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TECHNICAL ABSTRACT 

 
Prediction of the performance of structures in seismically active regions has traditionally been 
based on a single scalar ground motion parameter (GMP), most typically spectral acceleration.  It 
is widely accepted, however, that the performance of a structure is dependent on more than a 
single parameter of ground shaking.  Hence, performance predictions based on conventional 
scalar ground motion parameters are subject to a great deal of variability, which in turn requires 
greater effort to obtain results with a reasonable level of confidence.  It is expected that by 
including additional information about the ground motion in a set of predictors, one might be 
able to predict structural performance with smaller variability or, equivalently, require less effort 
to predict performance with the same level of confidence.  The objective of this study is to 
investigate whether particular vector combinations of GMPs correlate better with structural 
performance than does the use of a single scalar parameter like spectral acceleration.  In 
particular, we investigate the use of displacement- and energy-based GMPs (i.e., input and 
absorbed energy) at the fundamental and higher frequencies of a structure in addition to or in lieu 
of fundamental-mode spectral acceleration.  We derive these parameters using both linear elastic 
and nonlinear inelastic oscillators. 
 
A total of 140 recorded ground motions are considered in this study.  These motions include a 
“near-source” and an “ordinary” set of 70 motions each, recorded at distances (Rclose) less than 
and greater than 16 km from the source, respectively.  The recordings are from earthquakes of 
moment magnitudes (Mw) between 5.7 and 7.5, in order that the predictions of structural 



response using a particular GMP can be evaluated for different values of Mw and Rclose.  Results 
from dynamic analyses of elastic, ductile, and brittle models of a 3-, 9-, and 20-story steel 
moment-resisting frame building subjected to the selected ground motion records are used to 
evaluate the predictive power of alternative vector-valued GMP sets. 
 
Anticipating that the knowledge of more than a single structural performance measure can help 
reduce the uncertainty in predicting losses and damage levels, vectors of such performance 
measures (e.g., inter-story drift ratios) resulting from dynamic analyses under the selected 
ground motions are studied.  While the emphasis is on their dependence on the selected GMPs, 
the degree of correlation between the structural performance measures is also evaluated for each 
GMP vector.  This is done via multivariate multiple linear regressions (MMLRs).  Such 
regressions are extensions of existing procedures that either consider individual structural 
performance measures separately or employ a single GMP.  Example loss estimates based on 
selected vectors of correlated structural performance measures (and GMPs) are presented to 
demonstrate how the regression studies may be used in practice. 
 
The energy- and displacement-based ground motion parameters considered (i.e., input and 
absorbed energy, and spectral acceleration, either elastic or inelastic) are found to be highly 
correlated with each other over the range of periods considered here, and therefore they tend to 
have similar predictive power for the responses of the chosen frames.  In other words, including 
the energy-based GMPs in a vector with spectral acceleration(s) does not, in fact, appreciably 
improve the structural response predictions.  Despite the fairly strong correlation between the 
inelastic and elastic counterparts of each of these GMPs, however, the use of inelastic GMPs 
does improve the predictions of structural response, as does the inclusion of elastic GMPs at 
multiple periods corresponding to the modes of vibration for each building.  More specifically, 
the vector GMPs tend to reduce the conditional variability in structural response, as well as the 
remaining dependence on earthquake magnitude and source-to-site distance.  Furthermore, the 
vector GMPs reduce the residual correlations between structural response measures, sometimes 
to the extent that they become negligible for loss estimation purposes.  In other cases considered, 
however, neglecting the correlations between structural response measures (estimated via 
MMLR) can result in un-conservative estimates of mean losses and the range of potential losses 
for a given GMP level. 



NON-TECHNICAL ABSTRACT 
 
An accurate assessment of seismic building performance is of paramount importance while 
designing safer new structures and evaluating whether existing ones may need to be strengthened 
to guarantee an acceptable level of safety to occupants.  In addition, better structural performance 
assessment capabilities can improve the prediction of earthquake-related damage and losses.  
The availability of reliable loss estimates is crucial to different stakeholders such as owners, 
tenants, insurance and reinsurance companies, and public organizations responsible for post-
earthquake emergency resource management.  Ideally, this problem could be solved by mining 
ground motion, structural damage, and loss data collected from past earthquakes and using 
statistical tools and engineering principles to develop a sound damage and loss estimation 
procedure.  In the United States, however, only in the very last few years have a large network of 
recording stations been deployed and a significant database of ground motions recordings 
become available to scientists although still insufficient in number  in the area very close to the 
rupturing fault.  In addition, field data on damage and losses are not systematically collected and 
the sparse available data are not sufficient to establish robust statistical models for estimating 
earthquake-induced damage and losses.    
 
Therefore, modern loss estimation procedures are forced to tackle this challenging problem in an 
alternative way that is based on engineering analysis and analytical computations rather than 
using empirical data.  The problem is usually divided into four sequential parts that are more 
manageable.  The first step of this procedure is related to establishing via computer-aided 
analyses which characteristics of the ground shaking are best related to the level of induced 
building deformation. The second part deals with understanding what level of physical damage 
may be suffered by all the structural components (e.g., beams and columns) and non-structural 
components (e.g., interior partitions and glazing) when subject to different levels of deformation. 
The third part deals with identifying repair strategies that may be adopted to fix each component 
that may be in a given state of damage (e.g., cracks of a certain size in a partition wall) after an 
earthquake.  The fourth and last step quantifies the overall performance of the structure in terms 
of repair cost, downtime, and life safety.  The core of the present study fits into the first one of 
these four steps, namely in the ground motion/structural response interface. The final part of our 
work, however, shows how, using simplified examples on a 9-story steel moment-resisting frame 
(SMRF) building, our findings may be used to improve loss estimation.  
 
 More specifically, this study investigates the power of several ground motion intensity 
parameters in predicting deformation levels for a structure.  The goal is combined prediction of 
different but statistically correlated measures of the building response, such as the peak 
deformation at any story along the height of the building.  The peak deformation at a story 
provides useful information on the state of physical damage likely to be suffered by the structural 
and non-structural components located at that story.  The use of multiple measures of building 
deformation to estimate losses is an improvement over the customary use of a single measure, 
such as the maximum lateral deformation at the roof level alone or the peak lateral deformation 
at the story where it is largest, as it can lead to more precise damage and loss estimates. The 
novelty of this study is twofold: a) As candidate predictors of response we considered, among 
others, ground motion parameters that are related to the level of energy that is input into and 
absorbed by a structure during ground shaking.  As is customarily done for other ground motion 



 

parameters, these energy-based parameters are computed for a simple representation of the 
building, not for the structure itself; b) The correlation between the response measures is 
accounted for during the prediction exercise via a statistical technique known as multiple 
multivariate linear regression.   
 
The building responses for computer models of three SMRF buildings of 3, 9, and 20 stories are 
computed using 140 real ground motion recordings from past earthquakes.  The building 
deformations were computed using nonlinear dynamic analysis.  Three different models of each 
building were considered: perfectly elastic, and inelastic with ductile beam-column connections 
or with brittle beam-column connections that can fracture.  The first model is unrealistic (except 
at small levels of ground shaking) but it serves the purpose of being a simple reference point for 
the subsequent, more complicated analyses. The second model is intended to for newer SMRF 
buildings designed after the 1994 Northridge earthquake, whose beam-column connections are 
expected to deform beyond the elastic regime without breaking in a brittle fashion.  The third 
model depicts SMRF buildings designed according to the Uniform Building Code before the 
1994 Northridge earthquake.  Several sets of structural response measures related to peak 
deformations at different stories were obtained from the dynamic analyses, and these were then 
statistically studied (jointly) as functions of various sets of ground motion intensity parameters.  
Results of these regression studies served to indicate which combinations of different ground 
motion parameters predict the building response most accurately.  Finally, we showed a 
simplified example (for the 9-story building with ductile connections) of how a loss estimation 
analysis can be carried out with these different sets of ground motion intensity parameters. We 
also elaborated on the differences in the accuracy of the loss estimates that are obtained in the 
different cases.  
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CHAPTER 1 – INTRODUCTION 

 

1.1 SIGNIFICANCE 

For structural engineers in seismic regions, prediction of the behavior of structures during 
earthquakes is of prime importance.  Predictions of structural performance due to ground shaking 
are usually based on ground motion parameters (GMPs) that are well correlated to structural 
response and, in turn, to damage and monetary loss.  An accurate assessment of the seismic 
performance of buildings is of paramount importance for designing safer new structures and for 
evaluating whether existing ones may need to be retrofitted to guarantee an acceptable level of 
safety to occupants.  In addition, better performance assessment capabilities can improve the 
prediction of earthquake-related losses.  The availability of reliable loss estimates is crucial to 
different stakeholders such as owners, tenants, insurance and reinsurance companies, and public 
organizations responsible for post-earthquake emergency resource management. 

The response of a structure to any input ground motion is generally thought to be well correlated 
with the spectral acceleration at the period of the first mode of vibration of the structure.  
However, the ground motion record-to-record variability in the structural response at a given 
spectral acceleration level can be considerable.  To overcome the effects of this variability one 
needs to perform a sufficient number of nonlinear dynamic analyses to predict the structural 
response with a specified level of confidence.  The goal of this study is to explore the possibility 
of reducing this variability of response predictions by including more than a single parameter 
(such as first-mode spectral acceleration) in a set of predictor variables.  In particular, this study 
investigates the correlation of structural performance measures with vector combinations of 
different GMPs.  We will compare the predictive power of vectors of GMPs to the predictive 
power of a scalar GMP used singly.  This study also investigates the use of energy-based 
parameters (both as scalars and as parts of vector combinations), as distinct from displacement-
based parameters (such as pseudo-spectral acceleration, which is proportional to spectral 
displacement), for correlation with the earthquake response of structures. 

