
USGS Award No. 04HQGR0072 
 
 
 
 

USING HIGH-RESOLUTION SATELLITE IMAGERY TO PROVIDE RAPID POST-
EARTHQUAKE DAMAGE DETECTION  

 
 
 
 

Ellen M. Rathje, Ph.D., P.E. 
University of Texas at Austin 

ECJ 9.227, C1792 
Austin, TX 78712 
Tel: 512-471-4929 
Fax: 512-471-6548 

e.rathje@mail.utexas.edu 
http://www.ce.utexas.edu/dept/area/geotech/GeotechnicalEngr.htm 

 
 

Melba M. Crawford, Ph.D. 
Purdue University 
LARS: Lilly Hall 
915 W. State St. 

West Lafayette, IN 47907-2054 
Tel: 765 496-9355 
Fax: 765 496-2926 

mcrawford@purdue.edu
 

NEHRP Element: II  
Key Words: Earthquake Damage, Remote Sensing, Satellite Imagery 

 
 
 
 

Research supported by the U.S. Geological Survey (USGS), Department of the Interior, 
under USGS award number (04HQGR0072). The views and conclusions contained in this 

document are those of the authors and should not be interpreted as necessarily 
representing the official policies, either expressed or implied, of the U.S. Government 

 

 1

mailto:mcrawford@purdue.edu


ABSTRACT 
 
 The objective of this research is to investigate the use of high-resolution optical satellite 
imagery to develop estimates of earthquake damage patterns in urban areas.  Pre- and post-
earthquake satellite images (0.6 m resolution) from the 26 December 2003 Bam, Iran earthquake 
were used to investigate damage patterns within the city of Bam, Iran.  The post-earthquake 
image was used alone in a thematic classification algorithm to identify pixels that represent 
earthquake damage, while the pre- and post-earthquakes images were used together in a change 
detection algorithm to identify changed pixels that presumably were changed due to damage 
from the earthquake.  For both sets of analyses, the damage information on the pixel scale was 
used to define damage intensities across the city.  Damage intensity was defined as the 
percentage of pixels within a 60 m by 60 m area identified as damage.  The resulting damage 
intensities were compared with damage results from field surveys.   

Damage patterns from both remote sensing techniques (thematic classification, change 
detection) generally agreed with damage patterns from field surveys, although the remote 
sensing results provided information at a smaller spatial scale.  Thematic classification appeared 
to overestimate some damage due to misclassification of pixels, while change detection 
overestimated damage in some areas due to the presence of non-earthquake change. On-going 
research is focusing on developing a multi-resolution approach that integrates content dependent 
texture measures and using object-oriented classification that classifies objects rather than pixels. 
The objective of this work is to increase sensitivity while keeping the false detection rate low. 
 
 

NON-TECHNICAL SUMMARY 
 
 With the successful launch of high-resolution commercial satellites, the ability to identify 
earthquake-induced damage from satellite imagery is a reality.  These commercial satellites 
collect digital data at spatial resolutions as high as 0.6 m, and therefore contain a wealth of 
information for mapping earthquake damage.  Several methodologies developed in image and 
signal processing for thematic mapping and monitoring change in multi-temporal data sets can 
be utilized to extract this information.  This study shows that image processing techniques 
applied to high resolution satellite imagery can be used to develop detailed damage maps of 
urban areas after earthquakes. 
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INTRODUCTION 
 
 High-resolution (0.6 m) commercial satellite images contain a wealth of information for 
mapping earthquake damage.  Several methodologies developed in image and signal processing 
for thematic mapping and monitoring change in multi-temporal data sets can be utilized to 
extract this information.  This study used pre- and post-earthquake satellite images from the 26 
December 2003 Bam (Mw = 6.6) earthquake to identify earthquake damage in the city of Bam.  
Bam is a city of approximately 90,000 residents (200,000 people live in the greater Bam area) 
located less than 10 km from the earthquake.  Pre- and post-earthquake satellite images of Bam 
were acquired by the Quickbird satellite (www.digitalglobe.com) on 30 September 2003 and 3 
January 2004, respectively.  Visual comparison of the pre- and post-earthquake images provided 
information about the characteristics of damage within the city.  To develop detailed information 
regarding damage patterns across the city, semi-automated thematic classification methods were 
applied solely to the post-earthquake image and a change detection algorithm was applied to the 
pre- and post-earthquake images.  The results from the pixel-based thematic classification and 
change detections analyses were used to define the damage intensity (DI) within 60 m by 60 m 
areas.  These results were compared with field surveys of damage from Bam. 
 
