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The Role of Shear and Tensile Failure in Dynamically Triggered

Landslides

T. Gipprich,1 R. Snieder,1 R. Jibson,2 and W. Kimman1

Abstract. The dynamic stress generated by earthquakes is one of the causes for trig-
gering landslides. Many methods characterize the triggering of landslides, but the role
of dynamic effects which produce slope instability is not fully understood. Current meth-
ods, such as pseudostatic analysis and Newmark’s method, focus on earthquake accel-
erations to monitor landslide potential. These methods depend on shear failure to an-
alyze instability, while the role of tensile failure is not clear. We develop a limit-equilibrium
model to investigate the dynamic stress generated by a given ground motion due to a
plane wave and use this to assess the role of shear and tensile failure in the initiation
of slope instability. We do so by incorporating the modified Griffith failure envelope, which
has the feature of combining shear and tensile failure in a single criterion, while the Mohr-
Coulomb theory accounts for shear failure only. Tests of dynamic stress in both homo-
geneous and layered slopes demonstrate that two modes of failure exist, tensile failure
in the upper meters of a slope and shear failure at greater depth. We derive equations
that express the dynamic stress in the near-surface by the acceleration measured at the
surface. These equations are used to approximately define the depth for each mechanism
of failure. We find that, because of the depth at which they occur, shear and tensile fail-
ure may collaborate in slope failure.

1. Summary

Current methods used to model earthquake-triggered
landslides include pseudostatic analysis and Newmark’s
method. Pseudostatic analysis is a limit-equilibrium analy-
sis where the acceleration due to an earthquake is computed
as an additional static body force acting on the slope. A
factor of safety (FS) analysis is carried out for different ac-
celeration values to determine which critical value brings the
slope to failure, reducing the factor of safety below 1.0 [Jib-
son, 1993]. The factor of safety gives the stability of a slope
as the ratio of resisting to driving forces. When this ratio is
above 1.0, the slope is safe. When less than 1.0, the slope
begins to move [Jibson et al., 2000].

Newmark’s method goes further by estimating the per-
manent slope displacement caused by an earthquake [New-
mark , 1965]. The critical acceleration a slope can withstand
during an earthquake is given by [Jibson et al., 2000]

ac = (FS − 1)g sin(α) , (1)

where g is gravitational acceleration and α can be estimated
as the slope angle. An acceleration larger than this value
initiates sliding on a slope. Newmark’s method is used to
calculate the permanent displacement of the slope by inte-
grating an earthquake acceleration-time history twice over
the times that exceed the critical acceleration [Jibson, 1993;
Jibson et al., 2000].

While pseudostatic analysis and Newmark’s method fo-
cus on earthquake accelerations to account for shear failure,
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we focus on dynamic stress generated from a given ground
motion and how this causes both shear and tensile failure at
the initiation of slope instability. Post-failure deformation
of a slope is not analyzed in this limit-equilibrium method.

First, we describe the static and dynamic stress in a dry,
infinite slope and the failure criterion used to define failure.
By testing several wave propagation scenarios, we show that
two modes of failure develop in homogeneous and layered
slopes. This analysis shows that tensile failure, due to dy-
namic stress, occurs in the upper meters of a slope, while
shear failure takes place at greater depth.

To further understand the regions of shear and tensile
failure in a slope, we derive dynamic stress equations that
relate dynamic stress in the near-surface to the acceleration
at the surface. By specifying the peak ground acceleration
(PGA) in this analysis, these equations produce dynamic
stress as a function of depth and help to define the depth of
each mechanism of failure.

With two distinct depths for shear and tensile failure,
we show that the two failure mechanisms collaborate to
cause slope failure. Since this project focuses on a limit-
equilibrium method, we cannot model displacement of a
slope, but can speculate about the role of shear and ten-
sile failure in the deformation process.

2. Static Stress In A Slope

We first consider the static stress in a 2D unsaturated
slope. We employ a simple static stress model for near-
surface stress caused by gravity [Savage and Swolfs, 1992].
The coordinate system used throughout the project defines
the x-direction parallel to the surface of the slope and depth,
z, normal to the surface. In this work, the horizontal direc-
tion means parallel to the slope while vertical refers to the
direction normal to the slope.

