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Technical Abstract 

 
Abstract 
We present a new method for calculating broadband time histories of ground motion based on a 
hybrid low-frequency/high-frequency approach with correlated source parameters. Using a 
finite-difference method we calculate low-frequency synthetics (< ~1Hz) in a 3D velocity 
structure. We also compute broadband synthetics in a 1D velocity model using a frequency-
wavenumber method. The low frequencies from the 3D calculation are combined with the high 
frequencies from the 1D calculation using matched filtering at a cross-over frequency of 1Hz. 
The source description, common to both the 1D and 3D synthetics, is based on correlated 
random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This 
source description allows for the specification of source parameters independent of any a priori 
inversion results. In our broadband modeling we include correlation between slip amplitude, 
rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using 
correlated random source parameters is very flexible and can be easily modified to adjust to our 
changing understanding of earthquake ruptures. A realistic attenuation model is common to both 
the 3D and 1D calculations that form the low- and high-frequency components of the broadband 
synthetics. The value of Q is a function of the local shear-wave velocity. To produce more 
accurate high-frequency amplitudes and durations, the 1D synthetics are corrected using a 
randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for 
local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic 
velocity structure appropriate for the site’s NEHRP site classification. The entire procedure is 
validated by comparison with the 1994 Northridge, CA, strong ground motion data set. The bias 
and error found here for response spectral acceleration are similar to the best results that have 
been published by others for the Northridge rupture. 
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Non-Technical Abstract 

 
Abstract 
We have developed a new method to predict ground motion from future earthquakes. The basic 
problem is that even if we know the fault on which an earthquake may occur, we do not know 
precisely how the faulting will take place. Rather than base our prediction on a particular 
characteristic from a previous earthquake, we consider that each physical parameter that 
describes the faulting is given by a probability distribution function, e.g., the slip at a point on 
the fault is not a single value but can take on a range of possible values determined by a 
prescribed distribution. In addition to having the various parameters described by distribution 
functions, we also consider the possibility that different parameters are correlated with each 
other. Thus when we make predictions of ground motion from future earthquakes, we produce a 
full range of ground motions from many events all of which are different in their particulars but 
all of which are statistically equivalent.  
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Introduction 
With increasing usage of nonlinear analysis techniques in the seismic design of structures, 

synthesizing time histories of ground motion becomes more important for the complete 
determination of structural response and damage estimation from future large earthquakes. While 
we cannot know the exact time of the next damaging earthquake, geologists, seismologists and 
geodesists have delineated faults that are capable of producing large magnitude earthquakes in 
urban areas. For example, recent work by Shaw et al. (2002) has spotlighted the Puente Hills 
thrust fault system that underlies the Los Angeles metropolitan area. This system is capable of 
producing earthquakes from MW 6.5 to 7.2 with serious consequences for the economy and 
humankind (Field et al., 2005). To take full advantage of the database of likely scenario 
earthquakes, an accurate method of calculating expected ground motions is needed.  

Within a few fault lengths and at frequencies of engineering interest (e.g. 0.1 to 20 Hz), 
ground motion estimates strongly depend on fault geometry, detailed rupture processes, wave 
propagation paths, and local site conditions. All of these characteristics are complicated, and an 
accurate description of most of them is not readily available. As a consequence we are forced to 
make many assumptions when constructing source models and generating Green’s functions in 
order to estimate ground motions. Recently, in a systematic check of various methods Hartzell et 
al. (1999) compared 13 approaches by synthesizing 29 three-component records for the 1994 
Northridge earthquake. These approaches used different assumptions to model the source process 
and/or the path effects. In general, most of these methods have a large number of free 
parameters, and the misfit of almost all the parameters calculated from the best simulation has a 
standard error of 50% or more. This comparison of methods suggests that the synthesis of near-
field ground motions is still a great challenge to seismologists.  

