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Abstract 

 
It has become standard practice during the last ~35 years to map the geometry of rupture 

traces and assess the surface-slip distribution of large earthquakes that break the ground surface. 
The resulting observations have been used in development of seismic hazard methodologies and 
assessments, engineering design criteria for critical facilities, the development and discussion of 
dynamic fault models to predict strong ground motions, and efforts to predict the endpoints of 
future earthquake ruptures. There now exist about 3 dozen historical earthquakes for which 
investigators have put forth maps of earthquake rupture traces with data describing the coseismic 
slip as a function of fault length. For this years work we have compiled and present here the 
surface rupture trace of each of the earthquakes. The compilation provides a foundation to begin 
quantitatively examining the role of geometrical discontinuities on the propogation of earthquake 
rupture. Our analysis shows that approximately 75% of  the endpoints of strike-slip earthquake 
ruptures are associated with geometrical discontinuities, none of the earthquakes in the data set 
have ruptured through fault steps of 5 km or greater. When considering fault steps of lesser 
dimension along rupture traces, it is observed that about 40% are associated with the endpoints 
of rupture and the remainder are located within the rupture trace, effectively having been 
ruptured through by the respective rupture.  There are fewer data available for dip-slip faults, 
though the few observations do show that normal fault ruptures have ruptured through fault 
discontinuities significantly greater than 5 km. These observations are important to the 
understanding of fault dynamics and the development of computer algorithms to estimate the 
extent of earthquake ruptures on mapped faults for seismic hazard analysis. 

 



  Page 2 

Introduction 
Since the first studies of the 1968 Borrego Mountain [Clark, 1972] and 1857 Ft. Tejon 

[Sieh, 1978] earthquakes, it has become standard practice to map the geometry of rupture traces 
and assess the surface-slip distribution of large earthquakes that break the ground surface. The 
results of such studies have been a constant source of reference and use in development of 
seismic hazard methodologies [Frankel et al., 2002; Petersen and Wesnousky, 1994; SCEC, 
1994; Wesnousky, 1986; Wesnousky et al., 1984], engineering design criteria for critical facilities 
[Fuis and Wald, 2003; Kramer, 1996; Pezzopane and Dawson, 1996], and development and 
discussion of mechanical models to understand physical factors that control the dynamics of the 
earthquake source as well as the resulting strong ground motions [Bodin and Brune, 1996; 
Heaton, 1990; Romanowicz, 1994; Scholz, 1994; Scholz et al., 1986]. There now exist about 3 
dozen historical earthquakes for which investigators have constructed maps of earthquake 
rupture traces accompanied by data describing the coseismic slip observed along fault strike. In 
this years work we have focused on the compilation and examination of the relationship of 
geometrical fault complexity to the endpoints of earthquake ruptures. The motivation has been to 
put on predictive footing the assessment of future earthquake rupture endpoints on mapped faults 
for seismic hazard analysis and place observational bounds on physical computer models of 
earthquake rupture.  Examination of the earthquake slip distributions will be the next focus of 
study. 

Method 
We have limited our attention to the larger surface rupture earthquakes for which there 

exist both relatively detailed maps and measurements of coseismic offset along strike of the 
rupture. The earthquakes considered are listed in Table 1.  Shown chronologically in Figure 1 
are maps of the surface rupture traces as presented by the original sources. Along the mapped 
fault traces, I have annotated the location of geometrical discontinuities along and at the ends of 
the earthquake ruptures, such as steps, splays, gaps in coseismic offsets along rupture traces, and 
distances to nearest neighboring active fault traces from the endpoints of surface rupture traces. 
The dimensions of steps measured perpendicular to fault strike and gaps in slip along fault strike 
are also noted. The resolution of the available maps generally limits observations to 
discontinuities of about 1 km and greater. 

Observations and Implications 
Fault Geometry and Endpoints of Earthquake Ruptures 

Earthquakes of Strike-slip Mechanism 
The majority of events surveyed are strike-slip. The relationship between the length of 

rupture and geometrical discontinuities along strike is summarized in the plot of Figure 2.  The 
vertical axis is the dimension distance in kilometers. Along the horizontal axis, I have spaced 
evenly and ordered by increasing rupture length each of the strike-slip earthquakes. A dotted line 
extends vertically from each of the labeled earthquakes. Along each dotted line are plotted 
various symbols. The symbols denote the dimension of steps and gaps in surface rupture along 
strike and at the terminus of the respective ruptures. Separate symbols are used according to 
whether the steps are releasing or restraining in nature, and whether they occur within (rupture 
continues through) or at the endpoints of the rupture trace. In  certain instances, the endpoints of 
rupture are not associated with a discontinuity in fault strike, in which the endpoint of rupture is 
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denoted by a separate symbol and annotated with the distance that the active trace continues 
beyond the endpoint of rupture. Also, because of the complexity of some ruptures and 
subparallel and branching fault traces, some earthquakes have more than two ‘ends’.  

