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Abstract

We develop a Bayesian inversion of GPS and geologic data for timing of past earthquakes,
fault slip rates, and first-order lithosphere rheology in the San Francisco Bay Area. We
determine the extent to which estimates of slip rates and recurrence times of large earth-
quakes obtained from geologic and paleoseismic data can be refined with geodetic data
and a mechanical model. To do this, we construct a new 3D viscoelastic earthquake
cycle model that consists of blocks bounded by faults in an elastic lithosphere overlying a
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Figure 1: GPS and geologic data used in this study.

viscoelastic asthenosphere. A “steady-state” deformation field is assumed to exist in the
absence of fault locking. Interseismic deformation is modeled as a perturbation to the
steady-state due to backslip on locked portions of faults and viscous flow in the astheno-
sphere in response to past earthquakes. In this new model, the steady-sate incorporates
some accumulation of strain within the blocks near the bounding faults due to dip-slip
motion on thrust faults and non-planar fault geometry. Incorporating geologic and pale-
oseismic estimates as formal priors, we invert Bay Area GPS and triangulation data for
Euler pole locations (which determines slip rates), earthquake recurrence times, times
since the last earthquake, asthenosphere viscosity, and lithosphere thickness. The inver-
sion generally refines the geologic and paleoseismic estimates of slip rates and recurrence
times, as indicated by posterior 2σ uncertainties that are about half as large as prior
uncertainties. Slip rates are generally consistent with geologic estimates. Recurrence
times are not as well resolved as slip rates, but the inversion does provide an indication
of whether recurrence times are relatively long (¿500 years) or short (¡500 years).

Data

The data used in this study are shown in figures 1 and 2. The geologic data are implented
as prior prior probability distributions on fault slip rate and recurrence time assuming
Gaussian distributions with mean and standard deviation given in figure 1.

As shown in figure 3, we partition the Bay Area fuaults into segments that rupture
periodically in earthquakes with uniform slip.
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Figure 2: Triangulation data at Pt. Reyes and Pt. Arena.

Viscoealstic Block Model

We construct a viscoelastic block model by extending the approach of elastic block models
developed by Brendan Meade and Brad Hager and Robert McCaffrey. The forward model
is similar to the 3D elastic block models conceived by Meade and Hager, McCaffrey, and
Murray and Segall. The 3D elastic block models are a generlization of the 2D backslip
model constructed by Savage. In the elastic block models a “steady state” is imagined in
which blocks bounded by faults rotate on the surface of the earth about an Euler pole. In
the absence of locking on the faults, the blocks translate undeformed. Elastic distortion
due to locking of the faults is introduced with backslip on the faults. Sections of the fault
that are completely locked are assigned backslip at the long-term rate. Sections that are
creeping are assigned a backslip rate that is lower than the long-term rate. The elastic
block models assume no long-term vertical motion which is problematic for areas with
reverse faulting.

This 3D viscoelastic cycle model also uses the concept of a “steady-state” deformation
in the absence of fault locking and backslip to construct the interseismic deformation field,
but the “steady-state” does not consist of undeformed translating blocks. The “steady-
sate” model incorporates long-term distortion of the blocks near the bounding faults
due to dip-slip motion on thrust faults and non-planar fault geometry. The steady-state
velocity field is decomposed into three components as illustrated in Figure 4. We begin
with far-field motion due to relative plate velocities. This motion assumes rigid-body
rotations about an Euler pole (no vertical motion). For vertical faults bounding the
rigid blocks, the rigid rotations lead to strike-slip and fault-normal discontinuities in the
velocity field across the faults. Rigid-body rotations of blocks bounded by dipping faults
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Figure 3: Fault geometry and segmentation assumed for this study.
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Figure 4: Illustration of the construction of the steady-state velocity field.
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would lead in general lead to dip-slip, strike-slip, and tensile discontinuities across the
faults. There are two problems with this steady-state velocity field. For one, the tensile
discontinuity across faults is unphysical. Secondly, this model assumes no long-term
vertical motion along dipping faults with dip-slip component - this is reasonable perhaps
for subduction zones, but not for other settings. We therefore alter the rigid-body motion
locally, near the faults, by a) forward slipping the dip-slip faults, and b) cancelling fault-
normal discontinuities across all faults with tensile dislocations with sign opposite to the
relative motion across the faults. The steady-state dip-slip motion on faults produces
localized steady-state (long-term) vertical motions and long-term horizontal strain near
dip-slip faults.