A credible model of the complex source process is essential for the prediction of ground 
motion. Although efforts have been made to implement dynamic modeling of extended sources 
to predict ground motions (Guatteri, et al., 2003; Hartzell, et al., 2005a), high-frequency 
dynamic fault models are still quite difficult and computationally expensive. Although the 
computational limits can be overcome to some degree, these models have been restricted to 
lower frequencies (less than 2-3Hz). Kinematic modeling remains the best means of 
incorporating many aspects of physical models of the earthquake process while still being able to 
compute broadband strong ground motion (e.g., Hall et al., 1995; Kamae et al., 1998; Pitarka et 
al., 2000; Hartzell, et al., 2002; Archuleta et al., 2003).  

Besides the complications due to the source, complex Earth models significantly influence 
the amplitude, frequency content, and duration of ground motions. Any accurate ground motion 
estimate must include Green’s functions that encompass, or try to encompass, the complexity of 
the velocity structure.  In addition, nonlinear site effects are another important issue that should 
be addressed in ground motion prediction, because strong ground motions, especially the higher-
frequency strong ground motions, can induce non-linear soil response near the surface. 

We present a new method for computing broadband strong ground motions. In our method, 
the complexity of the source process is represented by spatial distributions of source parameters 
based on probability distributions. Having the kinematic source model, we use a three-
dimensional Earth velocity structure to calculate synthetic ground motions for frequencies up to 
1 to 2 Hz. We also compute ground motions to a frequency up to 10 to 20 Hz using a layered 
(1D) Earth model. The exact frequency ranges depend on the frequencies of interest in a 
particular application and the size and accuracy of the 3D velocity model. Using the 1D 
synthetics as inputs, we apply a 1D nonlinear wave propagation code (e.g., Bonilla et al., 1998; 
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Archuleta et al., 2003; Hartzell et al., 2004) to consider local site and soil nonlinear effects near 
the surface. The 3D ground motions (lower-frequencies) and the 1D ground motions (higher-
frequencies) are stitched together to form the broadband time histories of ground motions. The 
strong ground motion data set for the 1994 Northridge earthquake is used to validate our 
prediction method. 
 
Kinematic Modeling by Correlated Random Source Parameters 

To model a kinematic faulting process, we divide the fault of the mainshock into subevents. 
For each subevent we prescribe the slip history. In our kinematic model each subevent is 
represented by a point source with parameters consisting of the slip amplitude, rake, secant 
rupture velocity (average rupture velocity between hypocenter and a point on the fault) (Day, 
1982), and slip duration (rise time)⎯all of which are poorly constrained for future earthquakes. 
In order to allow for our inadequate a priori knowledge we describe these parameters as random 
variables with constraints on the total seismic moment (magnitude), the high-frequency decay of 
the spectral amplitudes, the average rupture velocity, and the spatial coherence of source 
parameters.  

In addition, dynamic modeling of a complex rupture process (e.g. Oglesby and Day, 2002; 
Guatteri, et al. 2003) shows that areas of large slip correlate with faster rupture velocity. 
However, because our model is based on the secant, not the local rupture velocity, we assume 
that the correlation between secant rupture velocity and slip is about 30%. Normally larger slip 
requires longer rupture duration. Otherwise the maximum slip velocity could become 
unreasonably large. We, therefore, set the correlation between rise-time and slip to 60%. 

The distribution of rake on the fault is obtained by randomly perturbing an average value of 
slip rake. In this study we choose the perturbation range of -40° to 40° based on a review of 
previous slip inversions. A flow chart of the entire simulation process is given in Figure 1. The 
randomly distributed slip amplitudes, secant rupture velocities, and rise times are generated as 
follows: 
1.  Three two-dimensional, Gaussian (normal) distributed, white-noise matrices are generated, 
N1, N2 and N3, with zero mean and unit variance. Each matrix has the same dimensions as the 
number of point sources along the strike and dip directions of the main fault.  
2.  Two Gaussian distributed white noise matrices are derived by 
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The S, V, and R are stationary Gaussian processes with zero mean. Their mean Fourier 
amplitude spectra have k-2 decay (Herrero and Bernard,1994; Somerville, et al. 1999). 