A unique aspect of the study is the prediction of more than a single structural response measure 
at a time (such as the roof drift or the maximum inter-story drift over the height of the building) 
– i.e., the interest is in the prediction of a vector of response measures (e.g., the peak inter-story 
drifts at all stories) whose components will, in general, be correlated.  The knowledge of these 
various building performance measures simultaneously is expected to improve the accuracy of 
performance predictions and loss assessments (as will be demonstrated).  Multivariate multiple 
linear regression analyses are carried out to compare the predictive power of the different GMP 
choices. 
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1.2 OBJECTIVE 

The objective of this research is to investigate whether “vector” combinations of ground motion 
parameters might correlate better with structural damage (and therefore monetary losses) than 
any single scalar GMP used alone.  (In passing, we note that throughout this report we shall 
characterize ground shaking by using the term ground motion parameter interchangeably with 
another commonly used term, Intensity Measure (IM).)  Rather than rely on the limited structural 
damage data that are available from previous earthquakes, results from nonlinear dynamic 
analyses of model buildings subjected to suites of earthquake records will be used to evaluate the 
predictive power of the GMPs.  Specifically, vector combinations of peak inter-story drifts 
resulting from each ground motion will be used as measures of structural response, as inter-story 
drifts are related to both structural and non-structural damage that might occur in an earthquake.  
Since the response measures will in general be correlated with each other, we will also estimate 
the covariance matrix of the damage measures given the GMP, as this information is required for 
estimation of losses from the damage measures (jointly). 

 

1.3 SCOPE 

This study focuses on structures and earthquake ground motions pertinent to the Southern 
California area, although the approach taken here may be applied to other seismic regions as 
well.  In particular, steel moment-resisting frame (SMRF) buildings designed by practicing 
engineers for Los Angeles conditions (i.e., for UBC Zone 4) as part of the SAC steel project 
(Phase II) will be utilized.  Both near-source and "ordinary" ground motions recorded during 
historical earthquakes of a range of magnitudes will be considered. 

 

1.4 APPROACH 

We have considered 140 real ground motion recordings from intermediate to large magnitude 
events (with moment magnitude, M, between 5.7 and 7.5) recorded at moderate distances (taken 
here to be less than 36 km from the causative fault).  Since the selected structures are relatively 
symmetric in plan in the two principal directions, only two-dimensional models are considered in 
the study.  Under the assumptions of a rigid diaphragm, the structures are represented as two-
dimensional centerline models, with brittle or ductile hinge models for the connections, 
reflecting the state of design practice before and after the 1994 Northridge earthquake, 
respectively.  As a basis for comparison, elastic (or infinite strength) models of the buildings are 
also analyzed.  The dynamic analyses are carried out using the software programs RUAUMOKO 
(Carr, 2003) and DRAIN-2DX (Prakash et al., 1993), and the results from the two programs are 
compared. 

Correlation between the GMP sets employed and the realized structural response (or 
performance) measures are assessed by carrying out a Multivariate Multiple Linear Regression 
(MMLR) (Johnson and Wichern, 2002) of the structural demands resulting from the dynamic 
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analyses and the GMP sets obtained for the suite of recorded ground motions.  In multivariate 
multiple linear regression, ‘multiple’ refers to the fact that vectors of GMPs, denoted here as X 
(the independent variables), are to be considered; ‘multivariate’ refers to the fact that vector-
valued measures of structural response, denoted here as Y (the dependent variables), are to be 
predicted.  Such regressions are extensions of conventional analyses that only consider 
individual structural performance measures separately and/or only use a single scalar GMP.  
Example loss estimates based on the use of a vector of structural performance measures are 
presented to demonstrate how the regression studies may be used in practice. 

 

1.5 ORGANIZATION OF REPORT 

Figure 1.1 illustrates the main steps that are involved in this study.  A brief summary of previous 
work and some related background information is presented in Chapter 2.  Selection criteria for 
the ground motions and development of the energy-based parameters, which are not very 
commonly used, are discussed in Chapter 3.  The results from time-history analyses of single-
degree-of-freedom (SDOF) systems (i.e., response spectra) for the selected ground motion 
records, and comparisons between elastic and inelastic acceleration response spectra and the 
corresponding energy-based spectra are also presented in Chapter 3.  Chapter 4 presents details 
on modeling of the structures and includes results from the multi-degree-of-freedom (MDOF) 
dynamic analyses. 

The structural response measures, Y, obtained from the MDOF analyses described in Chapter 4 
are regressed against the ground motion parameters, X, obtained from ground motion time-
history analysis of SDOF systems described in Chapter 3, using MMLR (Multivariate Multiple 
Linear Regression).  Chapter 5 describes the MMLR analysis procedure and explains the results 
from the numerical studies relating ground motion parameters, X, and structural response 
measures, Y. 

 

 

 

Figure 1.1 Tasks involved in this research study. 
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In order to illustrate the benefit of using a vector of response measures, Y, to estimate monetary 
losses, L, examples of the use of the regression results for this purpose are presented in Chapter 
6.  These examples also take into consideration the use of single versus vector ground motion 
parameters, X, as predictors.  Finally, in Chapter 7, a summary of the findings from this study is 
presented, along with recommendations for future work. 

With reference to Figure 1.1, note that all the steps of the procedure are thoroughly investigated 
in this study with the exception of the step that relates Y to L, where a fictitious functional form 
is assumed in order to relate damage (D) and losses (L) to structural response (Y).  In reality the 
development of these functional forms requires fragility curves that relate Y with several 
potential levels of physical damage (e.g., from minor to extensive) to the many structural and 
non-structural elements present in a building.  The expected losses (and their relative 
dispersions) at the story level are then estimated by pricing the most appropriate repair strategy 
for fixing the damage to each element (e.g., a partition that is severely cracked is usually 
replaced not fixed) and adding up the costs for all the elements present at each story.  The losses 
for the entire building are obtained by assembling the losses at each story.  This process is 
lengthy and beyond the scope of this project.  For an example of this procedure, see Miranda and 
Aslani (2003) for the methodology and Taghavi and Miranda (2003) for an implementation.  
From the description above, however, it should be clear that an estimate of the correlated 
structural response measures at each story is crucial for a realistic estimate of both physical 
damage and monetary losses.  Accordingly, the present study focuses on prediction of this vector 
of correlated response measures using GMPs, and on the estimation of losses using these 
response predictions that in turn rely on MMLR. 
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CHAPTER 2 – BACKGROUND 

 

2.1 INTRODUCTION 

For design and performance assessments of new and existing structures in seismically active 
regions, it is important to identify ground motion parameters (GMPs) that are well correlated 
with structural response and, in turn, with damage or monetary loss.  Once this correlation is 
established, engineers can, for example, efficiently estimate the likelihood that a structure at a 
given site will either collapse or suffer other less severe levels of structural and non-structural 
damage.  Even with GMPs that are well correlated with response, considerable uncertainty is 
expected in the prediction of structural response measures (e.g., peak roof drift).  As mentioned 
earlier, we seek to reduce the uncertainty involved in such predictions by using a vector of 
ground motion parameters (instead of any single parameter alone).  In an attempt to capture 
cumulative types of damage, this vector will in some cases include energy-based GMPs in 
addition to conventional displacement-based GMPs, such as pseudo-spectral acceleration.  In this 
chapter we summarize the various GMPs and damage measures used in this study. 

 

2.2  LINEAR ELASTIC DISPLACEMENT-BASED PARAMETERS 

In current design practice it is common to express the demand on a structure in terms of 
acceleration parameters derived from ground acceleration time histories.  Two commonly 
considered acceleration measures are the horizontal peak ground acceleration (PGA) and the 
linear elastic spectral acceleration (Sa) at a specified natural period of the structure and 
percentage of critical damping.  PGA is simply the largest (absolute) value of the ground 
acceleration time history.  Spectral acceleration describes the maximum response of a linear 
elastic single-degree-of-freedom (SDOF) system subjected to a particular input motion.  It is a 
function of the natural period (T) and damping ratio (ζ ) of the SDOF system, and is defined as 
the largest (absolute) value of the oscillator displacement (relative to the ground), converted to 
acceleration terms by multiplying by (2π/T)2.  The derived acceleration parameter is more 
precisely the pseudo-spectral acceleration, which is the acceleration measure used in this study.  
Compared to PGA, several studies have shown that the period-specific Sa(T1) (i.e., the spectral 
acceleration at a period, T1, close to the fundamental period of the structure of interest) is more 
closely related to the response of moderate to long vibration period structures (e.g., Shome et al., 
1998).  Nevertheless, Sa(T1) has also been demonstrated to be less than ideal for tall, long-period 
buildings, and for many structures when considering near-source ground motions (e.g., Luco, 
2002; Luco et al., 2002).  As an alternate method, it has been suggested to use parameters based 
on a modified Sa(T1) to account for the contribution of higher modes and the effects of 
inelasticity on structural demands (Luco, 2002).  However, parameters based on modification of 
Sa(T1) require more effort to compute.  Also, attenuation relationships for such modified 
parameters are not yet available, which makes it difficult to use them in probabilistic seismic 
hazard and risk analyses of interest in engineering practice. 
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2.3 LINEAR ELASTIC ENERGY-BASED PARAMETERS 

To assess the performance of structures during an earthquake, one can also employ an energy-
based approach.  Several parameters based on energy principles have been employed to study 
structural performance.  These include input energy and absorbed energy (e.g., Chou and Uang, 
2000; Sari and Manuel, 2002; Mollaioli et al., 2004).  These energy-based parameters are 
frequency-dependent GMPs, similar to the more conventional spectral acceleration (Sa), and 
establishing their values from recorded ground motions requires similar levels of effort (Sari, 
2003).  Such energy-based parameters are directly related to cycles of response of a SDOF 
system, as opposed to peak values of displacement, which is the case with Sa.  Thus energy-
based parameters implicitly capture the effect of ground motion duration, which is missed by the 
conventional spectral parameters.  Input energy, for example, can be related to the work done by 
the base shear (net lateral force) acting through the ground displacements (Uang and Bertero, 
1988).  Only a few attenuation relationships for energy-based parameters currently exist 
(Chapman, 1999; Chou and Uang, 2000).  However, if these parameters are found to be 
significantly better correlated to damage than conventional spectral ground motion parameters, 
additional attenuation relations could be easily developed.  In our study, we have included elastic 
input and absorbed energy-equivalent acceleration as ground motion parameters.  We will 
consider vector sets of energy-based parameters as well as combinations of energy- and 
displacement-based parameters in our studies.  A background on estimation of these energy-
based parameters from ground motion records is given in Chapter 3. 

