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INTRODUCTION 
 
There is unresolved debate, reviewed most recently by the Working Group on California 
Earthquake Probabilities (WGCEP, 2002), about the way in which the source parameters 
of large crustal earthquakes, especially strike-slip earthquakes, scale with earthquake 
magnitude (Mw).  WGCEP (2002) considered both a self-similar model where average 
fault displacement D, fault length L and fault width W all increase uniformly together 
(Mw ~ log Area), and an L model developed by Hanks and Bakun (2001) where the 
displacement D grows in proportion to the fault length L with increasing magnitude once 
W reaches its maximum value at the base of the seismogenic zone (Mw ~ 4/3 log Area).  
 
Here, we analyze recent crustal earthquakes whose rupture models have been derived 
from strong motion, teleseismic, and geodetic data, providing detailed images of the 
distribution of slip on the fault.  We find a scaling relation (Mw = 1.05 log A + 3.87) that 
is quite similar to previously proposed self-similar models.  For a given rupture area, this 
relationship predicts a significantly smaller magnitude (about 0.2 magnitude units less at 
large Mw) than the relations proposed by WGCEP (2002).  The differences are mainly 
attributable to the more heterogeneous methods used to estimate rupture area by WCGEP 
(2002). 
 
APPROACH  
 
In this study, we used recent crustal earthquakes whose kinematic rupture models have 
been derived from strong motion, teleseismic, and geodetic data, providing detailed 
images of the distribution of slip on the fault.  Since these rupture models are derived 
directly from the seismic radiation from the fault, they are ideally suited for scaling 
relations that are used to characterize rupture models for the prediction of strong ground 
motions from future earthquakes.  Our analysis includes rupture models of several recent 
large strike-slip earthquakes, including the Mw 7.9 Denali, Alaska earthquake of 2002, 
the Mw 7.8 Kunlunshan, Tibet earthquake of 2001, and the Mw 7.4 Kocaeli, and Mw 7.2 
Duzce, Turkey earthquakes of 1999.  Development of a kinematic slip model involves 
selection of a starting model of the fault dimensions that is designed to err on the large 
side to avoid truncating the slip model.  Accordingly, we trimmed the edges of each slip 
model following the procedure of Somerville et al. (1999); examples of reductions in 
rupture area are given in Table 2 (right).  The earthquakes analyzed are listed in Table 1 
below. 



Table 1.  Crustal Strike-slip Earthquakes used in This Study 
 

Earthquake Mw Seismic Moment Rupture Area Sources 
Denali 7.9 

8.00E+27 7846 

Asano et al. (2005), Ji (2005), Oglesby 
et al. (2004), Ozacar & Beck (2004), 
Thio (2005) 

Kunlunshan 7.8 

5.30E+27 8633 

Antolik et al. (2004), Bouchon & Vallee 
(2004), Ozacar & Beck (2004), Velasco 
(2004) 

San Francisco 7.8 5.00E+27 5280 Wald et al. (1996) 
Kocaeli 7.5 

2.25E+27 2772 

Bouchon et al. (2002), Delouis et al. 
(2002), Sekiguchi et al. (2002), Thio 
and Graves (2004) 

Landers 7.2 

7.50E+26 1072 

Cotton & Campillo (1995), Hernandez et 
al (1999), Wald & Heaton (1994), Zeng 
& Anderson (1999) 

Hector Mine  6.20E+26 1014 Ji et al. (2002), Kaverina et al. (2002) 
Duzce 7.1 5.60E+26 1152 Thio et al. (2004) 
Loma Prieta 7.0 

3.00E+26 

 
 

581 

Beroza (1991), Steidl et al. (1991), 
Wald et al. (1991), Zeng & Anderson 
(1999) 

Kobe 6.9 

2.40E+26 1080 

Ide & Takeo (1996), Sekiguchi et al. 
(1997), Wald (1996), Yoshida et al., 
Zeng & Anderson (2002). 

Tottori 6.8 1.90E+26 598 Sekiguchi et al. (2003). 
Yamaguchi 6.5 5.80E+25 196 Miyakoshi et al. (2000) 
Imperial Valley 6.5 5.00E+25 360 Hartzell and Heaton (1983) 
Superstition Hills 6.3 3.50E+25 161 Wald et al. (1990) 
Morgan Hill 6.2 

2.10E+25 312 
Beroza & Spudich (1988), Hartzell & 
Heaton (1986) 

Kagoshima 6.0 1.00E+25 144 Miyakoshi et al. (2000) 
Coyote Lake 5.7 3.50E+24 39 Liu &Helmberger (1983) 
 
RESULTS 
 
The scaling relation derived from these data, Mw = 1.05 log A + 3.87, is close to the self-
similar models of Somerville et al. (1999) and Wells and Coppersmith (1994).  For a 
rupture area of 10,000 km2, this relationship estimates a magnitude of Mw 8.07, while 
the WGCEP self-similar relation estimates Mw 8.2 and the Hanks & Bakun (2001) 
relation estimates Mw 8.36. 
 