In the following we will a NORmal To Anything (NORTA) method (Cario and Nelson, 
1997) to map the three Gaussian random fields, S, V, and R, to the spatial distributions of source 
parameters which follow our preferable probability distributions. Because we only require that 
the power spectral densities of the mapped source parameters keep the same shape as those of 
Gaussian random fields, we can perform the mapping by implementing the basic concept of 
NORTA, i.e., solving the equation: 
 

  
P

S
( y) = P

N
(x)  (4) 

where,  x is one component of  S, V, or R; 
 
P

N
is Gaussian probability function; y represents a 

source parameter which has the probability function
 
P

S
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3.  Using a NORmal To Anything (NORTA) method (Cario and Nelson, 1997), we map the 
matrix S to slip amplitudes which follow the truncated Cauchy probability distribution: 

 p(D) = C
1

1+ [(D ! D0 ) " )]
2
, 0 # D # Dmax

, (5) 

with the assumptions: the maximum slip of the target event Dmax= 3.5D and D0 = 0.5D , and C is 
a normalizing factor. Here we chose the Cauchy distribution (Lavallée and Archuleta, 2003; 
Lavallée et al., 2006) because it allows for larger values of slip amplitude relative to the mean 
which is more consistent with previous earthquakes. The value for Dmax is based on a 
consideration of the slip inversion results for the 1994 Northridge earthquake. The slip 
distribution is insensitive to D0, which can have values between 0 andD . The factor κ is 
determined in such way that random variables generated from equation 4 have a mean value 
ofD . In practice we first set D =1 and multiply the generated slips by a 2D window to taper the 
slip to zero at the edges of the fault. Then we multiply the windowed slip amplitudes by a factor 
to ensure that the synthetic seismic moment is equal to the seismic moment of the target event.  

Similarly, we map the matrix V to secant rupture velocity and R to rise time. A survey of 
previous earthquakes in California shows they have an average rupture velocity around 0.8Vs 
(Geller, 1976; Somerville et al. 1999). We calculate the secant rupture velocities Vr using a 
uniform distribution between 0.6 and 1.0 Vs. The rupture velocities generated from this 
distribution have a mean value of 0.8Vs, which is an average value for many observed ruptures. 

For the rise time we consider a Beta distribution: 
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where, M and 
 
f

c
 are moment and corner frequency of the large event, respectively; N is the 

number of point sources used to simulate the source process of the large event; 
 
m

i
is the moment 

of point source i; b is constant factor which depends on the form of the slip rate function of the 
point source; and 
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in which, the random number r follows 
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Combing equations (6b) and (6c) we can determine
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4.  We compute the correlation coefficient between slip and secant rupture velocity, and between 
slip and risetime. These coefficients may not be equal to the prescribed values of 0.3 and 0.6, 
respectively, because we have filtered and nonlinearly transformed (mapped) the three white 
noise matrices. In this case we choose a new value for !

1
 and/or !

2
 based on the computed 

correlation coefficients, and repeat steps 2 to 4 until the computed coefficients fit the prescribed 
values within a given tolerance. Both Graves and Pitarka (2004) and Hartzell et al. (2005a) have 
considered rupture velocities that are linearly related to the slip amplitude, but this paper is the 
first to use correlated random distributions to represent the relationship between slip and rupture 
velocity and between slip and rise time. 

The choice of the functional form of slip rate for a point source (used for each sub-element 
on the fault) is a principal component in the prediction of broadband ground motion. Our 
selection is motivated by the results of dynamic fault modeling (Guatteri et al., 2004). We 
construct the slip rate function (Figure 2) as 
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and τ is rise time, !
1
= 0.13! ,!

2
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1
. Both the first and second derivative of this slip rate 

function has a non-zero value at the starting time. This feature implies that the initial phase of the 
simulated rupture process will radiate high-frequency energy. Also note (Figure 2) that the slip 
rate function is not symmetric—characteristic of slip rate functions determined in dynamic 
simulations (e.g., Day, 1982; Andrews, 1976). Graves and Pitarka (2004) have used a similar 
nonsymmetric-shaped slip rate function. 

