 
Green's functions. If not, for each earthquake we will first perform one straightforward 
computation to get all the synthetic seismograms, and then compute the back-propagation 
wavefield Ψ(x,t;x s)  generated from the weighted residuals at all receivers. In this case, the total 
computations will be 2•NP, regardless of the number of receivers. As indicated by Tarantola 
(1987), the wavefield Ψ(x, t;x s)  is the solution of the following wave equation, 
 ( ) [ ( )] ( , ; )m m i i i i m m i m stρψ ∂ λ∂ψ ∂ μ ∂ψ ∂ ψ φ− − + = x x ,    m=1, 2, 3, and t ∈ [0, T], (14) 

subject to the free surface boundary condition and the final (instead of initial) conditions 
( , ; )=0  , and ( , ; )=0m s m sT Tψ ψx x x x , 

where, 
 ( , , ) ( )[ ( , ; ) ( , ; )]rs rs rs rs

m s r T m m m r m s W m m r s
r

t W D T o t T W W u tφ δ= − Δ + Δ + Δ∑x x x x x x x x . (15) 

We will use a 3D viscoelastic finite difference (FD) algorithm of Liu and Archuleta 
(2002) for these numerical computations. The FD algorithm is accurate to fourth order in space 
and second order in time. It employs the staggered-grid, velocity-stress formulation. Therefore 
we can directly obtain the velocities and stresses from the FD computation. The displacements 
are calculated through integration of the corresponding velocities. This code includes coarse-
grained attenuation (Liu and Archuleta, 1999b). It can simulate frequency-dependent or constant 
Q in the time domain. Another desirable feature of the code is that it implements a grid with 
variable spacing. Basically, the grid system is divided into two regions: Region I is the volume 
that includes the free surface, and Region II is all the volume below the Region I. The grid 
spacing in the horizontal direction is three times coarser in Region II compared to Region I. A 
general observation is that the material velocity near the free surface is generally small relative to 
most of the volume and can strongly affect the ground motion. This low-velocity material will 
impose the most severe computational and memory requirements. The FD algorithm with 
variable-grid spacing is one approach to efficiently incorporate the low-velocity layer into FD 
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simulation. Compared to a FD algorithm with regular grid spacing, the FD algorithm with 
variable-grid spacing requires one-quarter the memory and one-fifth the CPU time. This feature 
is fundamental to the velocity structure inversion because of the large amount of computations 
required to calculate the synthetics. 

To efficiently incorporate the effects of Q into our 3D FD numerical simulations of wave 
propagation, we derive an empirical formula for modeling an arbitrary Q that can be a function 
of frequency (Liu and Archuleta, 2006). Another key issue in the implementation of variable-
grid spacing is how to interpolate the wave field on the interface of Region I and Region II. 
Almost all variable-grid FD algorithms use linear interpolation because it does not lead to an 
unstable problem, but the accuracy of the simulation is not ideal. Through a large number of 
numerical tests we have found an improved interpolation scheme that is both accurate and stable. 
 
4. Inversion Method 

The inverse problem in this report is defined as finding the nonlinear least square (L2 
norm) solution. It has the following characteristics 
(1) the objective function E(M) is nonlinear; 
(2) the evaluations of E(M) and its Frechet derivatives are very expensive. 
(3) the number of free parameters M to be inverted for may be several thousand. 
While a global inversion method, such as simulated annealing or genetic algorithm (Sen and 
Stoffa 1995), is desirable to solve a nonlinear problem, the requirement of solving a large 
number (on the order of millions) of forward problems prohibits the application of global 
methods to our inverse problem. In practice, a local inversion method based on the gradient of 
the objective function is used to invert for 2D or 3D velocity structure (Tarantola, 1987), 
although it is well known that this kind of method may find a local minima rather than a global 
minimum.  

There is a wide range of local inversion methods that can be chosen to iteratively solve 
our nonlinear least square problem. It is best to consider the above characteristics of our problem 
in making a decision. It is most difficulty to address the characteristic (1) with a local method 
because a good initial velocity model is necessary. We will adopt a multiscale waveform 
inversion strategy (Bunks, et al., 1995) to reduce the dependence of the final solution on the 
initial model. In addition, we plan to choose a non-monotone trust-region algorithm which is 
based on Quasi-Newton method, because it has better global convergence properties, comparing 
to Cauchy methods such as steepest descent. The characteristic (2) is another serious impediment 
to solving our inverse problem. It limits the number of iterations that can be performed, thus 
requiring that the method have a rapid rate of convergence. The characteristic (3) means that the 
size of this problem is moderate. This feature allows us to have certain flexibility in selecting a 
local method without too much concern for RAM and CPU time required by the method itself. 