In our model, the near-surface is assumed to be linearly
elastic and the infinite, planar slope is laterally constrained
so material cannot expand in the direction parallel to the
slope [Mello and Pratson, 1999]. Because of translational
invariance of an infinite slope, stress does not depend on the
horizontal location.
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The governing equations of stress for this model are
[Jaeger and Cook , 1976; Savage and Swolfs, 1992]

σstatic
xx =

λ

λ + 2µ
ρgz cos(θ) , (2a)

σstatic
zz = ρgz cos(θ) , (2b)

σstatic
xz = ρgz sin(θ) , (2c)

where λ and µ are Lamé elastic constants, ρ is the den-
sity, g the gravitational acceleration, and θ the slope angle.
The stress is defined to be positive for compressive, normal
stress, and negative for tensile stress.

Before modeling the plane wave propagation through a
slope, we carry out a static slope-stability analysis to find
whether the slope is initially statically stable [Jibson, 1993].
We do so by increasing the slope angle to see at which point
the slope fails. In this way, we can define a slope that is
stable for the static stress, but that can fail dynamically.

When analyzing a static slope, a discrepancy becomes
apparent between the static stress model given by the ex-
pressions (2a)-(2c), and other traditional models. Normally,
to study the limit-equilibrium of a slope, a factor-of-safety
analysis is completed on a static model which produces fail-
ure when the FS is 1.0 or below. The FS equation for a dry,
cohesionless slope reduces to,

FS =
tan(φ)

tan(θ)
, (3)

where φ is the internal angle of friction. Slope instability oc-
curs when φ is equal to the slope angle, θ, or when FS = 1.0.
We find that the static stress state (2a)-(2c), fails at a crit-
ical angle, θ, that is smaller than φ.

The assumption of a laterally constrained, infinite slope,
that defines the stress (2a)-(2c), could be the reason that
the critical angle differs from the internal angle of friction.
In this model, the horizontal derivatives vanish, so mate-
rial cannot expand laterally. Nevertheless, the assumptions
of this stress model are widely used in soil mechanics, and
we work with these equations to understand how dynamic
stress leads to slope failure.

2.1. Dynamic Stress for a Plane Wave Incident on a

Slope

We compute the dynamic stress created from a plane wave
incident on a slope using a 1D finite element wave equation
code. This incorporates second-order equations of motion
that solve for displacement, ux and uz [Haney , 2004]. Since
we are interested in tensile failure, we limit ourselves to an-
alyzing P-SV waves.

Solutions of the form F = (t−px, z) describe a plane wave
moving in the x-direction in time with a horizontal slowness,
p. In a medium varying with depth only, p is constant and
known as the ray parameter of the incoming wave, that is
given by [Aki and Richards, 2002]

p =
sin(ip)

vp

=
sin(is)

vs

, (4)

where ip and is are the incidence angles that P- and S-waves
make with the normal axis of the slope, and vp and vs are
the P- and S-wave velocities, respectively. For this solution
the x-derivative is related to the time derivative by

∂F (t − px, z)

∂x
= −p

∂F (t − px, z)

∂t
. (5)

The code produces displacement, velocity and acceler-
ation as well as the stress components, σdynamic

xx , σdynamic
zz

and σdynamic
xz for a given incoming wave. At the free surface,

the boundary conditions state that the tractions vanish [Aki
and Richards, 2002]:

σdynamic
zz (z = 0) = σdynamic

xz (z = 0) = 0 . (6)

Once the dynamic stress is known, the total stress state
is given by the sum of the dynamic and static components
of stress:

σtotal
ij = σstatic

ij + σdynamic
ij . (7)

In this model, we scale the acceleration produced for an
incoming wave to a desirable PGA. Normally this accelera-
tion is chosen as a value typical of earthquakes, between 0.1
and 1.0 g [Jibson, 1993]. We calculate the sum of the squares
of the maximum horizontal ax, and vertical az, acceleration
values at the surface of the slope, and normalize it to the
PGA. The normalization value is then multiplied with the
dynamic stress components produced by the finite-element
code.

Failure depends on the PGA of the incoming wave, and
for each slope, there exists a PGA that initiates failure at
one location for a given instant in time. As the PGA in-
creases, the slope is in a state of post failure. The linear
model that we use does not account for post-failure behav-
ior. We therefore use the modest value of 0.1 g for the PGA,

Figure 1. σdynamic
xx component of stress for both 30◦

incident P- and S-waves at the surface of a slope for a
PGA of 0.1 g. The S-wave produces larger stress at the
surface than the P-wave.