That steps in fault trace may impede or arrest rupture propagation has been noted 
previously on the basis of both observational and theoretical grounds. The compilation of 
observations depicted in Figure 2 indicates that about three fourths of terminations of strike-slip 
ruptures may be associated with geometrical steps in fault trace or the termination of the active 
fault on which they occurred (Figure 3). The histogram in Figure 4 further expedites 
comparison of the dimensions of discontinuities through which ruptures have propagated to those 
that are located at the terminus of the earthquake ruptures.  In this case, the observations of 
discontinuities are binned as a function of their size and coded according to whether they sit 
within or at the terminus of an earthquake rupture. The plot suggests to me that a transition exists 
between 3 and 5 km, above which rupture fronts are not able to propagate through and below 
which it is an pretty much even bet whether or not a rupture will continue or stop at a particular 
discontinuity. The result may be of practical importance in seismic hazard analysis where effort 
is spent attempting to place limits on the probable length of mapped active faults. One may 
surmise that the variability of behavior for steps below 3-4 km dimension in part reflects 
variability in the 3-dimensional character of the discontinuities we map at the surface. Some 
perhaps do not extend through the entirety of the seismogenic layer. Turning attention back to 
Figure 2, I further note that there appears to be no dependence on rupture length associated with 
the just mentioned transition. Longer ruptures are not observed to rupture or arrest at relatively 
larger discontinuities. The lack of rupture length dependence observed here leads me to suggest 
that, for an earthquake that has ruptured the entirety of the seismogenic layer, there exists no 
fundamental difference in the processes occurring at the fronts of propagating ruptures, 
regardless of the distance it has or will propagate. 

Earthquakes of Normal Mechanism 
The data for surface ruptures on normal faults is limited to 7 earthquakes. I follow the 

same approach as described for strike-slip faults to examine the relationship of the size and 
location of geometrical discontinuities to extent of earthquake surface rupture (Figure 5).  The 
data in Figure 5 are replotted in the form of a pie diagram in Figure 6 whether or not the 
endpoints of the earthquake ruptures occur at fault discontinuities (Figure 6). About two thirds 
of the rupture endpoints correlate to the location of fault discontinuities. The data of Figure 5 are 
yet further reformatted in the histogram of Figure 7. In this case, attention is limited to fault 
discontinuities, and the discontinuities are binned as a function of their size and coded according 
to whether they sit within or at the terminus of an earthquake rupture. Though the data are 
significantly fewer for normal faults and insufficient to draw a significant statistical conclusion, 
they do suggest a somewhat different relation as compared to strike-slip ruptures. Specifically, 
strike-slip earthquakes are generally not observed to rupture across discontinuities of 3 to 4 km 
whereas there are numerous instances of discontinuities of 4 km and greater through which 
normal faults have ruptured through or across.  The slip vector of normal faults is orthogonal to 
the horizontal rupture direction in large earthquakes. Thus unlike for strike-slip ruptures there 
exist no volumetric considerations at the site of fault steps that lead to the possibility of localized 
stress changes. It is perhaps for this reason that geometrical discontinuities appear to play a 
relatively lesser role in affecting the propagation of earthquake ruptures.   

Earthquakes of Thrust Mechanism 
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The data for thrust faults are also few, limited to 6 earthquakes. Again ordered by 
increasing rupture length, I have plotted the discontinuities through which ruptures have 
propagated and stopped, respectively (Figure 8). There are only two recorded instances of thrust 
ruptures propagating through mapped steps, of 2 and 6 km, respectively. In only one case is it 
clear that rupture terminated in the absence of a discontinuity. The remaining cases show termini 
associated with geometrical discontinuities, though the mapping available to me is insufficient to 
clearly characterize the dimension or character of the discontinuity along several of the 
earthquakes, in which case the symbols in Figure 8 are marked by queries.  