Both Newton-like (quasi-Newton, strictly speaking) and Cauchy methods are widely used 
for solving nonlinear geophysics problems (e.g., Tarantola, 1987; Hartzell, 1989). However 
quasi-Newton methods are recognized today as one of the most efficient ways to solve nonlinear 
unconstrained or bounded constrained optimization problems. These methods are mostly used 
when the second derivative matrix (Hessian matrix) of the objective function is either 
unavailable or too costly to compute. They are like Newton’s method except that the Hessian 
matrix is approximated by a symmetric matrix, which is corrected or updated from iteration to 
iteration.  
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Quasi-Newton methods can be divided into two categories: one kind using a “line search” 
algorithm, another using a “trust region” algorithm. To implement the line search” algorithm, 
requires maintaining a positive definite approximation to the Hessian matrix of the objective 
function, such that the line search follows a descent direction in the objective function. 
Otherwise the algorithm loses its search direction. Although the true Hessian is usually positive 
definite at the solution of the problem, this may not be the case when the current iteration of the 
algorithm is far from convergence. As an alternative, the trust region algorithm is a more 
effective approach to circumventing the difficulty caused by a non-positive definite Hessian 
matrix. As pointed out by Fletcher (1987), a particular advantage of trust region algorithms is 
that they retain the rapid rate of convergence of Newton’s method, but are generally applicable 
and globally convergent, with no significant restriction on the class of problem to which they 
apply. 

Based on the above discussion, we selected a quasi-Newton trust region algorithm. In the 
rest of this section, we first describe the trust region algorithm and its implementation, and then 
find a way to approximate the Hessian matrix.  

There are several versions of trust-region methods that can be chosen. Our description of 
the trust-region method mostly follows Conn, et al. (2000), except that we use a global 
optimization method to minimize the quadratic model of the objective function. Starting from an 
initial model M0, the trust-region algorithm iteratively looks for the best solution. At each iterate 
Mk, the algorithm first assumes that the objective function E( Mk) can be approximated by its 
quadratic model q(δM) within a suitable neighborhood Δk  of Mk, which is referred to as the 
trust region. The q(δM) has the form 
 T T( ) ( ) ( )k k k kE q Eδ δ δ δ δ+ ≈ = + +M M M M A M M B M  (15) 

where kδ = −M M M ; vector A k indicates the first-order gradient of the objective function 
E( Mk); symmetric Bk  is an approximation to the Hessian matrix (second-order derivative) of 
E( Mk) as discussed later.  

Then a trial model 1k kδ+ = +M M M  is constructed by finding the solution δMk  of the 
following subproblem: 
 ( ){ }Minimize    subject to || ||k kq δ δ ∞≤ ΔM M  (16) 
where ||• ||∞  denotes the infinity norm. The acceptance of the trial model and the modification of 
Δk depend on the ratio ηk of the actual reduction in the objective function to the predicted 
reduction of the quadratic model. To achieve a better global convergence, we use a ratio ηk that 
is defined by not only comparing the actual versus predicted reduction during the current 
iteration but also capturing the trend over some past history. It has the form 
 max[ , ]k k k

h cη η η= , (17) 

where 
( ) ( )[ ( ) ( )] [ ( ) ( )],

[ ( ) ( )] [ ( ) ( )],

k r k k k r k k k
h
k k k k k k k
c

E E E q

E E E q

η δ δ

η δ δ

= − + −

= − + −

M M M M M

M M M M M
 

and the index r(k) denotes a reference iteration in history with r(k) ≤ k and r(0) = 0. Conn et al 
(2000) describe a way in detail to determine the r(k). Based on this accepting criterion the 
objective function no longer reduces monotonically during the iteration process. 

Finally the iterate Mk is updated by setting 
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 1         if  0.05
                   if  0.05

k k k
k

k k

δ η
η

+ ⎧ + >
= ⎨

≤⎩

M M
M

M
. (18) 

The trust region bound Δk is updated by setting 

 1

0.5 || ||                       if  0.05          
                                    if  0.05< 0.9   

max[2.5 || || , ]        if  0.9            

k k

k k k

k k k

δ η
η

δ η

∞
+

∞

⎧ ≤
⎪Δ = Δ <⎨
⎪ Δ ≥⎩

M

M
. (19) 

In order to induce a fast asymptotic rate of convergence of the trust region method, we 
normally require a good approximation to the minimizer of (16). However in certain cases it may 
not be easy to find the global solution of (16) because of the box constraint and the possibility 
that B can have negative eigenvalues (Conn, et al, 1991). Several methods have been proposed to 
solve equation (16) (see Fletcher, 1987; and Conn et al., 1988). Of them the Levenberg-
Marquardt type methods are the most well known. However all these methods are designed to 
find an approximate solution of this equation (of course, when the matrix B is positive definite, 
the solution is global). 