Figure 2. The Mohr circle and Mohr-Coulomb failure
envelope. C is the cohesion of the slope and φ is the
internal angle of friction. When failure occurs, α refers
to the angle between the normal to the failure plane and
the principal stress direction corresponding to σ1.
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and disregard the stress state in parts of the slope that are
beyond failure. Proper design of earthquake-resistant struc-
tures require estimation of ground shaking in the 0.2-10 Hz
frequency band [Frankel , 1999]. We use an incoming wave
with a moderate peak frequency of 1.0 Hz.

We analyze both P- and S-waves in this project. When
each is normalized to the same PGA, the S-wave produces
larger dynamic stress at the surface of the slope than does
the P-wave. Figure 1 shows a comparison of stress for P-
and S-waves with an angle of incidence of 30◦. This shows
that after both waves are calibrated to a PGA of 0.1 g, the
σdynamic

xx component of stress at the surface is greater for
the S-wave than for the P-wave.

We find for a variety of slope angles, that for both P- and
S-waves, shear and tensile failure may occur in a slope. As a
representative example, we show the dynamic stress gener-
ated by a 30◦ incident wave. Note that a normally incident
wave only produces shear failure.

3. Determining Failure

Once a wave passes through a slope, dynamic stress is
generated that may cause certain locations within the slope
to fail. To understand the potential for failure, we address
the behavior of the slope sediments under stress. For shear
failure, this is commonly completed using a Mohr-Coulomb
failure analysis. The Mohr circle, represented by principal
stresses, is the basis for the Mohr-Coulomb failure analy-
sis which tests whether stress exceeds strength. The shear
strength of a failure surface in dry conditions is character-
ized by the Mohr-Coulomb failure criterion [e.g., Bourne and
Willemse, 2001],

τ = c + σ tan(φ) . (8)

The angle φ is referred to as the internal angle of friction,
which for sands is normally about 30◦-34◦ [Das, 1997; Selby ,
1993]. Cohesion strengthens a material and typically exists
in soils containing clay. The values of cohesion for sands used
in this analysis are smaller than those for solid rock, and
range from 0-20 kPa [Middleton and Wilcock , 1994; Selby ,
1993].

Figure 2 displays the Mohr circle and Mohr-Coulomb fail-
ure envelope. The Mohr circle produced at each location can

Figure 3. The Mohr circle and modified Griffith failure
envelope. The dark arrow displays how far the circle is
from failing in a tensile manner indicated by the Griffith
portion of the envelope. The white arrow displays the
distance the circle is to failing in a shear manner indi-
cated by the Coulomb portion of the envelope.

change size due to the difference of static and dynamic stress
through the slope. A post-failure state of stress represented
by a Mohr circle lying outside of the envelope is not ac-
counted for by our dynamic model. Failure takes place at a
critical angle, α = (90◦ + φ)/2 [Das, 1997].

While the Mohr-Coulomb failure criterion is a common
description of how materials fail, it can only be used to de-
scribe shear failure [Bourne and Willemse, 2001]. To deter-
mine the locations of both shear and tensile failure, we use
another failure criterion that accounts for extensional stress
and tensional failure.

The hypothesis produced by Griffith in 1921 states that as
stress increases near the tips of thin, elliptical cracks, tensile
failure eventually occurs. The tensile strength of a slope fol-
lows the parabolic Griffith criterion [Bourne and Willemse,
2001],

τ 2 = 2cσ + c2 . (9)

A modification of this criterion, called the Modified Grif-
fith Theory, has been introduced by Brace [1960] for com-
bining tensile and shear failure into a single envelope (Fig-
ure 3). For small shear stress, the curved part of the en-
velope is defined by the Griffith equation, describing tensile

Figure 4. In the right panel, the stress difference to
tensile failure is displayed for a slope of 26◦ and c = 10
kPa due to a P-wave with an incidence angle of 30◦, nor-
malized to a PGA= 0.1 g. The shaded area in the left
panel indicates the region of the slope shown on the right.
Failure occurs near the free surface, indicated by the cir-
cled region. Negative values of SDFtensile indicate the
amount of stress necessary for tensile failure to occur.