Caveats, Other Factors, and Future Avenues of Research 
I have limited attention to discontinuities that may be characterized by breaks in the fault 

trace. Bends in fault trace or the intersection points of fault splays may also affect the 
propagation characteristics of earthquakes. But, in each case, there is a greater difficulty in 
quantifying the relative size of the discontinuity or the potential effect of the discontinuity on 
rupture propagation. In the case of steps in strike-slip fault traces, it is clear that volumetric 
considerations resulting from displacement at the step will result in contractional or extensional 
stresses within the step, regardless of the direction of rupture propagation (Figure 9a).  In the 
case of a single bend in strike-slip fault trace,  more information than solely the geometry is 
required to understand the potential role of a bend on rupture propagation.  For example, the 
stresses changes resulting from volumetric considerations at a bend may differ depending on the 
direction of rupture propagation (Figure 9b), in one case perhaps impeding rupture while in the 
other facilitating.  The problem is perhaps voided if it is clear that the strike along one of the 
branches of the bend clearly defines the slip vector but, as noted, this requires additional 
information, perhaps subjective. The problem is yet further exacerbated because of the problem 
of scale. A bend may be defined by the angle but the potential interaction of a bend will also be a 
function of the length of the fault branches. For example, even though the bends of the fault in 
Figure 9b are the same, the effect on rupture propagation will certainly differ for the bends in 
Figure 9b depending on whether the fault branches are a 100 km long or 1 m long.  In the case 
of a double bend along a strike-slip fault, the problem is somewhat obviated when the dominant 
slip direction is well known (Figure 9c). It is clear whether or not a branch will be under 
transpression or transtension due to the orientation of the bend. But there remains the problem of 
scale and the requirement that more than just the angle of the bend be used in defining the 
feature. The length of the fault branches must also play a role. 

Splays and their intersection with faults likely also play a role in the characteristics of a 
propagating rupture. For example, the ends of the recent Nov 3, 2002 Denali earthquake are 
associated with intersection of the Susitna Gacier reverse and Totschunda strike-slip splay faults 
with the Denali fault. But the quantification of the potential relative effect of splay faults other 
than that they exist is also problematic and the data set to examine this issue is limited relative to 
that available for studying fault steps. 

That the location of recent earthquake ruptures commonly defines or controls the edges 
of future earthquake ruptures has been well demonstrated along the subduction zones of the 
globe. There seems little doubt that such information may also serve in defining the extent of 
future earthquake ruptures. The historical sequence of earthquake surface ruptures along the 
Anatolian provides support for the same to be true for continental earthquakes. The historical 
data set of earthquake surface ruptures (Figure 1) is currently insufficient to examine this in 
more than an anecdotal manner, though it seems that such data be among the most important in 
defining the extent of future earthquake ruptures along mapped active faults.  
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When categorizing the location of geometrical discontinuities with respect to the 
endpoints of rupture, I have not considered the variation of slip along the ends of faults. In 
certain instances, the terminal sections of fault rupture are characterized by very small amounts 
of slip and arguably only represent minor triggered slip. Strands at the northern and southern 
ends of the 1992 Landers earthquake are cases in point. Most of the moment release clearly 
occurred in the central portions of the fault zone. The results conveyed in Figures 2 through 8 
might change slightly were the terminal ends of nominal slip not considered and the endpoints of 
rupture redefined. However, the interpretation in some instances would be quite subjective and 
for that reason I have not done so in this effort. 

Discussion and Conclusion 
The record of historical earthquake ruptures is becoming sufficient to put forth some 

general rather than anecdotal conclusions regarding the role of geometrical discontinuities in 
earthquake rupture process. These initial observations indicate that about 75% of the endpoints 
of earthquake ruptures are associated with geometrical steps in fault trace or the endpoints of 
mapped faults. Of those 75%,  it is observed that fault steps of 5 km or more are of dimension 
sufficient to consistently arrest  strike-slip earthquake ruptures, while discontinuities of lesser 
dimension are associated with the endpoints of rupture in only about 40% of the cases. The lesser 
correlation of fault endpoints with smaller steps probably reflects both the smaller dimension of 
the steps and the liklihood that smaller fault steps observed at the surface do maintain their form 
or integrity through the entirety of the seismogenic layer. Data are insufficient to place 
percentage bounds of any significance for dip-slip faults,  though it is recognized that normal 
fault ruptures have historically ruptured through fault steps of larger dimension than strike-slip 
faults 
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Table 1: Earthquake Surface Rupture Earthquakes 
 

# Date Location Type Length 
(km) Mw

g Ref 

1 1857-Jan-9 San Andreas, CA ssr 360 7.9 1 
2 1887-May-3 Sonora, MX n/60 70 7.2 2,3,48 
3 1891-Oct-28 Neo-Dani,  JPN ssl 80 7.3 4 
4 1896-Aug-31 Rikuu, JPN r/45 37 7.2 5 
5 1915-Oct-2 Pleasant Val, NV n/45 61 7.3 6 
6 1930-Nov-2 Kita-Izu, JPN ssl 35 6.7 7 
7 1939-Dec-25 Erzincan, TUR ssr 300 7.7 8 
8 1940-May-19 Imperial, CA ssr 60 6.9 9 