Here we use a particular kind of the simulated annealing method, called the heat-bath 
algorithm (Rothman 1986), to find the global solution of (16). This algorithm, as point out by 
Sen and Stoffa (1995), is good for problems with a large number of free parameters. It is not 
efficient to solve quadratic problems using a global method. Compared to the local methods 
mentioned above, it requires much more computing time. However this computing time is 
negligible compared with the time required to compute the synthetic seismograms and the 
Frechet derivatives of the objective function. Given the fact that a global solution of (16) is very 
important for the trust region method to achieve a fast rate of convergence, we believe it is worth 
adopting a global method in our inverse problem. We use a global optimization method only for 
solving equation (16) rather than for minimizing the objective function of the inverse problem. 

Besides solving equation (16), the other major consideration in implementing the trust-
region algorithm is the choice of the method to determine the matrix Bk . Because the Hessian 
matrix of the objective function is too costly to compute in practice, the matrix Bk  is often 
calculated by using a quasi-Newton technique, such as B.F.G.S. method or symmetric rank-one 
method (Fletcher, 1987). The B.F.G.S. method updates the Bk  using the following formula 

 
1 1 1 T 1 1 1 T

1
1 T 1 1 1 T 1

( ) ( )( )
( ) ( )

k k k k k k k k
k k

k k k k k k

δ δ
δ δ δ

− − − − − −
−

− − − − −

− −
= + +

−
B M M B A A A AB B

M B M A A M
, (20) 

and the symmetric rank one (SR1) formula is of the form 

 
1 1 1 1 1 1 T

1
1 1 1 T 1

[( ) ][( ) ]
[( ) ]

k k k k k k k k
k k

k k k k k

δ δ
δ δ

− − − − − −
−

− − − −

− − − −
= +

− −
A A B M A A B MB B

A A B M M
. (21) 

We will test both formulas for updating the Hessian matrix during the inversion of velocity 
structure.  
 
5. Example 
 To evaluate the inversion procedure presented in previous sections, we apply it to 
determine a simple 3D velocity structure using synthetic seismograms. The target 3D velocity 
model is shown in Figure 1. The model has a half-ellipsoid basin within the half space. The size 
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and the shape of the model are labeled in the plots of Figure 1. We assumed that two small 
scenario earthquakes are recorded by a dense array (Figure 2) deployed within the studied area. 
The locations of the two earthquakes are shown in the Figures 2. Their source parameters are 
given in Table 1. The slip rate of sources has the shape of Brune’s source function:                                               

 
22 2( ) exp ts t π π

τ τ
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (22) 

In which, the τ denotes the slip rise-time.  

 
       Figure 1.  The 3D velocity structure model and the Finite Difference simulation range. 
 
 When quasi-Newton trust region algorithm is applied to minimize the objective function 
defined in equation (1), we need to compute the Frechet derivatives for the objective function. 
Using the back-propagation wave field and equation (12) is the most efficient way to obtain the 
Frechet derivatives. However, as pointed out by Tromp et al. (2005), we need to have 
simultaneous access to the regular wave field and the back-propagation wave field, and to low-
pass filter both wave fields to remove the dispersion influence of FD simulation. Therefore both 
wave filed need to be stored as function of space and time. At present the Linux cluster used for 
this study does not have enough hard disk memory to store these wave fields. As an alternative 
we directly apply the equation (6) to calculate Frechet derivatives. The derivatives of synthetic 
ground motion versus the parameters of structure model are approximated by the difference: 

 ( , ) ( , ) ( , )m m mu c t u c c t u c t
c c

∂
∂

+ Δ −
≈

Δ
, (23) 

where,  we set 0.02c cΔ = . 
 In this test we invert for the P-wave and S-wave velocities of the basin and half space 
using waveform data. The densities will not change during the inversion and are set the same as 
the target model. But the Q values are a function of S-wave velocity. We use same relationship 
between Q and S-wave velocities to compute the synthetic data and to calculate the regular and 
the back-propagation wave field. As shown in figure 2, thirty-six three-component ground 
velocities are used in the inversion. Both ‘data’ and simulations are low-pass filtered with corner 
frequency of 1.0 Hz. The initial inversion values of P-wave and S-wave velocities are listed in 
Table 2. They are about 15 percent away from the target values. In the same table we also list the 
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bound of each free parameter used in the inversion procedure. We set the initial trust region with 
value of 0.1. This means that a parameter can be perturb about 10 percent of its value. 
 