Figure 5. In the right panel, the stress difference to
shear failure is displayed for a slope of 26◦ and c = 10
kPa due to a P-wave with an incidence angle of 30◦, nor-
malized to a PGA= 0.1 g. The shaded area in the left
panel indicates the region of the slope shown on the right.
Initiation of shear failure is located within the dotted
lines.
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failure. For larger shear stress, the envelope is defined by

the Mohr-Coulomb equation. The region of the failure en-

velope first encountered by the Mohr circle determines the

type of failure [Bourne and Willemse, 2001]. The stability

of the slope is characterized by the distance of the Mohr cir-

cle to the failure envelope. As shown in Figure 3, we use the

stress difference-to-failure (SDF) to quantify the proximity

of any stress tensor to either shear or tensile failure. Failure

takes place when either SDFshear or SDFtensile is equal to

zero, whichever occurs first [Bourne and Willemse, 2001]. A

stable stress state is represented as negative values of SDF.

Figure 6. Principal stress components and directions
computed for the 26◦ slope due to a P-wave with an in-
cidence angle of 30◦, normalized to a PGA= 0.1 g. In-
ward arrows represent compressional stress, while out-
ward pointing arrows indicate extensional stress, notice-
able at the near surface where tensile failure is found.
The box is enlarged in Figure 7.

Figure 7. Principal stresses for a segment of the 26◦

slope. This shows that tensile stress exists to a depth of
1 m. At 2 m depth, compressional stress is dominant and
the slope is prone to shear failure.

The equations to calculate SDF for the modified Griffith
envelope are given as by [Bourne and Willemse, 2001]

SDFshear =
(

σ1 − σ3

2

)

−

(

σ1 + σ3

2

)

sin(φ) − c cos(φ) ,

(10)

SDFtensile =
(

σ1 − σ3

2

)

−

(

σ1 + σ3

2

)

−

1

2
c . (11)

3.1. Homogeneous Infinite Slope

We use this stress model to analyze triggered failure in an
unsaturated, 26◦ slope which has a constant density of 2,000
kg/m3, c = 10 kPa, and φ = 32◦. Before dynamic stress dis-
rupts the slope, failure of the static slope takes place at 37◦.
When a slope is cohesive, such as in this example, static
failure can occur at a slope angle larger than the internal
angle of friction.

Even though an S-wave generates larger stress at the sur-
face, a P-wave normalized to the same PGA produces the
same failure mechanisms as does the S-wave. Figure 4 shows
the stress difference to tensile failure in this slope due to a
P-wave with an angle of incidence of 30◦, normalized to a
PGA of 0.1 g.

For a given instant in time, dynamic stress is great enough
to produce tensile failure shown as the circled region in dark
red near the surface of the slope. The colorbar also indi-
cates other locations within the slope that have not failed,
or negative values of SDFtensile. Shear failure, as shown in
Figure 5, takes place at greater depth than tensile failure.
There is a limited depth interval for shear failure where the
approximate location failing in shear is circled.

The mechanism for failure can be explained by analyzing
the principal stress components and directions calculated
after dynamic stress is added to the static stress. Figure 6
shows the principal stresses for the 26◦ slope due to the inci-
dent P-wave. The direction of the arrows indicate principal
stress direction while the length represents the magnitude of
the principal stress component. Inward pointing arrows rep-
resent compressional stress. Outward pointing arrows near

Figure 8. Stress components as a function of depth
for the example outlined in Figures 4-5, at a horizontal
distance of 2,000 m. Tensile failure for this 26◦ slope is
outlined by the upper shaded region, while shear failure
takes place in lower shaded region. The dotted lines rep-
resent the components of σdyneq, produced by equations
(12)-(14), which are used in place of σdynamic with depth.
The solid lines represent the components of σstatic.
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the surface indicate tensile stress, that which causes tensile
failure as shown in Figure 4. The tensile stress near the sur-
face is important, and the box in this image is enlarged for
clarity in Figure 7.

Tensile stress is limited to the near-surface down to 1 m
depth. The stresses at 2 m depth show a slight indication of
extensional stress, but the dominant stress is compressive.
At this depth, tensile failure does not occur. At 3 m, there
is no tensile stress since both principal stress components
are larger than zero. This further reduces the possibility for
tensile failure to occur at this depth.