DAMAGE CHARACTERISTICS  
 

The pan-sharpened satellite image of central Bam acquired after the earthquake on 3 
January 2004 is displayed in Figure 1.  The layout of the city is clearly discernable, with roads, 
vegetation, buildings easily identified.  The central and western sections of the city are 
characterized by large vegetated areas, while the eastern section of the city has the highest 
population density.   

Figure 2 shows pre- and post-earthquake images of areas within the city with different 
degrees of damage.  An area with moderate damage is shown in Figures 2(a) and (b).  The pre-
earthquake image (Figure 2(a)) contains small, adobe structures along the streets throughout this 
area.  In the post-earthquake image (Figure 2(b)), the streets and most of the buildings are still 
apparent, but several of the structures at the bottom of the image are destroyed.  An area of 
almost complete destruction is shown in Figures 2(c) and (d).  Again, the roads and structures are 
easily visible in the pre-earthquake image (Figure 2(c)).  However, it is hard to distinguish roads 
or structures in the post-earthquake image (Figure 2(d)) because of the intense damage.  This 
dramatic change in image pattern is characteristic of earthquake damage, particularly for adobe-
type structures.  These types of structures tend to completely crumble during an earthquake, 
leaving little indication of the shape or form of the original structure. For engineered structures 
(e.g., reinforced concrete frame buildings), the image characteristics of damage are somewhat 
different, as these structures tend to pancake and maintain some of the shape and form of the 
original building (Rathje and Crawford 2004). 

Figure 3 shows pre- and post-earthquake images of the Arge-Bam Citadel which is 
located in the northern section of Bam (see upper right corner of Figure 1).  This Citadel has 
survived in Bam for over 2000 years, but was severely damaged during the earthquake.  The pre-
earthquake image (Figure 3(a)) of the Citadel compound clearly shows a large complex of 
smaller buildings surrounded by a series of walls.  In the post-earthquake image (Figure 3(b)), 
the edges of the smaller buildings are missing, indicating their collapse.  Field investigations 
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reported that 80% of the buildings in the Citadel complex experienced complete collapse (EERI 
2004).  This report is consistent with the observations from the satellite images. 
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Figure 1. Satellite image of central Bam acquired after the earthquake on 3 January 2004 (image courtesy 
of DigitalGlobe). 
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(c)                                                                 (d) 
Figure 2. (a) Pre-earthquake and (b) post-earthquake image in moderately damaged area; (c) pre-
earthquake and (b) post-earthquake image in heavily damaged area (images courtesy of DigitalGlobe). 
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Figure 3. (a) Pre-earthquake and (b) post-earthquake image of the Arge-Bam Citadel in Bam (images 
courtesy of DigitalGlobe). 

 
ANALYTICAL TECHNIQUES FOR IDENTIFYING EARTHQUAKE DAMAGE 

Thematic classification is commonly used to analyze remotely sensing data and involves 
classification of individual pixels based on the values of the features associated with that pixel.  
As previously discussed, thematic classification of optical satellite data is often used to identify 
land use and land cover classes, but it can also be used to identify urban damage after an 
earthquake.  Earthquake damage detection using thematic classification involves identifying the 
classes within an urban setting (e.g., undamaged buildings, damaged buildings, roads, vegetation, 
etc) and assigning each pixel to one of these classes.  Supervised classification techniques utilize 
training data (pixels in which their classes are known) to train the classification algorithm, such 
that the remaining pixels are placed within one of the classes based on a statistical comparison 
with the training data. One of the most commonly used supervised classification algorithms is 
the maximum likelihood (ML) method whereby the parameters of the probability density 
function for each class are estimated from the training data, and each unlabeled pixel is assigned 
to a relevant class based on the highest value of the likelihood function.  Thematic classification 
is an attractive approach for earthquake damage detection because it requires only a post-
earthquake image.  However, a critical part of the classification process is the choice of the 
characteristics that distinguish the various classes.   