Through a consideration of many different slip models, we find that the predicted ground 
motion is relatively insensitive to the value of maximum slip amplitude (Dmax), as long as it 
allows sufficient variance of slip. The rise time needs a distribution that is bounded, so that 
extreme values are not encountered. However, our results show high sensitivity to the 
distribution of rupture velocity. Because of the present limited results for observed rupture 
velocities, we have chosen a simple uniform distribution.  
Computing Broadband Ground Motions 
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We use the single source model derived in the above section to separately compute low- and 
high-frequency ground motions. After considering the nonlinear site effect, the low- and high-
frequency predictions are stitched together to generate the broadband ground motions. 

We use a three-dimensional (3D) Earth model and the 3D viscoelastic, fourth-order, finite 
difference (FD) algorithm of Liu and Archuleta (2002) to calculate synthetic ground motions for 
frequencies up to 1 to 2 Hz. This FD code uses the perfectly matched layer method to model an 
artificial boundary (Collino and Tsogka, 2001; Marcinkovich and Olsen) and coarse-grained 
method to model attenuation (Day and Bradley, 2001, Liu and Archuleta, 2006). This code is 
fully parallelized, and in addition, allows for two regions with different grid sizes. The surface 
region has a factor of 3 finer grid spacing, required by the lower shear-wave velocities. The 
underlying region, with larger spacing, allows the model to be continued to depth with a much 
lower memory requirement. The 3D velocity structure incorporates the geometry of the geology 
in the area, including the deep sedimentary basin structures that can lead to the trapping of 
seismic energy and production of strong surface-waves.  

There is difficulty in extending the FD calculations to higher frequencies (>2 Hz) because of 
our poor knowledge of the subsurface geological medium and the limitation of computational 
facilities. We use a layered Earth model (1D) and a frequency-wavenumber (FK) code (Zhu and 
Rivera, 2001) to generate ground motions to higher frequencies (e.g. 10 to 20 Hz). The 1D 
computations are very efficient for obtaining high-frequency synthetics, but they do not account 
for scattering effects that can reduce the influence of radiation patterns on high-frequency ground 
motions and increase the ground motion duration. This disadvantage can be partly overcome in 
our 1D computations by randomly perturbing the given strike, dip, and rake angle of faulting. Let 
ϕ represent the strike, dip, or rake angle of a point source on the fault plane, we express ϕ as a 
frequency-dependent random value (Pitarka, et al., 2000; Zeng and Anderson, 2000): 
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where !
0

 is the given value of strike, dip, or rake angle of the fault; ! p is the maximum 
perturbation that can be adding on to!
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; r
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 is a random number uniformly distributed between 0 

and 1; the subscript i denotes the index of point sources. The perturbation on !
0

 linearly 
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1
 to f

2
. In this study we use f

1
=1 Hz and f

2
=3Hz, 

and set ! p  to be 50° for strike, 40° for rake, and 30° for dip. The results are insensitive to these 
values as long as they allow for sufficient variance.  

The local site and soil nonlinear effects are incorporated into the synthetic ground motions by 
using a 1D nonlinear approach (e.g., Bonilla et al., 1998; Hartzell et al., 2004). To do so, the 
synthetic ground motion at the surface is first deconvolved using the linear response of the 
surface layers  to a sufficient depth, below which there is no nonlinearity. This deconvolved time 
history is then nonlinearly propagated back to the surface using the available geotechnical 
information near the surface. The 3D synthetics over basin structures are likely to contain strong 
surface waves, which propagate mostly horizontally near the surface. We cannot use this 1D 
code to compute the nonlinear soil response for surface waves. Therefore, we only apply the 1D 
nonlinear correction to the 1D synthetics over their entire frequency range. Before combining the 
3D and 1D synthetics, we estimate the difference in S-wave travel times between the 3D and 1D 
synthetics using a waveform cross-correlation. Based on this estimation we shift the 3D 
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synthetics such that the first S-waves of the 1D and 3D ground motions arrive at approximately 
the same time. Finally, we combine the high-frequency components of the 1D ground motions 
with the low-frequency components of the 3D synthetics to produce a broadband time history of 
ground motion.  The combination of the two synthetics is accomplished using the match-filter 
technique (Hartzell and Heaton, 1995), where the same filter corner frequency and roll off 
characteristics are used to low-pass filter the 3D synthetics and high-pass filter the 1D synthetics. 
 