3.2. Dynamic Stress Near the Surface

To understand the depths of shear and tensile failure, we
derive dynamic stress equations that express the stress in the
near-surface in the acceleration at the free surface. These
stress equations follow from Newton’s Law and Hooke’s Law.
The significance of these equations is to determine the dy-
namic stress at depth when the PGA and direction of an
incoming wave is known. The derivation of the equations
for σdyneq

xx , σdyneq
zz , σdyneq

xz can be found in Appendix A:

σdyneq
xx (z) =

4µ(λ + µ)

λ + 2µ

(

p

2πf

)

ax , (12)

σdyneq
zz (z) = −ρazz , (13)

σdyneq
xz (z) = −

{

ρax +

(

4µ(λ + µ)

λ + 2µ

)(

p

2πf

∂ax

∂x

)}

z , (14)

where p is the horizontal slowness of the incoming wave,
f the peak frequency, ax the acceleration in the horizontal
direction, and az the acceleration in the vertical direction.
Note that the tractions at the free surface vanish, producing
the result shown in equation (6), while σdyneq

xx (z = 0) can be
non-zero. Gipprich [2005] shows that these equations are a
good approximation to the dynamic stress produced by the
model by comparing how each stress component behaves
with depth.

To investigate the depth of failure more closely, Figure 8
shows the static and dynamic stress components as a func-
tion of depth for the stress state of Figures 4-5 at a horizon-
tal distance of 2,000 m. In this figure, we use the dynamic
stress equations (12)-(14) in place of the dynamic stress with
depth. The region of tensile failure is shaded at the near sur-
face, and the region for shear failure is shaded at depth.

Figure 8 shows that all components of dynamic and static
stress vanish at the free surface except one, σdyneq

xx . The
three components of static stress depend on depth, as given
in equations (2a)-(2c), and at the surface are equal to zero.
Similarly, the two dynamic components σdyneq

xz and σdyneq
zz

vanish at the surface due to the free-surface boundary con-
dition. At the surface of this slope, tensile failure must be
due to σdyneq

xx , since this is the only non-zero stress compo-
nent. To further understand what determines the depth of
tensile failure, we make the assumption that failure takes
place when the tensile stress σdyneq

xx overcomes the compres-
sive static stress σstatic

zz . We use σstatic
zz as a proxy of the

compressive stress since this is the next largest stress near
the surface, and it increases faster than any other stress
component with depth. The tensile stress is larger than the
compressive stress when

∣

∣σdyneq
xx

∣

∣ > σstatic
zz , (15)

substituting the static stress equation (2b) for σstatic
zz gives

∣

∣σdyneq
xx

∣

∣ > ρgz cos(θ) , (16)

and solving for the depth of failure,

z <
σdyneq

xx

ρg cos(θ)
. (17)

At the point of failure, the tensile stress is equal to the ten-
sile strength of the slope. Because σdyneq

xx is constant with
depth, and the only source of stress causing tensile failure,
its value is approximately equal to tensile strength, repre-
sented by c/2,

σdyneq
xx ≈

c

2
, (18)

and substituting this into equation (17) gives:

z <
c

2ρg cos(θ)
. (19)

Therefore, the depth of tensile failure depends on the ten-
sile strength of the slope, and varies with density and slope
angle. For this example, c =10 kPa, ρ = 2, 000 kg/m3 and
θ = 26◦ and from (19) the region of tensile failure is z < 0.3
m.

This analysis gives an estimate of the maximum depth
of tensile failure without having to analyze SDFtensile. As
σdyneq

xx is constant with depth, and static stress increases
with depth, there is a point where tensile failure no longer
occurs due to the growth of compressive, static stress. This
is a depth where static stress is large enough so that σdyneq

xx

does not make a notable impact for tensile stress in the x-
direction.