Digital optical satellite data represent the spectral responses within each of the spectral 
bands.  However, the digital data (DN values) also can be used to derive additional image 
characteristics for use in subsequent analysis.  Image texture and edge density are two classes of 
characteristics that are often used in image processing.  Texture measures provide information 
about the spatial distribution of variations in pixel intensity in an image (Haralick et al. 1973).  
Texture tends to be a stable parameter that does not change significantly with season or 
illumination, unlike spectral characteristics that often change with the seasons as vegetation and 
sun angles change.  Traditional quantitative textural measures consider the change in gray scale 
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across an image area using statistical measures.  Julesz (1975) indicates that second-order 
statistics derived from the gray-level co-occurrence matrix (CM) of an image often provide the 
most useful information regarding texture.  The values of CM(i,j) are the probabilities (p(i,j)) 
that a pair of DN levels (i,j) within a window occur at a separation distance of (x,y).  To compute 
the CM, a window size and a separation distance must be defined.  Each pixel (reference pixel) 
within the window then is compared with the pixel located a distance (x,y) from the reference 
pixel (the neighbor pixel).  If an area has “smooth” texture, reference and neighbor pixels will 
tend to have similar DN values (i.e., i ~ j).  A large number of similar DN values result in large 
values close to the diagonal of the CM and small values away from the diagonal.  If an image has 
“rough” texture, reference and neighbor pixels will tend to have dissimilar values of DN (i.e., i 
>> j or i << j), which results in more scatter about the diagonal within the CM.  Haralick et al. 
(1973) proposed a variety of scalar texture measures that are based on the scatter with the CM.  
The spatial distribution of edges also may play a role in identifying various characteristics within 
a satellite image (e.g., buildings).  In an image, edges represent areas that have a rapid change in 
intensity.  For example, the edge of a building is represented by a rapid change from the color of 
the building roof to the color of the surrounding area.  There are several methodologies available 
to identify edges in digital images.  One of the most robust methods is the Canny edge detection 
algorithm (Canny 1986) because it often captures the most edges in the most detail and it 
minimizes false detections (Bowyer et al. 1999).  After identifying edge pixels using the Canny 
edge detector, the edge density can be defined as the percentage of edges within a specified 
window. 

Change detection is the process of identifying pixels that have changed between two 
images obtained at different times.  Change detection is an attractive approach for earthquake 
damage detection because it involves identification of major changes between pre- and post-
earthquake images.  However, this approach requires that a pre-earthquake image of the area be 
available in the commercial image archive, which is not always the case.  Some frequently used 
change detection methods include image differencing, image ratioing, and image-to-image 
correlation (Singh 1989).  Image differencing and ratioing involve simply computing the 
difference or ratio between pixel values in the two images, while image-to-image correlation 
involves computing the sample correlation coefficient within small windows between the two 
images.  The sample correlation coefficient for a windowed area is given by: 
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where PVa is the pixel value in the pre- earthquake image, PVb is the corresponding pixel value 
in the post earthquake image, n is the number of pixels in the correlation window, and the 
summation is performed over all pixels in the window.  As with thematic classification, the 
features that will be used in the change detection analysis must be selected, and a threshold must 
be chosen that identifies significant change.   
 
DAMAGE IDENTIFICATION RESULTS 

Earthquake damage assessment via thematic classification uses only the post-earthquake 
imagery.  Six classes were visually selected for the city of Bam: (1) damaged areas, (2) 
undamaged buildings, (3) vegetation, (4) open ground, (5) shadow, and (6) asphalt roads.  
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Thirty-one features initially were considered for the ML classification; the four spectral bands, 
eight texture measures based on the elements of the CM and computed for three window sizes 
and horizontal separation distances, and edge density computed for the same three window sizes.  
The eight texture measures were based on the work of Haralick et al. (1973): contrast = CON = Σ 
(i – j)2 p(i,j), dissimilarity = DIS = ∑ ⎢i – j⎟⋅p(i,j), homogeneity = HOM = Σ p(i,j) / [1 + (i – j)2], 
angular second moment = ASM = Σ p(i,j)2, entropy = ENT = -Σ p(i,j) log p(i,j), mean = MEAN 
= Σ i ⋅p(i,j), variance = VAR = Σ (i – MEAN)2⋅p(i,j), and correlation = COR = Σ (i – MEAN)⋅(j – 
MEAN)⋅p(i,j) / VAR.  The three window sizes (used for both the texture and edge calculations) 
and separation distances were: a 6 by 6 pixel window with a 3 pixel horizontal separation 
distance, a 10 by 10 window with a 5 pixel separation, and a 25 by 25 window with a 12 pixel 
separation.  Investigation of the contribution of the features to separating the classes (Woo et al. 
2005, Rathje et al. 2005b) reduced this number to fourteen (blue, green, red, near infrared, 
MEAN6/3, ENT6/3, COR6/3, MEAN10/5, CON10/5, ENT10/5, ASM10/5, COR10/5, 
CON25/12, and COR25/12).  The result of the ML classification is shown in Figure 4.  Damage 
(shown in red) is concentrated in the eastern sections of the city, which is consistent with damage 
observations from the field (Nazem 2003).  However, damage pixels are also scattered 
throughout the city; in some instances these areas represent smaller pockets of damage, while in 
other instances they represent bare areas whose features are similar to damaged areas and, thus, 
were misclassified.  The most undamaged buildings (shown in blue) are found along the eastern 
and southern edges of the city, and the center of the city mostly consists of vegetated areas. 