Validation of the Method 

The method is evaluated using the strong motion data set from the 1994, Mw 6.7, Northridge 
earthquake. This earthquake is a good event to use because of the complex geology of the Los 
Angeles area and the large number of near-field ground motion records. For our prediction 
experiment, we chose the fault model geometry and hypocenter based on Hartzell et al. (1996). 
The fault strikes 122° and dips 40° to the southwest. The fault plane extends from a depth of 5 to 
21 km, with a fault width of 20 km. The hypocenter is located at 34.211°N, 118.546°W and a 
depth of 17.5 km. The slip rake has an average angle of 105° and the total seismic moment is 
1.23×1019 N-m. 

The fault area is first discretized into 128 rectangular elements along strike and 128 
elements down dip for a total of 16384 subfaults (or point sources). The interval between two 
adjacent point sources is small enough to accurately simulate the rupture directivity effects up to 
4 Hz (Spudich and Archuleta, 1987). (For smaller magnitude events the point source spacing can 
be reduced to maintain the properties of the randomized source parameters.) The spatial 
distribution of slip, secant rupture velocity, and rise time are then generated using the method 
described in the previous section. During this procedure a 1D velocity model (discussed below) 
is adopted to calculate the seismic moment and rupture velocity of each point source. The corner 
frequency of the Northridge earthquake is specified at 0.14 Hz—one over the effective rupture 
time defined as the shortest fault dimension (20 km) divided by the average rupture velocity 
(2.8km/s). In Figure 3 we plot an example of the spatial distributions of the generated source 
parameters for the Northridge earthquake. Even though the slip distribution in Figure 3 was 
randomly generated, it has some similarities with slip distributions obtained from finite-fault 
inversion studies of this earthquake (Wald et al., 1996; Hartzell et al., 1996). We did not, 
however, consider multiple slip distributions because Hartzell et al. (2005a) had shown that the 
mean bias and standard deviation of the fit to the strong motion data is less sensitive to the slip 
distribution and more sensitive to the distributions of rupture velocity and rise time.  We find that 
the rupture velocities and rise times are positively correlated with slip amplitudes as a result of 
the application of equations 1 through 6. 

The two horizontal components of strong motions recorded at 30 stations (Table 1) are used in 
this validation. Figure 4 shows the station locations relative to the surface projection of the 
Northridge fault plane. The site classifications for these stations are also listed in Table 1 (NGA-
Flatfile). We use Version 3 of the Southern California Earthquake Center (SCEC) 3D seismic 
velocity model (Magistrale et al., 2000) and our 3D finite difference method to calculate the 
synthetic ground motions for frequencies up to one Hertz. In this calculation, the lowest shear 
wave velocity is 550m/s, requiring a minimum grid interval of 100m. For attenuation, because 
the Q structure is not available in the SCEC Version 3 model, we prescribe QS as 
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with QP =1.5 QS, where shear wave velocity VS has the units of m/s. This Q structure is similar to 
the relationship used by Hartzell et al. (2005b) to model ground motion records in the Santa 
Clara Valley, California. 

Hartzell et al. (1996) used two layered (1D) Earth models in their finite fault inversion of the 
Northridge earthquake (Table 2). We adopt these two models to calculate Green’s functions up 
to 10 Hz using the FK code of Zhu and Rivera (2001). The 1D model for rock sites is used at 
stations classed as B and BC. The soil site 1D model is used for stations classified as C, CD, and 
D. The Q values in the 1D calculations are also determined using Equation 9. As 
aforementioned, the subfault size of the generated source model is suitable for computing 
synthetic ground motions up to 4 Hz.  Therefore, we divide each subfault into a 3×3 finer grid 
and sum the Green’s functions at the nine grid points with appropriate rupture-time delays to 
obtain the Green’s functions for each subfault. Synthetics are computed for every subfault by 
convolving the Green’s functions with the source functions and summing to produce 
seismograms for the 1D calculations. 