As shown in Figure 8 when shear failure takes place, all
static stress components are larger than dynamic stress.
Shear failure occurs at a depth when the smallest static
stress component σstatic

xz , is approximately equal to the
largest dynamic stress, σdyneq

xx :

σdyneq
xx ≈ σstatic

xz . (20)

Substituting the static stress equation (2c) for σstatic
xz gives:

σdyneq
xx ≈ ρgz sin(θ) , (21)

and solving for depth,

z ≈

σdyneq
xx

ρg sin(θ)
. (22)

The depth of failure can be found by substituting dynamic
stress equation (12) for σdyneq

xx ,

z ≈

4µ(λ+µ)
λ+2µ

(

p

2πf

)

ax

ρg sin(θ)
. (23)

The input parameters for this example are λ = 5.0 × 108

Pa, µ = 5.0 × 109 Pa, p = 0.000289 s/m, f = 1.0 Hz, and,
ax = 0.3 m/s2. Given this information, z ≈ 3.0 m for initial
shear failure. Equation (23) demonstrates that the depth
of shear failure depends on several factors that include the
PGA, as well as the horizontal slowness.

This analysis relates the depths of shear and tensile fail-
ure in the slope to the dependence of dynamic stress with
depth. Statically, the entire slope at 26◦ is stable, but when
a plane wave is incident on the slope, in the near-surface,
σdyneq

xx creates tensile failure in the x-direction. Deeper in
the slope, σdyneq

xx is still the dominant dynamic stress com-
ponent, but it is smaller than the static stress. When each
component of σtotal is positive, tensile failure can no longer
take place and when large enough, compressive stress causes
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shear failure to occur. There is a depth below shear failure
when failure no longer takes place. We see in equations (12)-
(14) that dynamic stress is related to either the horizontal
or vertical component of the PGA, while the static stress
equations (12)-(14) are related to the gravitation accelera-
tion. Because the PGA is normalized to a value less than the
gravitational acceleration, at depth, the static stress com-
ponents will become larger than the dynamic stress compo-
nents. The graph in Figure 8 shows this relationship. At
a depth where dynamic stress is small in comparison to the
static stress, it has little influence on the total stress field
and no longer triggers failure, which in this example, this
takes place at a depth near 9 m.

3.3. Layered Slope

Following the description of a layered slope by Terzaghi
et al. [1996], we focus on the failure analysis of an unsatu-
rated slope with two layers parallel to the surface where the
shallow upper meters represent a weathered layer overlying
a stronger, sedimentary layer. Because weathering is largely
confined to the upper meters of the slope, this produces a
region of lower strength and, thus, an area more prone to
slope failure than the underlying sedimentary layer [Selby ,
1993].

Figure 9. In the right panel, the stress difference to
tensile failure is displayed for a layered slope of 19◦ and
c = 10 kPa due to an S-wave with an incidence angle
of 30◦, normalized to a PGA= 0.1 g. The boundary be-
tween the two layers is indicated by the dotted line. The
shaded area in the left panel indicates the region of the
slope shown on the right. Failure occurs at the near sur-
face, indicated by the circled regions.

Figure 10. In the right panel, the stress difference to
shear failure is displayed for a layered slope of 19◦ and
c = 50 kPa due to an S-wave with an incidence angle
of 30◦, normalized to a PGA= 0.1 g. The boundary be-
tween the two layers is indicated by the dotted line. The
shaded area in the left panel indicates the region of the
slope shown on the right. The initiation of shear failure
is circled at 6 m depth.

The low velocity layer, 5 meters deep, has parameters α1,
β1, ρ1, φ1 and c1 that are smaller than those for the sedimen-
tary layer, α2, β2, ρ2, φ2 and c2. The parameters used in the
layered and homogeneous models are shown in Table 1. For
the homogeneous case, parameters represent soil in a slope.
This is the first step to understanding failure in a constant
medium, without having to model fractures that occur in
stronger material such as rock. The upper, weathered layer
in the layered model represents weak, unconsolidated soil,
and is characterized by parameters similar to those for the
homogeneous model. We use the same values of cohesion
and internal angle of friction for the homogeneous model
and weathered layer, so we can see how failure compares in
the upper meters of the slope, where tensile failure tends to
occur.

The interface between the two layers represents a
solid/solid boundary. Because of Snell’s law, the hor-
izontal slowness of the incident wave remains the same
while crossing the interface between layers during the re-
flection/transmission process [Aki and Richards, 2002].