 
 

                                 

1 km 

LEGEND 
 
Red: damage 
Blue: buildings 
Green: vegetation 
White: open ground 
Black: shadow 
Cyan: asphalt roads 

Figure 4.  Results of ML classification of post-earthquake image of Bam. 
 
The change detection algorithm utilized in this study is based on the sample correlation 

coefficient (equation 1) computed for the co-registered, pre-earthquake and post-earthquake 
image data.  Changes in texture were found to be most useful in identifying earthquake damage, 
and for this analysis the textural feature VAR31/15 was used and a 15 by 15 pixel window was 
employed to compute the sample correlation coefficient (Rathje et al. 2005a).  Through 
comparisons of the histograms of r computed for damaged and undamaged areas of the city, a 
threshold of 0.5 (i.e., r < 0.5 indicates earthquake damage) was selected (Rathje et al. 2005a).  
Finally, because some image change is associated with vegetation and shadow due to variations 
in sun angle, seasons, etc., between image acquisitions, a mask that removes vegetation and 
shadow pixels from the changed pixels was applied.  The damaged areas identified by change 
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detection are shown in red and superimposed on the post-earthquake satellite image in Figure 5.  
Similar to the ML classification, the change detection results indicate a concentration of damage 
in the eastern part of the city, although the damage appears to be most continuous in the north-
east corner and the south-east corner of the image. 

 

 

1 km 

Figure 5.  Earthquake damage (shown in red) for the city  

The thematic classification and change detection results both indicate concentrations of 
damage

 the ML classification and the change detection 
analysi

having 80-100% buildings destroyed (high damage – HD), red areas having 50-80% destroyed  

of Bam identified by change detection. 
 

 in the eastern sections of Bam.  However, it is difficult to quantify damage information 
from the analytical results as presented in Figure 4 and 5.  To provide a more quantitative 
assessment of earthquake damage and to provide an easier means to quantitatively compare the 
results from thematic classification and change detection, a damage intensity measure was 
defined.  The identified damaged pixels are used to compute the damage intensity (DI), which is 
defined on the percentage of pixels within a 100 by 100 pixel (60 m x 60 m) window.  The DI 
scale was defined as DI5 = 80-100% damage, DI4 = 60-80% damage, and DI3 = 40-60% 
damage.  DI less than 40% was not considered significant based on visual examination of the 
damage in areas with DI < 40%, and this observation indicates that there is some 
misidentification of damage in the analyses.   

The resulting damage intensities from
s are shown in Figure 6, overlain on the Quickbird images. The DI3 regions are marked as 

green, the DI4 regions as blue, and the DI5) regions as red.  This representation of the damage 
assessment again indicates intense damage in the eastern part of the city, with significant areas 
labeled as DI4 and DI5.  However, a detailed examination of the distribution of DI within the 
city reveals differences between the ML classification and change detection analysis.  The ML 
classification identified a larger total area of damage, with 38% of the image identified as DI3, 
DI4, or DI5, as opposed to 24% from change detection.  In terms of the distribution of DI, the 
ML classification identified 5.16 km2 of DI3, 2.63 km2 of DI4, and 0.44 km2 of DI5, while 
change detection identified 2.98 km2 of DI3, 1.79 km2 of DI4, and 0.48 km2 of DI5.  Thus, the 
biggest difference occurs between the identification of DI3 and DI4, which is apparent in Figure 
6 with significantly more D3 (green) areas from the ML classification.  Additionally, Figure 6(c) 
shows damage patterns in Bam as assessed by field surveys (Nazem 2003).  The field survey 
used a damage intensity scale based on the percentage of buildings destroyed, with purple areas 
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Damage Intensity (DI) results from (a) maximum-likelihood classification and (b) 
change detection analysis. (c) Results from field damage survey (after Nazem 2003). 
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(medium damage – MD), and yellow areas having 20-50% destroyed (low damage – LD).  

owever, it is unclear exactly how the field damage data were collected and inteH
Nonetheless, the field survey data indicate two pockets of heavy damage: one in the northeast 
and one in the southeast of the city.  Considering DI4 (blue) and DI5 (red) areas from the remote 
sensing results (Figures 6(a) and (b)), the change detection results more closely match this 
observation from the field results.  The ML classification results show large zone of D4 
throughout the entire eastern part of the city, rather than the two pockets of heavy damage 
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identified from the field survey (purple areas) or the change detection result (Figure 6(b)).  
Nonetheless, the remote sensing results (both ML and change detection) provide a more detailed 
assessment of damage distribution across the urban infrastructure.  Rather than assigning damage 
assessments over broad areas or regions (> 1 km2) of a city, the remote sensing approach can 
delineate and distinguish damage over a much smaller area. 