 

2.4 INELASTIC DISPLACEMENT- AND ENERGY-BASED PARAMETERS 

For spectral acceleration (Sa), the SDOF system considered is a linear elastic oscillator of the 
given vibration period (T) and damping ratio (ζ, typically taken to be 5%).  Alternatively, a 
bilinear inelastic oscillator characterized by T, ζ, a yield displacement (dy), a post-yield strain-
hardening ratio (α), non-degrading strength and stiffness, and equal loading and unloading 
slopes can be used to compute an inelastic spectral acceleration, denoted here as Sa

I.  It can be 
expected that Sa

I will be more strongly correlated with the nonlinear response of structures than 
Sa, especially if the response is dominated by the first mode of vibration.  Hence, in this research, 
Sa

I is considered as another GMP that can be coupled with Sa (or used in lieu of it) in order to 
improve the prediction of nonlinear structural responses.  Note that a relatively simple 
modification of the elastic time-history analysis carried out to compute Sa is required to compute 
Sa

I.  Also needed are values of the two additional parameters, dy and α, which are described in 
more detail in Chapter 3. 

Analogous to Sa
I, the input and absorbed energy (expressed as energy-equivalent accelerations) 

can also be computed for a bilinear inelastic SDOF system characterized by T, ζ, dy, and α.  In 
fact, the absorbed energy of an elastic oscillator is simply proportional to Sa and, therefore, does 
not provide any additional predictive power.  Hence, in this report only an inelastic absorbed 
energy GMP is considered.  The same inelastic time-history analysis carried out to compute Sa

I 
also results in values of the inelastic energy-based GMPs. 
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2.5  STRUCTURAL RESPONSE MEASURES 

A major concern in earthquake engineering is the estimation of damage and losses that can occur 
due to ground shaking in an earthquake.  In the structural engineering literature, various response 
measures have been proposed based on experimental and theoretical studies to explain damage 
observed in test structures under simulated ground motions or in actual structures struck by real 
earthquakes.  We are interested in those response measures that are well correlated to structural 
and non-structural damage.  Numerous studies (such as the SAC Steel Project) have indicated 
that peak interstory drift ratios (i.e., inter-story drift normalized by story height) are closely 
related to both local demands and damage and to global structural stability for steel moment-
resisting frames and many other building types.  Various scalar measures related to the peak 
interstory drift ratio have been used in research.  These include, for example, the maximum peak 
interstory drift ratio over all stories (denoted as MIDR) (Giovenale et al., 2003; Luco, 2002) and 
the average peak interstory drift ratio over all stories (denoted as AIDR) (Luco, 2002).  The 
response measure MIDR can be related to local damage (within a story) and to local instability or 
to story collapse.  On the other hand, AIDR is related to overall damage in a structure and to 
instability of the structure as a whole.  Another response measure that relates to overall structural 
damage and global instability is the peak roof drift ratio (RDR), which is the ratio of the peak 
lateral roof displacement to the building height. 

 

2.6  RELATIONSHIP BETWEEN RESPONSE MEASURES AND  GROUND MOTION 
PARAMETERS 

The degree of correlation between ground motion intensity measures and the response of 
structures is important for the prediction of damage in earthquakes.  Ground shaking intensity 
can be described using the displacement- or energy-based GMPs discussed earlier.  The degree 
of correlation between response measures and GMPs is typically estimated via regression 
analysis.  There is, however, considerable variability in the structural responses generated by 
accelerograms of similar GMPs due to the complexity of the dynamic response of structures and 
to the different characteristics of ground motion recordings.  Because of this record-to-record 
variability, one usually needs to run a sufficient number of nonlinear dynamic analyses in order 
to predict response measures with specified levels of confidence.  The required number of 
analyses is directly related to the variability (dispersion) in the response measure given the GMP 
(Shome et al., 1998), as expressed in Equation 2.1.  A lower variability (dispersion) of the 
response measure given the GMP will require fewer nonlinear dynamic analyses to predict 
response with a desired level of accuracy (e.g., if the dispersion of the response measure given 
the GMP is reduced by a factor of two, the required number of analyses can be reduced by a 
factor of four to achieve the same level of accuracy).  More precisely, the "dispersion in response 
given GMP" is the standard deviation of the (natural logarithm of the) response measure for a 
given value of the GMP, and the "level of accuracy" is the standard deviation of the mean of the 
(natural logarithms of the) response measure, also for a given value of the GMP. 
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2
Dispersion in Response |# analyses

Level of Accuracy
GMP⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   (2.1) 

Choosing an appropriate set of ground motion records relevant to a given site and running the 
nonlinear dynamic analyses can be a time-consuming and computationally expensive process.  
Hence, any significant reduction in the variability of our predictions of response is helpful in 
limiting the number of analyses needed.  This can be achieved if we identify an “efficient” GMP 
that predicts the desired response measure with small dispersion.  Furthermore, if a GMP is 
"sufficient" (Luco 2002), i.e., it correlates with structural response in the same way (with the 
same regression results) for different types of earthquake records (e.g., near-source versus 
"ordinary"), the choice of an appropriate set of ground motion records relevant to a given site is 
simplified.  In this case, a random choice of records can be adequate. 

 

2.7 VECTOR-VALUED APPROACH 

Structural response measures, in general, may be dependent on parameters other than the first-
mode spectral acceleration alone.  Examples of other parameters include magnitude of the 
causative event, duration of the ground shaking, and spectral acceleration at frequencies higher 
than the first mode.  Since a single (scalar) GMP may not be well correlated with the response of 
a structure, one could consider using more than one such parameter if there is interest in reducing 
the uncertainty in the response prediction.  In a recent study (Bazzurro and Cornell 2002), 
vector-valued regression analyses were carried out using spectral acceleration values at two 
different natural frequencies, and this was demonstrated to be beneficial for the response 
predictions of flexible structures dominated by multiple modes.  Along these lines, in the present 
study we propose the use of a vector of GMPs that can jointly predict the response.  The details 
on particular choices of vectors are discussed in Chapter 5.  In general, we will limit our sets of 
GMPs to only those measures that can be readily computed from SDOF linear elastic or bilinear 
inelastic analysis, the modal vibration properties of the given structure, and an estimate of the 
strength of the structure.  Also, we remind the reader again that instead of predicting a single 
response measure given the GMPs, we seek to predict jointly a vector of several response 
measures that are correlated.  The knowledge of a vector of response measures is expected to 
improve predictions of losses in future earthquakes because it provides information about the 
level of drift at all stories. 
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CHAPTER 3 – GROUND MOTION RECORDS AND PARAMETERS 

 

3.1  INTRODUCTION 

In general, the characteristics of ground motion records that influence the seismic response of 
structures can be quantitatively described using various scalar parameters.  Generally, the 
amplitude and duration of ground shaking, measures of frequency content, and the number of 
peaks in a ground acceleration record above a specified level are some of the characteristics that 
can influence structural response.  Several ground motion parameters used in the literature to 
predict structural response were summarized in the previous chapter.  To study the extent of the 
correlation of GMPs to structural response measures, 140 ground motion records from 20 
earthquake events relevant to the Southern California region were selected.  These ground 
motion records were analyzed using a MATLAB routine that employed Newmark’s direct 
integration method to analyze linear elastic and bilinear inelastic SDOF systems and thus 
generate response spectra for pseudo-spectral acceleration and for the energy-based parameters 
(both elastic and inelastic).  The details related to the selection of records and the definitions of 
the energy-based parameters are presented in this chapter.  Comparisons between the energy-
based approach and the conventional displacement-based approach (e.g., using pseudo-spectral 
acceleration) are also presented here. 

 

3.2  STRONG GROUND MOTION RECORDS 

3.2.1  INTRODUCTION 

Building performance, and hence damage and losses, during an earthquake are sensitive to the 
input ground motion, which is characterized in a general sense by the earthquake magnitude of 
the causative event, the source-to-site distance, and the site conditions.  To obtain results 
appropriate for the region of interest (Southern California in our case), one can select records 
pertaining to that region.  Also, from the viewpoint of planned statistical analysis, it is important 
to consider a large number of records to make statistically significant conclusions. 

3.2.2  GROUND MOTION DATA 

A total of 140 ground motion records from 20 earthquakes were used for the analyses in this 
study.  The records were obtained from the PEER database (http://peer.berkeley.edu/smcat/) 
assembled by Dr. Walter Silva.  Only the strike-normal horizontal component of each record was 
included, where near-source effects were expected.  For consistency, in the case of the "ordinary" 
(i.e., non-near-source) motions as well, only the strike-normal horizontal component was 
considered.  For stations where a strike-normal component was not recorded, the two horizontal 
components were rotated to get the strike-normal component. 