We use the NOAHW program (Bonilla et al., 1998; Hartzell et al., 2004) to compute the 
nonlinear soil response near the surface after linearly deconvolving the 1D synthetics to  a depth 
of 300 m. In the NOAHW code, the Iwan (1967) model is implemented to take into account soil 
nonlinearity and the stress-strain relation is specified by a given modulus reduction curve. In this 
study we adopt the modulus reduction curves of EPRI (1993). Nonlinear damping comes from 
the hysteretic stress-strain loops which follow the Masing criteria (Masing, 1926). Silva et al. 
(1998) developed average shear wave velocity profiles for NEHRP site categories B, BC, C, D, 
and E.  We have adopted these velocity profiles in this study. We also average the velocity 
profiles for categories C and D to compute the nonlinear site response at stations classified as 
CD.  

Combining low-frequency components of the 3D synthetics with the high-frequency 
components of the 1D results, we obtain broadband synthetic ground motions. At present, we 
choose a crossover frequency at 1 Hz. As our knowledge of 3D velocity structures improves, the 
crossover frequency can be raised. Comparison of broadband predictions and ground motion 
records is made by calculating the bias and the standard error of the predicted ground motion 
parameters, such as Fourier amplitude spectra or response spectra. Following the work of 
Abrahamson et al. (1990) and Schneider et al. (1993), the bias of predictions is given by 

 B =
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and the standard error is estimated by 
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where N is the total number of horizontal components of motion, Si and Oi are the synthetic and 
observed ground motion parameter, respectively. Figure 5 plots the bias and standard error 
versus frequency (or period) for acceleration Fourier spectra and 5% damped response spectra. 
The average bias of Fourier spectra over 30 stations and both horizontal components is close to 
zero for the frequency band 0.3 to 10 Hz. The large negative values in bias below 0.3 Hz, which 
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indicates over-prediction, are mostly caused by high-pass filtering of the data records. The 
predicted response spectra have no significant bias over the period range 0.1 to 10 second. In 
particular, the response spectrum does not show a large bias at long periods. The small bias at 
long periods is due to the fact that response spectral values at these periods are influenced by the 
amplitudes of shorter period waves. Because the shorter period waves have a low bias and larger 
amplitude, they result in a lower bias at longer periods. The standard errors of response spectra 
are about 0.5 (natural logarithm, Table 3), similar to the best results of other investigators 
(Graves and Pitarka, 2004; Hartzell et al., 2005a; Zeng 2005). The synthetics obtained by 
combining 1D and 3D results have smaller bias and standard error at low frequencies, indicating 
that using a 3D velocity structure improves the long period ground-motion predictions. 

Figure 6 compares broadband synthetic velocities (0.1 to 10 Hz) in the time domain with 
observed strong-motion records. Here we show two horizontal components of ground motion, 
parallel and perpendicular to the fault strike direction. For most stations, both horizontal 
synthetic and observed velocities have similar strong-motion durations (determined visually) 
except for station NORD, which shows a large late-arriving waveform in the synthetics. This 
arrival is generated by the local 3D velocity model because it is not found in the 1D synthetics. 
Our synthetic time histories also reproduce much of the same character and frequency content 
versus time seen in the data records. For example, both synthetics and observations have a 
simple velocity pulse on the fault-perpendicular component at stations NWHP, JENG, and 
SYLM, located along the top edge of the fault.  

 
Conclusions 

The method presented in this study is intended for the prediction of broadband ground motion 
time histories from future scenario earthquakes. It uses spatially correlated distributions of 
randomized source parameters to describe the kinematic source process. We have validated the 
method using data from the Northridge earthquake. Our model bias and standard error are similar 
to the best results obtained from other techniques. In our validation, however, the faulting model 
used to generate the broadband synthetics is constrained only by general considerations of the 
earthquake moment, fault dimensions, mechanism, and hypocentral location. In addition, average 
velocity profiles for each NEHRP site category are used to correct for local site effects and soil 
nonlinear  response. 