 
 
 
COMPARISON WITH WGCEP MODELS 
 
The WGCEP models are largely based on data in which the earthquake rupture 
dimensions, and in some cases, the seismic moment, are either inferred from indirect data, 
such as the aftershock zone and surface rupture length, or are obtained from very 
preliminary analyses of the events.  This may lead to a systematic bias that 
underestimates the fault rupture area.  For example, Table 2 compares the models for the 
1999 Kocaeli earthquake used by WGCEP (2002) and in this study.  For this earthquake, 
this study found a rupture area of 2772 km2 from the average of 4 slip model inversion 
studies, 57% higher than the rupture area of 1767 km2 from the WGCEP (2002) average 
of three studies, only one of which was a published seismic slip model inversion.  
 



Table 2.  Comparison of Data used by WCGEP (2002) and This Study 
1999 Kocaeli Earthquake 

 
AUTHOR AREA METHOD 

 
Delouis et al. (2002) 2550 Slip model 

inversion 
Wright et al. (2001) 1700 INSAR 
Yagi & Kikuchi 
(2000) 

1050 Preliminary 
automated  
slip model inversion 

AVERAGE - 
WGCEP 

1767  

 
 Untrimmed Trimmed  
Bouchon et al. 
(2002) 

2790 2790 Slip model 
inversion 

Delouis et al. (2002) 3882 2700 Slip model 
inversion 

Sekiguchi & Iwata 
(2002) 

3285 2796 Slip model 
inversion 

Thio (2004) 3040 2800 Slip model 
inversion 

AVERAGE – THIS 
STUDY 

 2772  

 
COMPARISON WITH THE RESULTS OF OTHER STUDIES 
 
Our result is compatible with the conclusions of several recent studies.  Bodin and Brune 
(1996) analyzed the Wells and Coppersmith (1994) data and concluded that the relation 
between surface slip and rupture length of strike-slip earthquakes cannot be explained by a 
simple quasi-static L or W model.  They suggested instead that the data may reflect the effect 
of rupture dynamics, since in dynamic models the final slip need not be simply related to the 
fault dimensions.  They conclude that if strength varies along strike, then long rupture is 
more likely to encounter conditions promoting large displacements. 

Reviewing current data compilations, Jing et al. (2005) concluded that these data indicate 
that average slip continues to increase with L when L >> Wmax, but at a slower rate than 
implied by the L Model.  Further, they found that the transition from linear to non-linear 
length scaling seems to occur at rupture lengths that are relatively large compared to the 
maximum rupture width.  This suggests the limitation of static L and W models, in which 
fault slip is determined by the average stress drop and the final dimensions of fault rupture.  
Instead, they showed that the spatial heterogeneity of fault slip can play a key role in slip – 
length scaling.  They found that their model did not generally result in linear scaling of 
rupture length, but that when a suite of faults with different smoothness is considered, the 
overall pattern of average slip with length is similar to that contained in data like those of 
Wells and Coppersmith (1984). 



 

Mai and Beroza (2000) also concluded that the average displacement - rupture length scaling 
of rupture models is inconsistent with pure L or W scaling for simple constant stress-drop 
models, but suggests that the finite seismogenic width of the fault zone exerts a strong 
influence on the displacement for very large strike-slip earthquakes.  The self-similar model, 
which would lie between the L and the W models, is compatible with this finding. 
 
IMPLICATIONS FOR STRONG MOTION SIMULATION 
 
For empirical ground motion models, this 0.2 unit magnitude difference has minor 
significance, resulting in about 15% variability in ground motion level at long periods.  
This is because the empirical ground motion models implicitly account for the change in 
rupture area associated with the magnitude difference.  However, for numerical 
waveform simulations where the fault area is fixed, the 0.2 units in magnitude (factor of 
two in moment) scales almost directly into ground motion level.  The factor of two in 
ground motion variability is about six times greater than that predicted by the empirical 
relations.  This large difference has important implications for seismic hazard analysis. 
 
CONCLUSIONS 
 
We have used the rupture areas of crustal strike-slip earthquakes derived from seismic 
slip model inversions to derive a scaling relation between rupture area and seismic 
moment (or magnitude).  We find that the rupture areas of large crustal strike-slip 
earthquakes have an approximately self-similar scaling relationship with magnitude and 
seismic moment, similar to the models of Wells and Coppersmith (1994) and Somerville 
et al. (1999).  For a given rupture area, this relationship predicts a significantly smaller 
magnitude (about 0.2 magnitude units less at large M) than the self-similar relation of 
WGCEP (2002) and the L model of Hanks and Bakun (2001).  The differences are 
mainly attributable to the more heterogeneous methods used to estimate rupture area in 
the WCGEP (2002) and Hanks and Bakun (2001) relations. 
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