The ground motions used were recorded either in the free field or at the ground level of 
lightweight construction of no more than four stories.  The selected records had a maximum 
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(between the two horizontal components) high-pass-filter corner frequency (fc
HP) not greater than 

0.20 Hz.  This constraint is based on the suggestion from Dr. Walter Silva that "the usable 
bandwidth of the records for the purpose of engineering analysis is within a factor of 1/1.25 of 
the low-pass frequency and a factor of 1.25 of the high-pass frequency" (refer to 
http://peer.berkeley.edu/smcat/process.html); the latter corresponds to 4 seconds (or 1.25 times 
0.20 Hz) in our case, which is a period range that is long enough to cover the fundamental linear 
elastic periods of the 3-, 9-, and 20-story SAC structures that we consider in this research (as 
described in the next chapter).  Note that we assume here that the suggested usable bandwidth is 
also adequate for nonlinear structural analyses, even though the progression of damage during 
ground shaking may cause the effective vibration period to lengthen beyond the upper bound of 
the usable bandwidth.  Constraining the selection of records to a lower value of fc

HP, however, 
would eliminate enough records to impair stable statistical inferences. 

3.2.3  MAGNITUDE 

Strong motion records from earthquakes with moment magnitude, Mw, between 5.7 and 7.5 were 
used in this study.  Eighty percent of the records were collected from earthquakes with Mw 
ranging from 6.0 to 7.0, seven percent with Mw below 6.0, and thirteen percent with Mw greater 
than 7.0.  The selection of records was designed such that the number of records with Mw above 
and below 6.5 is the same.  The data set is also divided into near-source and ordinary records, as 
described in detail in the next subsection.  In Southern California, engineers are very concerned 
with magnitudes greater than 7.0, but not many recordings are available from such earthquakes.  
Nevertheless, this data set will allow us to look at the variation of structural response with 
magnitude, in addition to the response for large magnitude events alone. 

3.2.4  SOURCE-TO-SITE DISTANCE 

We have included both near-source and "ordinary" (i.e., non-near-source) ground motion records 
in the present study by considering values of the closest distance to the source, Rclose, between 
nearly 0 and 36 km.  The near-source subset contains the 70 (of 140) records with Rclose < 16 km, 
and the "ordinary" subset contains the remainder (16 ≤ Rclose < 36 km).  The 16 km limit for the 
near-source subset is motivated by the prevalent belief (e.g., in the SEAOC Blue Book) that 
ground motion records show "near-source" characteristics only within about 15 km of the source.  
The earthquake events from which the records were selected are summarized in Table 3.1.  The 
distribution by magnitude, Mw, and distance, Rclose, of the selected ground motions is summarized 
in the scatter plot shown in Figure 3.1. 
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No. Earthquake Name Year Mw Ordinary Near-Source 
1 Coyote Lake 1979 5.7 1 4 
2 Chalfant Valley-01 1986 5.8 2 1 
3 Whittier Narrows 1987 6.0 0 2 
4 N. Palm Springs 1986 6.1 1 2 
5 Parkfield 1966 6.2 0 4 
6 Morgan Hill 1984 6.2 8 8 
7 Chalfant Valley-02 1986 6.2 1 1 
8 Victoria, Mexico 1980 6.3 2 2 
9 Coalinga 1983 6.4 8 2 
10 Imperial Valley 1979 6.5 11 18 
11 Superstition Hills 1987 6.5 3 2 
12 San Fernando 1971 6.6 1 0 
13 Northridge 1994 6.7 9 10 
14 Kobe, Japan 1995 6.9 3 1 
15 Loma Prieta 1989 6.9 9 4 
16 Cape Mendocino 1992 7.0 2 1 
17 Duzce, Turkey 1999 7.1 0 1 
18 Landers 1992 7.3 6 2 
19 Tabas, Iran 1987 7.4 1 2 
20 Kocaeli, Turkey 1999 7.5 2 3 

 Total   70 70 
 

Table 3.1 Distribution of the selected ground motion records from various earthquake events.  
Note that records from the 1999 Chi-Chi, Taiwan earthquake are not considered due to currently 
unresolved questions regarding their pertinence to the Southern California region and the 
overwhelming number of records from the event. 

 

Figure 3.1 Magnitude and distance for the 140 selected ground motion records. 
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3.2.5  SITE CLASSIFICATION 

To prevent the confounding influence of soil properties on the response, ground motions 
recorded only at sites classified as NEHRP D or C class ("stiff soil" or "very dense soil and soft 
rock"), or as Geomatrix site code (third letter) B-D when the NEHRP classification is 
unavailable, are considered.  A list of all the selected ground motion records is presented in 
Appendix A. 

 

3.3  ENERGY-BASED PARAMETERS 

3.3.1  INTRODUCTION 

It has long been thought that in order to evaluate seismic damage to buildings one could consider 
an energy-based approach in a manner similar to how a displacement-based approach uses  
pseudo-spectral acceleration, Sa, as the underlying parameter.  Over the years, several researchers 
have carried out studies in order to gain a better understanding of the energy demand on 
structures.  These studies have focused on different descriptors of such energy demands.  Studies 
by Housner (1956), Akiyama (1985, 1988), Uang and Bertero (1988), Chou and Uang (2003), 
and Leelataviwat et al. (2002) have addressed the energy demand in multi-degree-of-freedom 
(MDOF) systems and have even sometimes described energy-based design procedures.  Sari 
(2003) and Chou and Uang (2000) have considered energy-based ground motion parameters such 
as input energy and absorbed energy.  As mentioned in Chapter 2, these energy-based parameters 
are frequency-dependent, similar to the more conventional Sa, and establishing their values from 
recorded ground motions requires similar levels of effort (Sari, 2003).  Such energy-based 
parameters depend on the number and amplitude of the cycles of response of a single-degree-of-
freedom system, as opposed to the peak values of response alone as is the case with Sa.  Hence, 
these energy-based parameters implicitly capture the effects of duration. 

3.3.2  ENERGY BALANCE EQUATIONS FOR AN SDOF SYSTEM 

Consider the equation of motion for a single-degree-of-freedom (SDOF) system subjected to a 
horizontal ground motion: 

0=++ st fucum &&&      (3.1) 

where m, c, and fs are the mass, viscous damping coefficient, and restoring force, respectively, of 
the SDOF system.  Also, ut is the absolute (total) displacement of the mass, while u = ut – ug is 
the relative displacement of the mass with respect to ground, and ug is the ground displacement. 

Transformation of the equation of motion into an energy balance equation is easily accomplished 
by integrating Equation 3.1 with respect to u from the beginning of the input ground motion (see, 
for example, Uang and Bertero,1988).  This leads to: 
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Since the inertia force, tum && , is numerically equal to the sum of the damping and restoring forces 
(as seen in Equation 3.1), it is also equal to the total force transmitted to the base of the structure.  
Therefore, the right-hand side of Equation 3.2 is, by definition, the energy input into the system 
at any time, t.  Hereinafter, following Uang and Bertero (1988), we will define Input Energy, Ei, 
as the maximum value of the energy input into the system during ground shaking.  It can also be 
thought of as the maximum value of the work done by the total base shear acting through the 
foundation/ground displacement during the ground motion (Uang and Bertero, 1988).  Thus, we 
have: 

⎭
⎬
⎫

⎩
⎨
⎧

= ∫
t

gti duumE
0

max &&      (3.3) 

It is convenient (but not necessary) to transform Ei into a parameter with units of acceleration to 
be included with Sa in a vector of GMPs.  Thus, we define the parameter “input energy-
equivalent acceleration,” Ai, as follows:  

m
EV i

i
2

= ;   ii VA ω=     (3.4) 

where ω is equal to 2π/T1 and T1 is the fundamental period of the system.  Similarly, following 
Chou and Uang (2000), we define Absorbed Energy, Ea, as the maximum value of the third term 
on the left-hand side of Equation 3.2, which, in the case of an inelastic response, is composed of 
recoverable elastic strain energy and irrecoverable hysteretic energy.  That is, 

⎭
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⎩
⎨
⎧

= ∫
t

Sa dufE
0

max      (3.5) 

As before, Ea is a quantity that can also be transformed into a parameter with units of 
acceleration, namely the “absorbed energy-equivalent acceleration,” Aa:  

m
E

V a
a

2
= ;   aa VA ω=     (3.6) 

Note that Aa reverts to Sa if the SDOF system is elastic (i.e., if fs = ku); so, in this research we 
only consider Aa for an inelastic oscillator, as described in Section 3.4. 

3.3.3  ENERGY RESPONSE SPECTRA 

Energy-based response spectra require the same level of computational effort as conventional 
acceleration response spectra and are generated in a similar manner.  For example, input energy 
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time histories for a SDOF system with specified damping can be evaluated for a particular 
ground motion record using Equation 3.3, for various natural periods of interest.  The spectrum, 
in this case, is generated as a plot of the maximum values of the input energy time histories 
versus the corresponding periods.  

In Figure 3.2, we illustrate the generation of input energy-equivalent acceleration spectra (Ai) and 
conventional response spectra (Sa).  Note that the energy time history is converted to an 
equivalent acceleration time history using Equation 3.4.  The time-varying input energy-
equivalent acceleration and the pseudo-spectral acceleration response time history for an elastic 
SDOF system with a 1.0 sec natural period and 5% damping, for a single ground motion, are 
plotted in Figure 3.2.  The maximum values from these time histories are used to obtain the 
spectrum ordinates at a natural period of 1.0 sec and for 5% damping.  Entire response spectra 
are easily generated using numerous period values that cover the range from 0 to 4 sec (the 
period range of interest in this study). 