Two areas within the city were isolated for a closer comparison between the damage 
results, and these areas are indicated in Figure 6 and shown in Figures 7 and 8.  Figure 7 
represe

e in Figure 8(b) 
and the

nts a non-damaged area (see Figure 6(c)) within southwest Bam, and the pre- and post- 
earthquake images of this area and the damage intensity results from the two methodologies are 
shown. The results from the ML classification (Figure 6(c)) indicate some small areas of damage, 
although no damage can be visually identified in the image (Figure 7(b)).  These small areas of 
damage are caused by misclassification of pixels during the classification process.  The change 
detection results (Figure 7(d)), reveal some areas of heavy damage (DI4 and DI5), mostly 
because of non-earthquake change observed in the image. In particular, the eastern and 
southwestern parts of the area experienced change due to the presence of vehicles on roads and 
open ground.  Because change detection analysis assumes all change is earthquake related, the 
earthquake damage assessment in this area is overestimated.  This result shows that, although the 
developed change detection algorithm removes non-earthquake changes associated with 
vegetation and shadow, the identification of other sources of non-earthquake change is one 
shortcoming of using change detection to evaluate earthquake damage patterns. 

Figure 8 represents an urban area in eastern Bam (Figure 6) that was heavily damaged 
after the earthquake.  Based on visual examination of the post-earthquake imag

 field survey results in Figure 8(e), the destruction in this area is more severe east of the 
north-south road, but less severe to the west of the road.  The maximum-likelihood classification 
(Figure 8(c)) identifies DI4 damage across most of the image, with a concentration of DI5 along 
the eastern edge.  Although the DI5 areas correspond with the heaviest damage within the image, 
some of the DI4 areas correspond with areas that are not severely damaged.  This discrepancy is 
caused by confusion within the classification algorithm that incorrectly identifies some areas as 
damage.  The results from change detection (Figure 8(d)) identify DI4 and DI5 areas east of the 
road and DI3 and non-damaged areas west of the road.  This assessment of damage is in better 
agreement with the visual assessment of damage in the area, indicating that change detection can 
better distinguish between different intensities of severe damage. 
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Figure 7. (a) Pre-earthquake and (b) post-earthquake image within southwestern Bam, and 
Damage Intensity results from (c) maximum-likelihood classification and (d) change detection.  
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(a)      (b)  

100 m 

 

(c)        (d)  
 

(e)  
 

Figure 8. (a) Pre-earthquake and (b) post-earthquake image within eastern Bam, Damage 
Intensity results from (c) maximum-likelihood classification and (d) change detection, and (e) 
field survey results overlain on post-earthquake image (see Figure 6 for legend).  
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CONCLUSIONS 
 
 Currently, high-resolution optical satellites can be used to develop detailed damage 
assessments after natural disasters, such as earthquakes and hurricanes.  Thematic classification, 
which utilizes only a pre-event image, and change detection, which uses both a pre- and post-
event image, can be used to identify significant damage induced by natural disasters.  Thematic 
classification and change detection algorithms for identifying urban earthquake damage were 
developed and applied to high-resolution optical satellite imagery obtained from the 2003 Bam, 
Iran earthquake.  Damage patterns from both techniques generally agreed with damage patterns 
from field surveys, although the remote sensing results provided information at a smaller spatial 
scale.  Thematic classification appeared to overestimate some damage due to misclassification of 
pixels, while change detection overestimated damage in some areas due to the presence of non-
earthquake change.  On-going research is focusing on developing a multi-resolution approach 
that integrates content dependent texture measures and using object-oriented classification that 
classifies objects rather than pixels. The objective of this work is to increase sensitivity while 
keeping the false detection rate low.  Finally, the development of remote sensing-based 
earthquake damage assessments will be useful in providing rapid evaluations of human impact, 
estimating economic losses, and correlating damage patterns with soil conditions. 
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