Table 1. Earthquake locations and their source parameters 

Event # X 
(m) 

Y 
(m) 

Depth 
(m) 

Moment 
(N-m) 

Rise Time 
(sec) 

Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

1 8000 8000 10000 1.0 12*10  0.3 120 60 70 
2 20000 20000 7000 5.0 11*10  0.2 340 70 20 

 
Table 2. Target and Initial Velocity Structure Models 

Basin Half Space   
Model P-velocity 

(m/s) 
S-velocity 

(m/s) 
Density 

(kg/m^3) 
P-velocity 

(m/s) 
S-velocity 

(m/s) 
Density 

(kg/m^3)
Target 2000 1000 2100 5400 3100 2700 
Initial 2300 1200 2100 5900 3500 2700 

Bounds 1600-2400 600-1500  5000-6000 2500-3700  
 

 
Figure 2. Map of recording stations (triangles)          Figure 3. The objective function values 
used in the inversion for velocity structure.                 versus the number of iterations 
The stars denote two earthquake epicenters. 
 

Figure 3 plots the misfit between the ‘data’ and synthetics as the function of iteration 
number.  From Figure 3 we can see that the inversion converges to the target model after 28 
iterations. The objective function has a value of 0.15 at the iteration 8. The inverted result from 
this iteration matches the target model with an error of less than 1%. However this result is not a 
global but a local minimum solution. The inversion process then takes about 20 steps more to 
search the model space and escape from local minima. This means the algorithm exhausts most 
of the computing time to move from a very good model to the best (true) model. This feature can 
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results from the error in the estimating of Hessian matrix and/or from the error of difference 
calculation in term of equation (23). 
 This test indicated that, if the initial model is not far away from the true model, the quasi-
Newton trust region algorithm can efficiently solve the waveform inversion problem.  To test the 
influence of initial model, we ran another inversion using half space as initial model, i.e. the 
initial values P-wave and S-wave velocities are set same for the basin and half space, 
respectively. In this test the inversion process only run 5 iterations and then stoped. The output is 
far away from the true model.  The reason may be (1) the dependence of the inversion algorithm 
on the initial model; and/or (2) large error in the calculation of Frechet derivatives when equation 
(23) is implemented. We have done a test using 0.01c cΔ =  and 0.01c cΔ = − , respectively. We 
find that the values of Frechet derivatives can have different sign when using different values of 
Δc.  

During the inversion, we separately used the B.F.G.S formula (Eq. 20) and SR1 formula 
(Eq. 21) to update the Hessian matrix. Although Conn et al. (1991) point out that the SR1 
updating normally performs better than B.F.G.S. when combined with a trust-region algorithm, 
our testing show that B.F.G.S. updating performs better than the SR1 updating for the inversion 
of waveform data. 
 
6. Discussion and Conclusion 

We develop a method and procedure to determine 3D velocity structure from the 
inversion of waveform data. This procedure needs to compute the regular wave field and back-
propagation wave field for each earthquake. Both wave fields are calculated using a finite 
difference method. The objective function of the inversion consists of a weighted sum of the 
difference between the observed and synthetic first arrival times and the sum of the squared 
differences of the waveforms. By using this objective function we can easily move from a purely 
travel-time based measure to a full waveform-based measure. We apply a non-monotone trust-
region algorithm to solve the nonlinear inversion problem, which has better global convergence 
properties.  

To limit computer requirements, we used a simple 3D velocity structure model to 
evaluate the performance of the presented procedure. This testing indicates that the quasi-
Newton trust region algorithm converges very fast if the initial model relatively close to (~15% 
difference) the true model. Although the test problem is simple, it proves that the inversion 
algorithm can escape, at least, from shallow local minima, and move the trial model to the true 
solution. This testing also shows that B.F.G.S updating of the Hessian matrix performs better 
than the SR1 updating for the inversion of waveform data 

However the algorithm did not converge to the target model when the initial model is far 
away from the true solution. This failure may result from the large errors in the calculation of 
Frechet derivatives. More testing will be performed in the future studies using equation (12) to 
compute the Frechet derivatives. This test will help to identify it is the Frechet derive calculation 
or the inversion method itself that cause the lacks of convergence. Also we will try other initial 
models to continually test the dependence of inversion algorithm on the starting model. 

It is complex problem to determine 3D velocity structure from the inversion of seismic 
waveform data. More effort is required to improve and test the presented method. The 
implementation of the non-monotone trust region algorithm requires the specification of several 
free parameters. The optimum choice of these free parameters can improve the efficiency of the 
algorithm but is problem dependent. The values of these parameters used in our testing come 
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from the suggestions of Conn et al (2000). We will perform more velocity inversions using small 
models and synthetic data to find optimal values for the 3D velocity inversion problem. In future 
work we will consider determining the basin shape, as well as the values P-wave and S-wave 
velocity, from the inversion of waveforms.  
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