9 1942-Dec-20 Erbaa-Niksar,  TUR ssr 28 6.8 8 
10 1943-Nov-26 Tosya, TUR ssr 275 7.5 8 
11 1943-Sep-10 Tottori, JPN ssl 10.5 6.2 10 
12 1944-Feb-01 Gerede-Bolu,  TUR ssr 135 7.3 8 
13 1945-Jan-31 Mikawa, JPN r/30 4.5 6.3 11 
14 1959-Aug-17 Hebgen Lake, MT n/50 25 7.0 12 
15 1954-Dec-16 Fairview Peak, NV nssr/6

0 
62 7.0 13 

16 1954-Dec-16 Dixie Valley, NV n/60 47 6.8 13 
17 1967-Jul-22 Mudurnu, TUR ssr 60 6.9 8 
18 1968-Apr-8 Borrego Mtn, CA ssr 31 6.1 14 
19 1979-Jun-02 Cadoux, AUS r/35 10 6.1 49 
20 1979-Oct-15 Imperial, CA ssr 36 6.2-6.4 15,16 
21 1981-Jul-29 Sirch Iran  ss/69 64 6.2 50 
22 1983-Oct-28 Borah Peak, ID n/45 34 6.9 17 

23 1986-Mar-3 Marryat, AUS r/35 13 5.6(s) 
5.9(u) 46 

24 1987-Nov-23 Superstition Hills, CA. ssr 25 6.2-6.4 18 
25 1987-Mar-2 Edgecumbe,  NZ n/60 15.5 6.3 19 
26 1988-Jan-22 Tennant Creek, AUS r/45 30 6.0 43 
27 1990-Jul-16 Luzon, PHL ssl 112 6.9 20,21 
28 1992-Jun-28 Landers, CA ssr 77 7.2 22 
29 1998-Mar-14 Fandoqa, IRN ssn/54 25 6.6 50 
30 1999-Sep-21 Chi-Chi, Taiwan r/70 72 7.3 23 
31 1999-Oct-16 Hector Mine, CA. ssr 44 6.9 57 

32 1999-Aug-17 Izmit, TUR ssr 107 
(145) 7.1 47 

33 1999-Nov-12 Duzce, TUR ssr 40 7.0 24 
34  2001-Nov-14 Kunlun, China ssl 421 7.8 53 
35 2002-Nov-03 Denali, AK (Haessler) ssr 302 7.6 52 
# Date Location Type Length Mw

g Ref 
 

1. [Sieh, 1978] ,  2. [Bull and Pearthree, 2002], 3. [Pezzopane and Dawson, 1996], 4. [Matsuda, 1974], 5. 
[Matsuda et al., 1980], 6. [Wallace, 1980], 7. [Matsuda, 1972], 8. [Barka, 1996], 9. [Trifunac and Brune, 