To obtain the interseismic velocity field, we perturb the steady-state velocity field
by summing the contribution from backslip on locked sections of the faults and periodic
forward slip to represent earthquakes.

Bayesian mixed linear/nonlinear inversion

There are a large number of model parameters in this inversion. However, all of the Euler
pole parameters are linearly related to the observations, and for a given set of nonlinear
parameters, we can utilize least squares to estimate the Euler poles. We developed a
mixed linear/nonlinear inversion scheme to take advantage of least squares.

Forward model

Let dgps be Ngps-dimensional data vector of GPS velocities and let dtri be and Ntri-
dimensional data vector of strain rates calculated from the triangulation data. Let m be
an M -dimensional vector of all the model parameters that are nonlinearly related to the
surface observations. The observation equation is give by

(

dgps

dtri

)

=

(

Ggps(m)
Gtri(m)

)

Ω +

(

ǫgps

ǫtri

)

, ǫgps ∼ N(0, σ2

gpsΣgps), ǫtri ∼ N(0, σ2

triΣtri) (1)

where Ggps is an Ngps ×M matrix, Gtri is and Ntri ×M matrix, and ǫgps and ǫtri are are
vectors of observation error which is assumed to follow a Gaussian distribution with zero
mean and covariance matrix of σ2

gpsΣgps and σ2

triΣtri. Here σ2

gps and σ2

tri are an unknown
scale factors of the covariance matrices that account for the relative weighting of the data
sets and unknown model variance.

Bayesian formulation

We adopt a Bayesian approach to estimate m, Ω, σ2

gps, and σ2

tri. In the Bayesian ap-
proach, the solution to the inverse problem is the joint posterior probability density of
the unknown parameters given data, p(m, Ω, σ2

gps, σ
2

tri|dgps,dti). The linear and the non-
linear parameters in the joint posterior distribution can be separated using an identity
for joint probability:

p(m, Ω, σ2

gps, σ
2

tri|dgps,dti) = p(Ω|dgps,dti,m, σ2

gps, σ
2

tri)p(m, σ2

gps, σ
2

tri|dgps,dti). (2)
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The first distribution of the right hand side, p(Ω|dgps,dti,m, σ2

gps, σ
2

tri), is a Gaussian
distribution because m, σ2

gps, and σ2

tri are specified, and therefore can be estimated with
least squares. The second distribution of the right hand side, p(m, σ2

gps, σ
2

tri|dgps,dti),
is a non-Gaussian distribution and consequently cannot be estimated analytically. We
employ a Markov chain Monte Carlo (MCMC) method to generate samples from the
second distribution. We have a paper in preparation on the details of this method.

Inversion Results

Figure 5 summarizes the inversion results for fault slip rate. The blue curves are the
posterior distributions and teh red vertical lines are the 2σ interval of the prior distri-
bution. The posterior distributions for elastic thickness, relaxation time, locking depth,
and recurrence time are shown in figures 6 and 7. The residual velocities (GPS - model)
are shown in figure 8 and the fit to the triangulation data is shown in figure 9.

The slip rates are in general good agreement with the prior distributions although
the standard deviation of the posterior distributions is about half the prior standard
deviation. This indicates that the estimates of slip rate from geology that have been
adopted by the USGS for WGCEP are consistent with our estimate that incorporates
geodetic data. The recurrence times are not well resolved as indicated by the similiarity
of the prior and posterior distributions in figure 7.

It is notable that the fit the strain rates at Pt. Reyes is quite good while the fit at Pt.
Arena is poor. This was noted in previous 2D earthquake cycle studies. The inability of
the model to fit the rapid post-1906 earthquake transient at Pt. Arena probably reflects
the need for more than one relaxation mechanism (example afterslip) or nonlinear flow
rheology at depth.
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Figure 5: Posterior distributions for slip rate. Red vertical lines show 2σ intervals for the
prior.
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Figure 6: Posterior distributions for elastic thickness, relaxation time, and locking depth.
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Figure 7: Posterior distributions for recurrence times..
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Figure 8: Residual velocities (GPS - model).
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Figure 9: Fit to the triangulation data.
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