The elastic input energy-equivalent acceleration spectra (i.e., Ai) obtained for all of the 140 
ground motions are shown in Figure 3.3, along with the mean spectrum.  Figure 3.4 shows the 
mean Ai spectra considering the entire set as well as the near-field set and the ordinary set 
separately.  Figures 3.5 and 3.6 are analogous to Figures 3.3 and 3.4, respectively, and 
summarize the conventional response spectra, showing Sa versus period for the sets of ground 
motion records. 
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Figure 3.2 Comparison of the spectra for input energy-equivalent acceleration (Ai) and spectral 
acceleration (Sa) for a single ground motion record, highlighting computation for a natural period 
of 1 sec and 5% damping. 
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Figure 3.3 Individual input energy-equivalent acceleration (Ai) spectra for 5% damping for the 
140 records, along with the mean spectrum. 

 

 

Figure 3.4 Mean input energy-equivalent acceleration (Ai) spectra based on the full set of 140 
records, the near-source set, and the ordinary set of records. 
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Figure 3.5 Individual acceleration spectra (Sa) for 5% damping for all 140 records, along with 
the mean spectrum. 

 

  

Figure 3.6 Mean response spectra (Sa) based on the full set of 140 records, the near-source set, 
and the ordinary set of records. 
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3.3.4 COMPARISON OF ELASTIC Ai AND Sa 

The energy-based parameters (e.g., input energy-equivalent acceleration) convey information on 
the ground motion duration by virtue of the integration over time that is involved in their 
computation.  Generally, peak values in the input energy time histories occur towards the end of 
the strong shaking, reflecting this cumulative effect.  This is in contrast to acceleration time 
histories that often have their peak values during the portion of strongest shaking of the record 
(depending on the natural period of interest).  For the ground motion record considered in Figure 
3.2, for example, the peak value of the input energy occurs at about 20 seconds, whereas the 
peak value of the pseudo-spectral acceleration response occurs considerably earlier (at about 3.5 
seconds).  Spectral acceleration is a displacement-based parameter and only reflects the effects of 
amplitude, whereas input energy-equivalent acceleration takes into account the duration of the 
shaking along with the amplitude.  However, we can expect the two parameters to be correlated, 
as we are using the same elastic SDOF system to derive both these parameters.  This correlation 
is evident in the case shown in Figure 3.2, where a very large portion of the final input energy-
equivalent acceleration has already accumulated by the time (3.5s) that the maximum value of 
the pseudo-spectral acceleration response occurred. 

Figure 3.7 shows a plot of Ai(T1) versus Sa(T1) for a period of 2.3 sec (the fundamental period, 
T1, of the 9-story steel building considered in this study that is discussed in Chapter 4).  Clearly, 
Sa(T1) and Ai(T1) are seen to be highly correlated at this period.  In general (see Figure 3.8), there 
is a strong correlation between Sa and Ai at most periods.  This correlation is lowest at short 
natural periods (less than about 0.3 seconds) and it rises above 0.95 for longer periods.  The high 
correlation suggests that the joint use of both Sa and Ai in the same response prediction model 
may only be justified, if at all, for short-period structures (when the correlation is lower and, 
therefore, the joint predictive power is potentially higher). 

 

 
Figure 3.7 Input energy-equivalent acceleration (Ai) values plotted versus spectral acceleration 
(Sa) at the fundamental period of the 9-story steel building used in this study (T1 = 2.3 sec). 
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Figure 3.8 Correlation coefficient between input energy-equivalent acceleration (Ai) and spectral 
acceleration (Sa) versus natural period. 

 

3.4  INELASTIC PARAMETERS 

3.4.1  INTRODUCTION 

Inelastic counterparts to the elastic spectral acceleration (Sa) and input energy-equivalent 
acceleration (Ai) ground motion parameters compared in the preceding section, as well as the 
inelastic absorbed energy-equivalent acceleration (Aa), can also be computed via SDOF time-
history analysis (Equations 3.1 and 3.2).  Given that we aim to predict the nonlinear structural 
response from GMPs, it is logical to consider these inelastic counterparts, denoted Sa

I, Ai
I, and Aa

I.  
Inelastic GMPs such as these are not widely used in current practice mainly because few 
attenuation relations for such inelastic parameters are available.  The lack of available attenuation 
equations hinder, for the time being, the use of some of these parameters in a Probabilistic Seismic 
Hazard Analysis.  An attenuation relation for Sa

I (actually, for the ratio of inelastic to elastic 
spectral displacement) is under development at Stanford University (Tothong & Cornell, 2004).  
Attenuation relations for Ai

I, and Aa
I are also available in the literature (see, for example, Chou and 

Uang, 2000). 

In this research, a bilinear inelastic oscillator with no degrading strength and stiffness, and with 
identical loading and unloading slopes, is used to compute the inelastic GMPs.  This bilinear 
oscillator is parameterized by a vibration period (T) and damping ratio (ζ ), just like its elastic 
counterpart, but it also requires the specification of a yield displacement (dy) and a post-yield 
strain-hardening ratio (α).  We set α to be 5% in order to be consistent with the Sa

I attenuation 
relation mentioned above (i.e., Tothong & Cornell, 2004).  An appropriate dy level can be 
estimated from a nonlinear static pushover analysis of the structure of interest (e.g., Luco, 2002), 
but here we have based dy on the inter-story (and roof) drift results for the ductile and elastic 
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models of each of the three steel buildings considered in this study (described in Chapter 4).  For 
example, the ratio of the inter-story drifts from the ductile model to that from the elastic model, 
both computed at the first story of the 3-story building considered, is plotted in Figure 3.9 against 
the elastic spectral displacements for the full set of 140 ground motions.  The spectral displacement 
at which these ductile-to-elastic ratios deviate significantly from unity provides an estimate of dy, 
which in this case is about 6 cm.  This value of 6 cm, then, is treated as the displacement-based 
“fundamental strength” of the ductile (and brittle) 3-story building. 

 

 

Figure 3.9  The ratio of peak interstory drifts from the ductile model to that from the elastic 
model at the first story of the 3-story building, plotted versus the corresponding elastic spectral 
displacements for the 140 ground motions.  Note that the ductile model drift begins to deviate 
significantly from that of the elastic model at a spectral displacement of about 6 cm, namely at 
the "fundamental strength" of the ductile building model. 

 

3.4.2  COMPARISON OF Sa
I AND Sa 

As an example, inelastic spectral accelerations (Sa
I) for the 140 ground motions used in this study 

are plotted against the corresponding elastic spectral accelerations (Sa) in Figure 3.10.  The period 
considered is the fundamental period of the 3-story building (T = 1.0 sec), and the yield 
displacement is also that for the 3-story building (dy = 6 cm).  Below the pseudo spectral 
acceleration associated with dy (i.e., Sa=dy*(2π/T)2=0.24g) the two GMPs are identical, as 
expected.  At higher ground motion levels, Sa

I is increasingly different from Sa, although the two 
GMPs are still highly correlated (as discussed further in Chapter 5). 
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Figure 3.10  A comparison of the inelastic (ordinate) versus elastic (abscissa) spectral 
accelerations (both in units of g) at the fundamental period and strength of the 3-story building, 
for the 140 ground motions considered. 

 

3.4.3  COMPARISON OF Ai
I AND Sa

I 

We saw in Section 3.3.4 that the elastic input energy-equivalent acceleration (Ai) and the elastic 
spectral acceleration (Sa) are strongly correlated.  As an analogous example, here the inelastic input 
energy-equivalent accelerations (Ai

I) for the 140 ground motions are plotted in Figure 3.11 against 
the inelastic spectral accelerations (Sa

I), again for the fundamental period and strength of the 3-
story building (i.e., T = 1.0 sec and dy = 6 cm).  Similar to what was observed for their elastic 
counterparts, the two inelastic GMPs are highly correlated, even more so than Sa

I and Sa at the 
larger ground motion levels.  This observation was also found to hold for the fundamental periods 
and strengths of the 9-story and 20-story buildings considered. 
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Figure 3.11  A comparison of the inelastic input energy-equivalent acceleration (ordinate) versus 
inelastic spectral acceleration (abscissa) (both in units of g) at the fundamental period and 
strength of the 3-story building, for the 140 ground motions considered. 

 

3.4.4  COMPARISON OF Aa
I AND Ai

I 

Recall (from Section 3.3.2) that the absorbed energy for an elastic oscillator is simply proportional 
to the elastic spectral acceleration (e.g., Chou & Uang, 2000), so Aa is not considered in this study.  
As demonstrated in Figure 3.12, however, again for the fundamental period and strength of the 3-
story building and the 140 ground motions, the inelastic absorbed energy-equivalent acceleration 
(Aa

I, above the spectral acceleration corresponding to dy) is not simply proportional to Sa, although 
the two are strongly correlated.  The correlation between Aa

I and Ai
I is also very strong, as 

illustrated in Figure 3.13, especially at larger ground motion levels where kinetic and strain 
energies are relatively less important compared to hysteretic energy and, as a result, the absorbed 
energy there is close to the input energy.  Despite the strong correlation of the inelastic energy-
equivalent accelerations with inelastic Sa, one of these, Aa

I, is considered in Chapter 5 as an 
additional GMP in studying correlation with the nonlinear structural response of buildings. 
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Figure 3.12  A comparison of the inelastic absorbed energy-equivalent acceleration (ordinate) 
versus elastic spectral acceleration (abscissa) (both in units of g) at the fundamental period and 
strength of the 3-story building, for the 140 ground motions considered. 

 

Figure 3.13  A comparison of the inelastic absorbed energy-equivalent acceleration (ordinate) 
versus inelastic input energy-equivalent acceleration (abscissa) (both in units of g) at the 
fundamental period and strength of the 3-story building, for the 140 ground motions considered. 