The variation in ground motions predicted by our method results from both modeling and 
parametric uncertainties. The standard error estimated from the validation process can be used as 
a measurement of the modeling uncertainty. The parametric uncertainty consists of the 
uncertainties in our input parameters: seismic moment, corner frequency of the mainshock, 
geometry of the main fault (strike, dip, length, and width), and location of the hypocenter. 
Effects of the uncertainties in these parameters can be considered by performing a suite of  
predictions for a reasonable range of values for these parameters. Moreover, as we compute a 
wide range of ground motions for a particular target event, we can also determine where a 
specific event, such as Northridge, falls within the computed range. It is important to note that 
both forms of uncertainty can be influenced by the distribution of observed ground motion 
records, with near-field sites being more sensitive to both the stochastic and parametric aspects 
of the problem. The strengths of our methodology lie in the correlated randomized source 
parameters that can be used to mimic the results of dynamic modeling and our current 
knowledge of actual earthquake ruptures, and in the realistic site response correction that utilizes 
a nonlinear soil calculation. 
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Appendix A 
Construction of Two-Dimensional Gaussian Random Fields 

We use the spectral representation algorithm described by Ogorodnikov and Prigarin 
(1996) to generate the two-dimensional (2D) Gaussian random fields with given power spectral 
density (PSD). The primary function of the algorithm is to construct the randomized Fourier 
spectrum of the random fields. Having the Fourier spectrum, the random field in the spatial 
domain is obtained by inverse Fourier transformation. 
 Suppose that a 2D real random field   f (x, y)  has M sample points with even interval ∆x 
in the X direction, N sample points with even interval ∆y in the Y direction, and power spectral 
density  p(u,v) . According to the method of Ogorodnikov and Prigarin (1996), the discrete 
Fourier spectrum of   f (x, y)  can be expressed as: 
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Because  f (x, y)  is a real function, its Fourier spectrum is symmetric: 
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Here, the superscript * denotes complex conjugate. In additional, 
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) should be a real 

variable when the subscripts (k, l) equal (0, 0), (0, N/2), (M/2, 0), or (M/2, N/2). At these four 
points, 
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Equation (A1) is applied to compute spectra at points
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Equation (A3) is then used to obtain the spectral values at symmetric points required by the 
inverse Fourier transform. In the above process of constructing the randomized Fourier spectrum, 
we need a total of M×N independent Gaussian random variables. 
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Table 1:  Strong Motion Recording Station List. 
 
Station 
Name 

 
Location 

 
Latitude 

 
Longitude 

Site 
Category 

bald LA; Baldwin Hills 34.0090 -118.3610 CD 
cnpk Canoga Park 34.2120 -118.6010 D 
ecc Energy Cntrl Cntr-Ground Flr 34.2590 -118.3360 C 
grif Griffith Park Obs 34.1180 -118.2990 B 
hsbf LA; Hollywood Storage FF 34.0900 -118.3390 CD 
jeng Jensen Filtration Plant-Gen. Bldg. Gnd 34.3120 -118.4960 C 
kagc Pacoima; Kagel Canyon 34.2880 -118.3750 C 
lawl LA, 8510 Wonderland Ave 34.1150 -118.3800 BC 
newh Newhall; LA County Fire Station 34.3870 -118.5300 D 
nhcc N Hollywood, Coldwater Canyon 34.1940 -118.4120 C 
nord Arleta; Nordhoff Fire Station 34.2360 -118.4390 D 
nwhp Newhall,26835 Pico Cnnyon Blvd 34.3910 -118.6220 D 
pacd Pacoima Dam-Downstream 34.3340 -118.3960 BC 
pard Pardee 34.4350 -118.5820 D 
rrs Rinaldi Receiving Station-FF 34.2810 -118.4790 D 
rse Receiving Station E-Ground Flr. 34.1760 -118.3600 D 
sati 17645 Saticoy St, Northridge 34.2090 -118.5170 D 
scrs Stone Canyon Reservoir Site 34.1060 -118.4540 C 
smch Santa Monica City Hall-Ground Flr. 34.0110 -118.4900 CD 
spva Sepulveda VA Hospital-Ground Flr 34.2490 -118.4750 D 
ssus Santa Susana 34.2310 -118.7130 BC 
svsc Simi Valley. School., 6334 Katherine 34.2640 -118.6660 C 
sylm Sylmar-Olive View Parking Lot 34.3260 -118.4440 CD 
tmpl LA; Temple and Hope 34.0590 -118.2460 CD 
tpfs Topanga Fire Station 34.0840 -118.5990 CD 
uclg UCLA; Grounds 34.0680 -118.4390 CD 
verm LA-3620 S. Vermont Ave 34.0200 -118.2900 D 
vnuy Van Nuys-7 story hotel 34.2210 -118.4710 D 
wads Wadsworth VA Hospital-South 34.0500 -118.4480 C 
wood Wood Ranch Reservoir 34.2400 -118.8200 C 
 