Overall, given the difference in dynamic stress and the
parameters outlined in Table 1, the mechanisms of failure
for a layered slope are the same as the homogeneous model.
A layered slope produces tensile failure in the near surface
and shear failure in both upper and lower layers at depth.
For the layered example, we show failure due to an S-wave to
demonstrate the failure mechanisms are the same for those
produced with the P-wave. The stress difference to failure
produced by an S-wave with an incidence angle of 30◦, nor-
malized to a PGA of 0.1 g is shown in Figures 9 and 10.
Since the dynamic stress produced by an S-wave is larger
than for a P-wave, failure takes place at shallower slopes
than seen in the homogeneous case. Shear and tensile fail-
ure take place in the layered medium for a slope of 19◦,
while statically, failure for the entire slope occurs at 40◦.
These figures show that there are two distinct locations of
failure, each providing a different mechanism of failure. The
weathered layer is initially failing in a tensile manner near
the surface up to 1 m depth, while the remainder of that
layer does not fail. Below the interface, the only indication
of failure is at 6 m depth, which is in shear.

The thickness of the upper layer (5 m) is a fraction of
the wavelength of the incoming wave, which is 800 m for a
frequency of 1.0 Hz. Because the wavelength is much larger

Figure 11. Combining the two mechanisms of failure
indicated by the model and how they work together to
create slope failure. Tensile failure occurs in the upper
meters near the surface, while shear failure takes place at
greater depth, below which, failure will not occur.
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Table 1. Parameter values used in each slope model.

Model α β ρ φ c
Homogeneous 1730 m/s 500 m/s 2000 kg/m3 32◦ 10 kPa

Layered: Low Velocity 1500 m/s 800 m/s 1500 kg/m3 32◦ 10 kPa
Layered: Sedimentary 2200 m/s 1000 m/s 2200 kg/m3 40◦ 50 kPa

than the depth of this layer, the weathered layer has lit-
tle impact on the dynamic stress. Therefore, for the same
failure criteria, slope instability and failure in the layered
slope ultimately resembles that of the homogeneous model.
Because the layered slope contains physical properties that
vary with depth, it is impossible to use the dynamic stress
equations (12)-(14) as an approximation for the dynamic
stress in the homogeneous slope.

This analysis shows that the presence of the weathering
layer does not change the dynamic stress in the near-surface
and failure occurs in the same manner as previously out-
lined.

4. Discussion

We describe the role of shear and tensile failure in the
triggering of landslides. Our model provides evidence for
the initiation of tensile failure in the near-surface and shear
failure at depth in a slope subject to dynamic stress.

Figure 11 shows the depths indicated by the model for
each type of failure. Due to dynamic stress, the upper me-
ters of the slope tend to be in a state of extension, leading to
tensile failure. At greater depths, shear failure takes place,
while below this depth, failure no longer occurs. This figure
shows that both failure mechanisms work together to cause
landslides. Stress concentrations build as tensile (shear) fail-
ure initiates, inducing shear (tensile) failure. We are unable
to determine from this model which type of failure occurs
first in a slope, but this helps to link how the shear and
tensile failure mechanisms produced from the model can ac-
tually occur in nature.

This project provides an additional viewpoint about the
manner in which particular earthquakes cause slope failure.
Given particular slope information we can test the suscep-
tibility to both shear and tensile failure due to varying dy-
namic stress. Further, this work may help to improve meth-
ods which are currently in use. This could lead to changes
in these methods by incorporating ways to measure tensile
failure in addition to shear failure, as well as monitoring the
dynamic stress produced from an earthquake. This project
provides insight into the generation of slope failure and helps
to create a more complete dynamic model.

Appendix A: Derivation of Dynamic Stress
Equations

Given Newton’s Law and Hooke’s Law:

−ρω2Ux =
∂σxx

∂x
+

∂σxz

∂z
, (A1)

−ρω2Uz =
∂σxz

∂x
+

∂σzz

∂z
, (A2)

σxx = (λ + 2µ)
∂Ux

∂x
+ λ

∂Uz

∂z
, (A3)

σzz = λ
∂Ux

∂x
+ (λ + 2µ)

∂Uz

∂z
, (A4)

σxz = µ
(

∂Uz

∂x
+

∂Ux

∂z

)

. (A5)

At the surface, σzz(z = 0) = σxz(z = 0) = 0. We want to
find how stress behaves near the free surface and express this

in the displacement. Since the z-derivative of displacement
cannot be measured, we eliminate ∂Uz/∂z from (A3)-(A4)
by taking (λ + 2µ) (A3) − (λ)(A4):

(λ + 2µ) σxx − λσzz =
(

(λ + 2µ)2 − λ2
) ∂Ux

∂x
. (A6)

At the surface, σzz = 0, hence,

σ(0)
xx =

4µ (λ + µ)

λ + 2µ

∂Ux

∂x
, (A7)

where σ
(0)
ij refers to the stress at the surface of the slope.