 24

CHAPTER 4 – DESCRIPTION OF THE STRUCTURES AND THE NONLINEAR 
DYNAMIC ANALYSES 

 

4.1 INTRODUCTION 

The structures used in this research are the 3-story, 9-story, and 20-story steel moment-resisting 
frame (SMRF) buildings designed for Los Angeles conditions by practicing engineers as part of 
the SAC Steel Project (Phase II). The building designs were carried out according to pre-
Northridge earthquake practices (i.e., UBC, 1994).  For the purpose of our analyses, centerline 
two-dimensional models of each structure are prepared in RUAUMOKO (Carr, 2003) and in 
DRAIN-2DX (Prakash et al., 1993)1.  Reflecting the state of design practice before and after the 
1994 Northridge earthquake, the SMRF buildings are modeled with brittle and with ductile 
connections, respectively.  An elastic model of each building is also considered, as a point of 
reference.  Only details relevant to the modeling of the structures for the purposes of the dynamic 
analyses are presented here. A complete description of the structures can be found in FEMA 
355C (2000).  

 

4.2 DESCRIPTION OF THE STRUCTURES 

All of the buildings were designed as office buildings founded on stiff soil, following the local 
code provisions (i.e., UBC 1994).  The design of each building was governed by seismic loading 
considerations.  Perimeter steel special moment-resisting frames were designed to carry all of the 
design lateral loads.  The layout of the moment-resisting frames for the three structures is shown 
in Figure 4.1.  Note that all of the buildings are relatively symmetric in plan in the two principal 
directions. 

For the 3-story building, three bays of moment-resisting frames were provided in each of the four 
perimeter frames. These did not include the corner columns, so biaxial bending does not occur in 
any of the columns. For the 9-story building, each corner column has only one moment frame 
connection, also to prevent weak-axis bending. For the 20-story building, the entire frame was 
modeled as moment-resisting and box columns were used in the corners to resist biaxial bending 
under seismic loading. 

The plan view of a typical story and the elevation of each building are shown in Figure 4.2. The 
3-story building has no basement, the 9-story building has one basement level, and the 20-story 
building has two basement levels, each with a height of 12 feet. The column bases of the 3-story 
building are fixed. The column bases of the 9-story and 20-story buildings are pinned, but lateral 

                                                           
1  Note that it became necessary during the course of this research to use DRAIN-2DX, in addition to 
RUAUMOKO, in order to adequately model brittle connection behavior (as described later).  The use of both 
programs also allowed us to cross-check the analysis results that assumed ductile or elastic connection behavior. 
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movement at the basement and ground levels is restrained due to the presence of a reinforced 
concrete wall.  

 

Figure 4.1 Layout of the three Moment-Resisting Frame Structures (FEMA 355C, 2000). 

 

Figure 4.2 Plan View and Elevation of the three structures (FEMA 355C, 2000). 
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4.3 DESCRIPTION OF THE COMPUTATIONAL MODELS 

Since all of the buildings are relatively symmetric in plan, only half of each structure is 
considered in the analyses. A 2-D centerline model of one of the N-S perimeter frames, carrying 
half the load in that direction, was prepared for each of the structures. A lumped mass model was 
used, and Rayleigh damping was assumed in the dynamic analysis. The time step used in the 
analyses was varied until a stable converged solution was obtained. In general, a time step of 
0.001 sec was necessary.   

The gravity loads used for the analysis of the frames were based on details provided in FEMA 
355C (2000). The distribution of the floor dead loads (DL) and live loads (LL) is given as 
follows: 

 

Load Description Load (psf) 

Floor dead load for weight calculations  96 
Floor dead load for mass calculations  86 
Roof dead load excluding penthouse  83 

Penthouse dead load  116 
Reduced live load per floor and for roof  20 

 
Table 4.1 Distribution of gravity loads on the structures. 

 

A load combination of 1.0DL + 0.25LL was used for the gravity loads. Based on these loading 
definitions, the seismic masses (from one-half of the structure) associated with the frames are 
given in Table 4.2 (FEMA 355C, 2000). Note that the mass was applied to only one node at each 
level since the horizontal displacements were coupled at each floor level (under the assumption 
of axially rigid beams). Live loads were not included for the purpose of calculation of the 
masses, but the dead load due to the penthouse was included. 

 

Building Floor Mass (kips-sec2/ft) 

Roof 35.45  3-Story Floor 3 and Floor 2 32.71 
Roof 36.55  

Floor 9 to Floor 3 33.93  9-Story 
Floor 2 34.52  
Roof 20.03  

Floor 20 to Floor 3 18.88  20-Story 
Floor 2 19.31  

 
Table 4.2 Seismic Masses applied in the Computational models of the structures. 
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The yield strengths of the members were taken to be the expected yield strengths for the steel 
used, namely 49.2 ksi for A36 steel and 57.6 ksi for Grade 50 steel. All of the elements were 
modeled with 3% strain hardening. This strain hardening was assumed to be maintained even at 
very large inelastic deformations.  Other simplifications include the following: (i) torsional 
effects due to the penthouse on the roof of each building were ignored, (ii) panel zone 
deformations were not modeled, and (iii) shear deformations in beams and columns were 
ignored. 

The authors are aware that the use of centerline models and other simplifications such as those 
mentioned above may sometimes result in an inaccurate evaluation of the seismic demand for 
SMRF buildings, mostly at the element level but possibly also at the global level.  This often 
happens because simplified modeling assumptions can affect the mechanisms that bring the 
building to collapse (e.g., see Gupta and Krawinkler, 1999).  In our study, however, the focus 
was on developing an improved methodology for estimating structural response and consequent 
losses based on a host of different ground motion parameters rather than on providing the best 
seismic demand evaluation for the three buildings, as one would strive to accomplish in a real-
life practical applications.  The use of more sophisticated models would have increased the 
already considerable computational burden without much added value to the goals of this study. 

4.3.1 BEAMS 

Each beam member is modeled using an elastic central frame element and inelastic plastic hinge 
elements at its ends. The RUAUMOKO program combines the three elements into a single one, 
whereas the three elements are modeled separately in DRAIN-2DX. In either case, the stiffness 
of each plastic hinge is governed by a specified hysteresis rule, either ductile bilinear or brittle 
quadrilinear, as described in the two subsections that follow. The stiffness of the hinge is such 
that the rotation of the hinge together with the rotation associated with the elastic curvature of the 
beam member over the hinge length is assumed to be the same as the rotation associated with the 
curvature over the hinge length with the inelastic properties in the hinge zone. If the hinge is in 
the elastic range, the plastic hinge has an infinite stiffness. No rigid end zones are modeled, and 
panel zone deformations are ignored. Where the connections are moment-resisting, the beam 
member is built into the joint, but where there are pinned connections (e.g., in the 9-story frame), 
the members are connected with pin joints. Axial and shear deformations in the beams are 
neglected. 

4.3.1.1 DUCTILE CONNECTION BEHAVIOR 

In order to model post-Northridge connections, a bilinear ductile hysteresis model is chosen. The 
plastic point hinges at the ends of each beam are rigid-plastic. The overall moment-rotation 
behavior of the beam is described in Figure 4.3, where ko is the initial stiffness and r is the strain 
hardening ratio. As mentioned earlier, an assumed strain-hardening ratio of 3% is maintained 
throughout the hysteresis. The beams yield at the plastic moment, Mp, which is equal to ZFye, 
where Z is the plastic section modulus and Fye is the expected yield strength of the beam 
material. 
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Figure 4.3 Generalized Moment-Rotation Behavior of a Ductile Connection. 

 

4.3.1.2 BRITTLE CONNECTION BEHAVIOR 

In order to model pre-Northridge connections, a quadrilinear brittle hysteresis model is chosen. 
At plastic rotations lower than a specified fracture threshold, the point hinges at the ends of each 
beam are rigid-plastic, as was the case for the ductile connections.  At plastic rotations above the 
threshold, however, the moment capacity drops sharply to a specified fraction of Mp (the plastic 
moment).  This fraction and the plastic rotation threshold are specified according to the FEMA 
351 (2000) guidelines (Section 6.2.1.1.2 on Nonlinear Analysis), assuming a one-to-one 
correspondence between inter-story drifts and plastic rotations.  Specifically, the plastic rotation 
threshold (θSD in FEMA 351) is set according to Equation (4.1), where db is the beam depth (in 
inches). 

0.061 0.0013SD bdθ = −          (4.1) 

The fraction of Mp to which the moment capacity drops upon fracture is set to 20%.  An 
illustration of the moment-rotation behavior of a brittle hinge is provided in Figure 4.4.  As was 
the case for the ductile hinges, the assumed strain-hardening ratio of 3% is maintained 
throughout the hysteresis here as well. 
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Figure 4.4 Generalized Moment-Rotation Behavior of a Brittle Connection. 

 

Brittle connection behavior, as shown in Figure 4.4, was modeled using DRAIN-2DX.  The same 
behavior, however, could not be modeled using RUAUMOKO, even though the program allows 
for strength deterioration.  Hence, for the brittle model of each building, only DRAIN-2DX 
results have been computed. 

4.3.2 COLUMNS 

The columns are modeled using beam-column elements defined in RUAUMOKO and DRAIN-
2DX. A ductile moment-curvature hysteresis similar to that for the beams is also used for the 
columns – i.e., bilinear with 3% strain hardening. The columns are not modeled with any 
strength-degradation or local buckling behavior. A bilinear interaction diagram for axial force 
and moment is used, however, as shown in Figure 4.5, where Py is the axial load capacity equal 
to AFye and Mp is equal to ZFye, while A is the cross-sectional area, Z is the plastic section 
modulus, and Fye is the expected yield strength of the material of the columns. Note that the 
interaction diagram is symmetric about both axes. The equation describing the interaction 
diagram (for strong-axis bending) displayed in Figure 4.5 is as follows: 

( )
                       for 0.15

1.18 1 / otherwise
p y

p y

M P P
M

M P P

<⎧⎪= ⎨
−⎪⎩

         (4.2) 

where M is the bending moment capacity of the column. 
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Figure 4.5 Axial Load-Moment Interaction Diagram used for the Columns. 