  Page 14 

1970], 10.  [Kaneda and Okada, 2002], 11. [Tsuya, 1946], 12. [Witkind, 1964], 13. [Caskey et al., 1996], 
14. [Clark, 1972], 15. [Johnson and Hutton, 1982]] , 16. [Sharp et al., 1982] , 17. [Crone et al., 1987], 18. 
[Sharp et al., 1989], 19. [Beanland et al., 1989] , 20. [Nakata, 1990], 21. [Yomogida and Nakata, 1994], 22. 
[Sieh et al., 1993], 23. [Lin et al., 2001], 24. [Akyuz et al., 2002] , 25. [Cohee and Beroza, 1994; Dreger, 
1994; Freymueller, 1994; Johnson et al., 1994; Wald and Heaton, 1994], 26. [Chi et al., 2001; Wu et al., 
2001; Zeng and Chen, 2001] , 27. [Doser, 1988], 28. [Burdick and Mellman, 1976; Butler, 1983; Ebel and 
Helmberger, 1982; Hanks and Wyss, 1972; Heaton and Helmberger, 1977; Swanger et al., 1978; Vidale et 
al., 1985], 29. [Doser and Smith, 1985; Hanks and Wyss, 1972; Mendoza and Hartzell, 1988; Tanimoto 
and Kanamori, 1986; Ward and Barrientos, 1986], 30. [Doser, 1990; Hartzell and Heaton, 1983; Hartzell 
and Helmberger, 1982; Kanamori and Reagan, 1982], 31. [Barrientos et al., 1987; Doser and Kanamori, 
1987; Doser and Smith, 1985], 32. [Velasco et al., 1996; Yoshida and Abe, 1992], 33. [Dziewonki et al., 
1989; Frankel and Wennerberg, 1989; Hwang et al., 1990; Larsen et al., 1992; Sipkin, 1989; Wald et al., 
1990], 34. [Anderson and Webb, 1989; Priestly, 1987] , 35. [Doser, 1986; Hodgkinson et al., 1996], 36. 
[Doser, 1985; Hodgkinson et al., 1996], 37. [Burgmann et al., 2002; Umutlu et al., 2004], 38. [Delouis et 
al., 2002; Li et al., 2002; Sekiguchi and Iwata, 2002] , 39. [Hanks and Wyss, 1972; Pinar et al., 1996; 
Stewart and Kanamori, 1982; Taymaz et al., 1991] , 40. [Kanamori, 1973] , 41. [Ando, 1974; Kakehi and 
Iwata, 1992; Kikuchi et al., 2003] , 42.  [Doser, 1990; Doser and Kanamori, 1987; Reilinger, 1984; 
Thatcher and Hanks, 1973; Trifunac, 1972] , 43. [Crone et al., 1992] , 44. [Choy and Bowman, 1990] , 45.  
[Fredrich et al., 1988] , 46. [Machette et al., 1993] , 47. [Barka et al., 2002] , 48. [Suter and Contreras, 
2002] , 49.[Lewis, 1981 #127] ,  50. [Berberian, 2001 #128] , 51. [Eberhart-Phillips, 2003 #129] , 52. 
[Haeussler et al., 2005] , 53. [Klinger et al., 2005; Lin et al., 2002; Xu et al., 2002] , 54. [Choy and 
Boatwright, 2004; Frankel, 2004; Ozacar and Beck, 2004] , 55. [Antolik et al., 2004; Lasserre et al., 2005; 
Ozacar and Beck, 2004] , 56. [Abe, 1978], 57. [Treiman et al., 2002], 58. [Ji et al., 2002; Jonsson et al., 
2002; Kaverina et al., 2002] 
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 Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Maps of rupture traces and surface slip 
distributions for historical earthquake  of (a) strike-slip, (b) 
normal, and (c) reverse mechanism considered in this 
study. Listing for each is chronological chronological. 
Sources for each are listed in Table 1. See text for further 
explanation. 
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Figure 2. Relationship between the length of earthquake surface rupture and geometrical 

discontinuities along strike for strike-slip earthquakes. See text for full discussion and 
description. 
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Figure 3. Pie diagram illustrating the relative number of earthquake ruptures with ends at points 

of geometrical complexity: steps in fault trace of dimension >1km or the end of active 
fault traces.  
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Figure 4. Histogram shows observed number of  discontinuities through which earthquakes 

ruptured (green) and at the end of  historical strike-slip earthquakes as a function of the 
dimension of the discontinuity. Discontinuities are measured as steps in fault trace 
greater than or equal to 1 km perpendicular to fault strike or, in the case of rupture 
endpoints, the closest distance to the nearest neighboring active fault. 
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Figure 5. Relationship between the length of earthquake surface rupture and geometrical 

discontinuities along strike for normal earthquakes. See text for full discussion and 
description. 
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Figure 6. Pie diagram illustrating the relative number of normal mechanism earthquake ruptures 
with ends at points of geometrical complexity: steps in fault trace of dimension >1km or the end 
of active fault traces. 
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Figure 7.  Relationship between the length of earthquake surface rupture and geometrical 

discontinuities along strike for earthquakes on normal faults. See text for full discussion 
and description. 
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Figure 8. Relationship between the length of earthquake surface rupture and geometrical 

discontinuities along strike for thrust earthquakes. See text for full discussion and 
description. 
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Figure 9. a) Volumetric considerations at steps in fault strike along strike-slip faults leads to 

localized areas of extension or contraction that may affect earthquake rupture 
propagation. b) Schematic illustrates that the occurrence of localized compression or 
extension at a fault bend may be dependent on the direction of rupture propagation. c) 
Where the direction of preferred pure strike-slip along a fault is well defined (solid half 
arrows), sections of fault between the bends and oblique to the preferred direction of 
slip will be characterized by components of contraction and extension. d) The potential 
effect of fault bends as illustrated in (b) and (c)  on the propagation of a rupture will not 
be solely a function of the angle of the bend but also the sharpness of the bend and the 
length of the fault branches between bends. 

 

 