Using a Taylor series expansion, σxx(z) = σ
(0)
xx + O(z). The

first term gives the dominant contribution of σxx near the
surface, which is (A7) in this approximation. Since σ

(0)
zz = 0,

σzz(z) =
∂σ

(0)
zz

∂z
z + O(z2) . (A8)

∂σ
(0)
zz /∂z is found by evaluating (A2) at z = 0, where σxz

vanishes at the free surface, hence

−ρω2U (0)
z =

∂σ
(0)
zz

∂z
. (A9)

Inserting this into (A8) gives:

σzz(z) = −ρω2U (0)
z z + O(z2) . (A10)

Similarly,

σxz(z) =
∂σ

(0)
xz

∂z
z + O(z2) . (A11)

Substitute (A7) into (A1) to evaluate this derivative at the
free surface,

−ρω2Ux =

{

∂

∂x

(

4µ(λ + µ)

λ + 2µ

∂Ux

∂x

)}

+
∂σxz

∂z
, (A12)

∂σxz

∂z
= −ρω2Ux −

{

∂

∂x

(

4µ(λ + µ)

λ + 2µ

∂Ux

∂x

)}

. (A13)

Therefore, the dynamic stress equations for the near-surface
are:

σdyneq
xx (z) =

4µ(λ + µ)

λ + 2µ

∂U
(0)
x

∂x
+ O(z) , (A14)

σdyneq
zz (z) = −ρω2U (0)

z z + O(z2) , (A15)

σdyneq
xz (z) = −

{

ρω2U (0)
x +

∂

∂x

(

4µ(λ + µ)

λ + 2µ

∂U
(0)
x

∂x

)}

z + O(z2) .

(A16)

For a plane wave, the displacement is given by:

U(x, z, t) = U(t − px, z) , (A17)
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where p is the slowness or ray parameter. Therefore, the
derivative of displacement is expressed as:

∂Ux

∂x
= −p

∂Ux

∂t
= −pv , (A18)

where v is the particle velocity. In the frequency domain,
this relationship can be written as:

∂Ux

∂x
=

−p

−iω
ax =

p

2πif
ax , (A19)

where ax is acceleration, and f the frequency of the wave.
The derivative of displacement is approximately equal to:

∣

∣

∣

∂Ux

∂x

∣

∣

∣
≈

∣

∣

∣

∣

p

2πf
ax

∣

∣

∣

∣

. (A20)

The slowness, p, is also related to the angle of incidence and
the velocity at the surface,

p =
sin(ip)

vp

=
sin(is)

vs

. (A21)

By substituting (A20) for the derivative of displacement in
equations (A14)-(A16), the stress components are related to
slowness and, hence, the angle of incidence of a plane wave,

σdyneq
xx (z) =

4µ(λ + µ)

λ + 2µ

(

p

2πf

)

ax , (A22)

σdyneq
zz (z) = −ρazz , (A23)

σdyneq
xz (z) = −

{

ρax +

(

4µ(λ + µ)

λ + 2µ

)(

p

2πf

∂ax

∂x

)}

z .

(A24)

Acknowledgments. We would like to express apprecia-
tion to the National Earthquake Hazards Reduction Program
(NEHRP) of the U. S. Geological Survey which has funded this
research through award #04HQGR0108. Additionally, we extend
our thanks to Dr. Matthew Haney for providing his finite-element
code.

Notation

σstatic Static stress components, Pa;

σdynamic Dynamic stress components produced by the
model, Pa;

σdyneq Dynamic stress components produced by equa-
tions, Pa;

c Cohesion, Pa;
φ Internal angle of friction, degrees;

λ Lamé elastic constant, Pa;
µ Lamé elastic constant, Pa;

ρ Density, kg/m3;
θ Slope angle, degrees;

p Horizontal slowness of a plane wave, s/m;
f Frequency of a plane wave, Hz;

ax Horizontal component of acceleration for a
plane wave, m/s2;

az Vertical component of acceleration for a plane
wave, m/s2;
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