 

4.3.3 OTHER MODELING CONSIDERATIONS 

Since the structures are expected to undergo large displacements under seismic loading, it is 
important to consider P-Delta effects and the loads from interior gravity frames. A dummy 
axially rigid column (FEMA 355F, 2000) with zero bending stiffness was included in the model 
to carry the gravity loads associated with the interior gravity frames (for half of the structure). 
The horizontal displacement of the dummy column at each level was coupled with the horizontal 
displacement of the frame at that level. By doing this, the frame experiences P-Delta effects 
caused by the interior gravity frames, but the dummy column does not provide any lateral 
resistance. 

 

4.4 DAMAGE MEASURES 

In this section, we discuss some of the results obtained from the nonlinear dynamic analyses by 
examining various structural response measures. Most of the results are for the ductile 9-story 
building model (computed using RUAUMOKO). The response measures are briefly described 
before presenting the results.  

The structural response measures used in the regression studies to be presented in Chapter 5 are 
(i) the peak inter-story drift ratio (IDR), (ii) the peak roof drift ratio (RDR), (iii) the maximum 
(over all stories) peak inter-story drift ratio (MIDR), and (iv) the average (over all stories) peak 
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inter-story drift ratio (AIDR). In order to better understand the results from the nonlinear analyses 
we have also studied beam moments and other drift measures. Only behavior thought to be 
important for this study is included in the discussion that follows. 

4.4.1  ROOF DRIFT RATIO 

The peak roof drift ratio (denoted as RDR) is defined, for a given time history, as the ratio of the 
peak lateral roof displacement (relative to the ground) to the building height. The RDR demand is 
a measure of the global seismic response of the structure, and is also related to the global 
stability of the moment-resisting frame. Figure 4.6 shows a sample ground acceleration record 
used in this study, and Figure 4.7 shows the time history of the roof drift ratio for the 9-story 
ductile model subjected to this ground motion. Figure 4.8 shows a snapshot of the displaced 
shape of the structure at the time instant when the peak roof drift ratio (RDR) is observed.  

 

 

Figure 4.6 A sample input ground motion (recorded during the Kobe earthquake). 

 

 

Figure 4.7 Time history of the roof drift ratio resulting from the ground motion in Figure 4.6 
applied to the ductile 9-story building model.  
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Figure 4.8 Displaced shape of the ductile 9-story structure at around 11 sec, when the lateral 
roof displacement is at its peak, resulting in a roof drift ratio of approximately 0.018 (see Figure 
4.7). 

 

4.4.2  PEAK INTER-STORY DRIFT RATIOS 

Peak inter-story drift ratio (denoted as IDR) is defined, for a given time history, as the maximum 
(over time) difference between the lateral displacements of two adjacent floors, divided by the 
height of the story.  Note that IDR will generally be closely related to both structural and non-
structural damage experienced in the story during an earthquake. Inter-story drifts also tend to be 
about the same as the rotational demands on nearby beam-column connections. Figure 4.9 shows 
the time history of the inter-story drift ratio at the eighth story of the ductile 9-story building 
subjected to the same ground motion as before (i.e., that shown in Figure 4.6). Figure 4.10 shows 
a snapshot of the displaced structure at the instant when the inter-story drift ratio at the eighth 
story is at its peak, which is equal to 0.048. This peak value is obtained by dividing the 
difference between the displacement at the eighth and seventh stories (i.e., 13.2 in – 5.7 in) by 
the height of the story (i.e., 156 in from Figure 4.2). 
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Figure 4.9 Time history of the inter-story drift ratio at the eighth floor of the ductile 9-story 
building model (denoted θ8 in the figure). 

 

Figure 4.10 Displaced shape of the ductile 9-story structure at around 9 sec, when the inter-story 
drift ratio at the eighth story is at its peak, equal to approximately 0.048. 

 

Figure 4.11 shows plots over the building height of the median IDR when all of the 140 selected 
ground motions are considered, as well as when the near-source and ordinary motions are 
considered separately.  Similarly, Figure 4.12 shows plots of the median peak floor 
displacements over the building height. The median patterns of IDR and floor displacements are 
consistent with each other.  In general, higher IDR values are observed at the eighth and first 
stories of the frame. The displacements at lower floors are smaller compared to the 
displacements at the higher levels. 
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Figure 4.11 Median Peak Inter-story Drift Ratios (IDR) plotted over the building height for the 
ductile 9-story building model. 

 

 

Figure 4.12 Median Peak Floor Displacements plotted over the building height for the ductile 9-
story building model. 
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4.4.3  MAXIMUM AND AVERAGE PEAK INTER-STORY DRIFT RATIOS 

Two parameters summarizing inter-story drifts are commonly used. The maximum (over all the 
stories) peak inter-story drift ratio (denoted as MIDR) is related to local damage in any single 
story throughout the height of the structure. It is also related to stability in terms of story 
collapse. The average (over all stories) peak inter-story drift ratio (AIDR) is related to the overall 
stability of the structure and also to the overall damage. 

4.4.4  DRIFT LOCALIZATION 

If the variation of drift throughout the height of a structure is linear, the value of MIDR is close 
to the value of RDR. Deviations from a linear drift variation can be caused by various factors, 
including the frequency content of the input ground motion. In order to study such behavior, we 
define a drift localization ratio given by the ratio of MIDR to RDR. This parameter is expected to 
be close to unity if the drift varies uniformly over the height of the structure, and significantly 
larger than unity if the drift is mostly concentrated at any one story. Figure 4.13 shows a plot of 
the drift localization ratio against the ratio of the spectral acceleration at the second-mode period, 
Sa(T2), to the spectral acceleration at the fundamental period, Sa(T1). Note that the localization 
ratio deviates significantly from unity as the ratio Sa(T2)/Sa(T1) increases. This suggests that as 
higher modes grow in importance due to the increased input at these shorter periods, the inter-
story drifts tend to be more variable over the height of the structure and are usually more 
localized. 

 

Figure 4.13 Drift localization ratios from all 140 selected ground motions plotted against the 
ratio of second-mode spectral acceleration to first-mode spectral acceleration for the ductile 9-
story building model. 
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At least in terms of elastic drift response, the observed drift localization is consistent with higher-
mode participation, as can be confirmed by studying the first three vibration modes of the 9-story 
building in Figure 4.14.  The corresponding natural vibration periods are also noted in the figure.  
It can be seen that as modes beyond the fundamental begin to participate, deviations from a 
linear variation in drift grow. 

 

Figure 4.14 First three mode shapes and natural vibration periods of the 9-story building. 

 

4.4.5  BEAM BEHAVIOR 

The extent of inelastic behavior in the structures considered can be understood by studying the 
behavior of the beam connections. Figure 4.15 shows a hysteresis plot for a typical ductile 
connection obtained from the nonlinear dynamic analyses. Note that the strain hardening is 
maintained even at large rotations. This assumption is not very realistic and the results presented 
need to be interpreted with this consideration in mind. 
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Figure 4.15 Hysteresis plot for a typical ductile connection obtained from a single nonlinear 
dynamic analysis of the 9-story building. 

 

Beam-end moments at each floor, normalized with respect to the corresponding plastic moments, 
are also studied. Figure 4.16 shows a plot of median values of these normalized beam moments 
over the height of the 9-story building. The median values are based on the entire set of ground 
motions, as well as on the ordinary and near-source ground motion sets considered separately, 
and take into account all of the beam ends on a floor. These normalized moments provide an 
indication of the extent of yielding that occurs in the beams at each floor. Yielding in the beams 
can be followed by large inelastic rotations at the connections. As the moments in the beams 
increase due to strain hardening, the demands on the columns increase, which can cause the 
columns to yield and bring about larger drifts in some stories. Figure 4.17 shows time histories of 
the normalized beam moments at the third and the eighth floor and the corresponding normalized 
column moments above the joints. The beam moments at the eighth floor are as much as 3 times 
the plastic moment, causing yielding in the columns. The moments at the third floor reach a 
maximum of 1.5 times the plastic moment; as a result, there is no yielding in the columns at that 
floor. Figure 4.18 shows the corresponding time histories of inter-story drift ratio (IDR) at the 
third and the eighth stories. The IDR at the eighth story is as high as 5%, whereas that at the third 
story is only 2% for the particular ground motion record considered here. 

Rotation  [rad] 
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Figure 4.16 Median normalized peak beam moments at each floor plotted over the building 
height for the ductile 9-story building model. 

 

 

Figure 4.17 Time histories of member-end moments at the third and eighth floors of the 9-story 
building from a single nonlinear dynamic analysis. 
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Figure 4.18 A comparison of the time histories of inter-story drift ratios at the eighth and the 
third stories of the ductile 9-story building for the same ground motion input considered in 
Figure 4.17. 

 

4.5 RELATIONSHIP BETWEEN STRUCTURAL RESPONSE MEASURES AND 
GROUND MOTION PARAMETERS 

 Before formally presenting the method for evaluating the extent of correlation between structural 
response and ground motion intensity measures, let us examine the relationship between these 
variables graphically. Figures 4.19 through 4.21 show plots of MIDR and RDR for the three 
ductile building models (computed using RUAUMOKO) versus the fundamental period spectral 
acceleration, Sa(T1), in each case. The data points shown on each plot result from nonlinear 
dynamic analyses with all 140 selected ground motion records. Note that both of the response 
measures for the 3-story model are highly correlated with Sa(T1), even in the nonlinear range 
(i.e., at drift ratios above 0.01, approximately). However, the plots of MIDR versus Sa(T1) for the 
9-story and 20-story models suggest a greater amount of variability compared to the plots of 
RDR versus Sa(T1). This is due to the contribution of higher modes to the response of mid-rise 
and high-rise buildings, especially in localized parts of such structures. 
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Figure 4.19 Plots of MIDR and RDR vs. the fundamental period spectral acceleration for the 
ductile 3-story model. 