17 

 

Table 2: Layered Velocity Structure Model 

Thickness 
km 

VP 

km/s 
VS 

km/s 
Density 
g/cm3 

QP 

 
QS 

 
Rock Site 

  0.5 1.9 1.0 2.1     90   60 
  1.0 4.0 2.0 2.4   420 280 
  2.5 4.7 2.7 2.6   567 378 
23.0 6.3 3.6 2.8   864 576 
13.0 6.8 3.9 2.9   936 624 
⎯ 7.8 4.5 3.3 1080 720 

Soil Site 
0.1 1.2 0.3 1.7    27   18 
0.2 1.6 0.5 1.8    45   30 
0.2 1.9 1.0 2.1    90   60 
1.0 4.0 2.0 2.4  420 280 
2.5 4.7 2.7 2.6  567 378 

    23.0 6.3 3.6 2.8  864 576 
    13.0 6.8 3.9 2.9  936 624 

⎯ 7.8 4.5 3.3 1080 720 
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 Table 3:  Bias and Standard Error at Selected Frequencies 
 
Frequencies Fourier Spectra Response Spectra 

(Hz)   Bias       Standard Error Bias Standard Error 
0.1   -0.967 1.721   -0.234 0.404 
0.5   -0.064 0.511   0.030 0.369 
1.0   0.005 0.531   0.031 0.388 
3.0   0.100 0.498   -0.006 0.447 
5.0   -0.025 0.676   -0.071 0.557 
7.0   -0.121 0.595   -0.085 0.506 
10.0   -0.152 0.784   -0.061 0.506 
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Figure Captions 
Figure 1. Flow chart of broadband ground motion simulation method. η1 and η2 are spatial 
correlation coefficients between slip and rupture velocity and between slip and rise time, 
respectively. 
 
Figure 2. Normalized slip rate function (equation 7) of a point source. 
 
Figure 3. The generated spatial distributions of the slip amplitude, secant rupture velocity, and 

rise time. The secant rupture velocity (average rupture velocity between hypocenter and a point 
on the fault) and the rise time are correlated with slip amplitude with a coefficient of 0.3 and 
0.6, respectively. 

 
Figure 4.  Locations of stations used to validate the prediction method. The box shows the 

surface projection of the Northridge model fault plane.  
 
Figure 5.  Average bias with standard error (equation 10) for our broadband simulations using 

30 stations. The black lines are the plots of bias. The black dashed lines are bias ± one standard 
deviation. Top is Fourier amplitude and bottom is response spectrum. 1D refers to results from 
a purely 1D model; 1D+3D are for a hybrid model with frequencies < 1 Hz from a 3D 
calculation and frequencies > 1 Hz from a 1D calculation. 

 
Figure 6. Comparison of the observed and predicted ground velocity waveforms bandpass 

filtered from 0.1 to 10 Hz. Within each box the observation (top trace) and the synthetics 
(bottom trace) are plotted with the same vertical scale. The station name is indicated at the top 
left of the box, followed by peak velocity (cm/sec) of observation.  
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