 

 

Figure 4.20 Plots of MIDR and RDR vs. the fundamental period spectral acceleration for the 
ductile 9-story model. 
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Figure 4.21 Plots of MIDR and RDR vs. the fundamental period spectral acceleration for the 
ductile 20-story model. 

 

Various functional forms can be employed to describe the relationship between response 
measures, such as MIDR and RDR, and ground motion parameters, such as Ai and Sa. Given the 
practically linear log-log relationship observed between MIDR or RDR and Sa, we will employ a 
power law format in the regression analyses that will relate the response measures, Y, to the 
ground motion intensity measures, X. This is discussed in Chapter 5. 

 

4.6 CONCLUDING REMARKS 

A description of the structures chosen for the study was presented and details related to the 
computational models for the dynamic analyses were discussed. Elastic, ductile, and brittle 
computational models for the 3-story, 9-story, and 20-story structures have been analyzed for the 
140 ground motion records, and various response measures have been computed. In particular, 
the peak inter-story drift ratios at all stories and the peak roof drift ratio are of interest. Whereas 
the response of the 3-story structure is mainly governed by its first mode, higher modes have a 
significant influence on the behavior of the 9- and 20-story structures. In the next chapter, 
regression analyses relating the computed response measures to the ground motion parameters 
are presented. The use of these regression results in illustrative loss estimation calculations is 
presented in Chapter 6. 
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CHAPTER 5 – MULTIVARIATE MULTIPLE LINEAR REGRESSION ANALYSES 

 

5.1 INTRODUCTION 

An important goal of engineers in seismically active regions is to be able to estimate likely 
damage and monetary losses that might result during an earthquake. Accordingly, our interest 
here is in predicting structural response measures (such as inter-story drift ratios), which can be 
related to damage and monetary loss, directly from ground motion parameters. The monetary 
loss due to damage depends on several factors – e.g., damage to connections, damage to 
structural members, damage to partitions, damage to equipment, etc. – all of which may vary 
from story to story.  The accuracy of our assessment of monetary losses, therefore, is expected to 
improve if we use a vector of structural response measures that captures the drifts at each story 
of the given building. Furthermore, several studies have suggested that the nonlinear response of 
structures to ground motion may be explained better by using more than a single ground motion 
parameter (typically spectral acceleration). By including more information about the ground 
motion via a vector of ground motion parameters, one might expect to reduce the uncertainty 
involved in prediction of structural response. In order to evaluate the predictive power of vector-
valued ground motion parameter sets in estimating vector-valued structural response measures, 
we will make use of multivariate multiple linear regression (MMLR). 

A multivariate multiple linear regression (MMLR) analysis can be used to investigate the 
relationship between a vector of response (or "dependent") variables and a vector of predictor (or 
"independent") variables. MMLR is similar to the more widely used multiple linear regression 
(MLR), where a single response is related to several predictor variables. Computationally, 
MMLR yields the same regression model coefficients and the same conditional variances as one 
would estimate with individual MLR computations for each of the response variables separately. 
However, since the various response parameters are in general correlated, we need to carry out a 
MMLR if we wish to get information on the correlation between the different response variables 
conditioned on the predictor variables. This information on the cross-correlation among the 
response variables is needed in order to accurately estimate damage and losses that, in general, 
might be dependent on several response measures jointly. 

 

5.2 METHODOLOGY 

Suppose our interest is in the prediction of an n-dimensional response vector, Y, from an r-
dimensional ground motion parameter vector, X.  A multivariate multiple regression model can 
be described as follows (see, for example, Johnson and Wichern, 2002): 

∏
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=    for i = 1 to n.                                   (5.1) 
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where Yi is the ith component of the response variable vector, Y; each Xj is a predictor variable 
(GMP) that is a part of the vector, X; b0i and bji (with j = 1 to r) are model parameters (regression 
coefficients) to be determined; and εi is an error/residual term associated with each response 
variable, Yi.  Each response variable is thus assumed to follow its own regression model (we 
have chosen a power law, or log-log linear format in Equation 5.1), but these response variables 
in general may be correlated. In order to perform multivariate multiple linear regression, we take 
the natural log of both sides of Equation 5.1 and form the following equation written in matrix 
form:  

θ = Zb + lnε                                                           (5.2) 

where θ = lnY, Z = [1  lnX] and 
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The regression is said to be linear because the regression equation is linear in the coefficients, bji. 
Note from Equation 5.2 that σlnY|X is equal to σlnε. Each error term, lnεi, is typically assumed to 
be normally distributed.  Also, note that E(lnε) = 0, while the covariance matrix Cov(lnε) 
(denoted by Σ here) will be estimated. The design matrices for m observations are formulated as 
follows where the number of rows in θ and in Z is equal to the number of observations:  
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The unbiased least squares estimator of b, i.e., β̂ , is given by the equation 

θ′′=β − ZZZ 1)(ˆ                                                         (5.5) 

where Z’ is the transpose of Z. The unbiased least squares estimator of the covariance matrix, Σ, 
is given by the equation 
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5.3 VECTORS OF STRUCTURAL RESPONSE MEASURES 

Numerous studies have suggested that damage to structural components, as well as damage to 
many types of non-structural components (e.g., partitions, windows, interior doors and plaster 
ceilings), is strongly correlated with peak inter-story drift ratios (e.g., Gupta and Krawinkler, 
1999; Taghavi and Miranda, 2003).  Monetary losses have often been related to a single scalar 
drift measure that is a fairly good indicator of overall damage to the structure (e.g., MIDR in 
Miranda and Aslani, 2003). However, losses that occur in an earthquake can be related to 
damage at various locations in a building, making it difficult to estimate such losses using a 
single response measure. The accuracy in estimation of losses might improve significantly if we 
use more than a single response measure to capture the different aspects of damage to the 
structure that are in turn related to losses. Specifically, in our study, we consider two different 
vectors of response measures. The first one is comprised of the peak inter-story drift ratios 
(IDRs) at all the stories in the building. The other is a vector of MIDR, AIDR, and RDR. We have 
selected these vectors because we believe that the joint knowledge of the response measures in 
each of these vectors can help us estimate losses with higher levels of confidence than any of the 
measures singly. In summary, the response measures in the vector, Y, include: 

Vector 1: 

• IDRj (Peak inter-story drift ratio for each story j) for j = 1 to number of stories in the 
building. 

Vector 2: 

• RDR (Peak roof drift ratio) 

• MIDR (Maximum inter-story drift ratio) 

• AIDR (Average inter-story drift ratio) 

In the results presented later in this chapter (as well as in Chapter 6), a single scalar response 
measure, namely RDR, is also considered for comparison purposes. 

 

5.4 VECTORS OF GROUND MOTION PARAMETERS 

As detailed in the subsections below, the vectors of GMPs (i.e., X's) chosen are motivated by (i) 
the modal analysis approach to computing the response of an elastic structure to a given ground 
motion, (ii) the potential for energy-based GMPs to improve the prediction of nonlinear 
structural response, and (iii) the use of inelastic GMPs that consider the overall strength of the 
given structure.  The GMPs investigated are grouped into three different categories, namely 
those that are (i) elastic and associated with the first mode of vibration, (ii) elastic but consider 
multiple modes of vibration, and (iii) inelastic for the first mode and elastic for higher modes.  
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Energy-based and displacement-based GMPs are considered within all three categories, as 
explained below. 

5.4.1 FIRST-MODE ELASTIC GMP'S 

Since the dynamic response of a structure to ground shaking is often dominated by its first mode 
of vibration, it is important to include a first-mode-based parameter in any vector of ground 
motion parameters.  Currently the most widely used GMP is the elastic spectral acceleration at 
the fundamental period of the structure (and for a damping ratio of 5%), denoted here as Sa(T1).  
Recall that the fundamental periods of vibration for the 3-story, 9-story, and 20-story SMRF 
buildings considered in this study were 1.0, 2.3, and 4.0 seconds, as shown in Figures 4.19 to 
4.21, respectively.  In this study, the results of regressing different structural response measures 
on Sa(T1) alone will serve as a baseline for comparing the results obtained using vectors of 
GMPs. 

As described in Chapter 3, another first-mode-based GMP is the elastic input energy-equivalent 
acceleration (again at the fundamental period of the structure and for 5% damping), denoted 
Ai(T1).  Although Sa(T1) and Ai(T1) are based on the response of the same elastic oscillator, Ai(T1) 
implicitly includes information regarding the duration of the ground motion and structural 
response, unlike Sa(T1).  Hence, the results of regressing structural response measures on Ai(T1) 
alone are also investigated in this report. 

In addition to regressing structural response measures on Sa(T1) and Ai(T1) individually, these 
two GMPs are considered jointly in a vector GMP in order to evaluate if the combination can 
lead to a beneficial improvement in the quantification of the damage potential of ground 
motions.  Recall from Section 3.3.4, however, that Sa(T1) and Ai(T1) are highly correlated (except 
perhaps at short T1 values).  As a result, it is difficult to distinguish between the two GMPs in the 
regression analyses (i.e., the problem known as multicollinearity in statistical regression jargon 
may arise).  In this study, therefore, Ai(T1) is divided by Sa(T1) before considering it as the 
second element of the vector GMP with Sa(T1).  As illustrated in Figure 5.1, the result is to 
reduce the correlation between the two elements of the vector GMP, while still maintaining 
information regarding both Sa(T1) and Ai(T1) in the vector GMP. 

In summary, the first-mode elastic GMPs considered are: 

• Sa(T1) 

• Ai(T1) 

• { Sa(T1),  Ai(T1) / Sa(T1\) } 
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Figure 5.1 Illustration of the strong correlation between Sa(T1) and Ai(T1) (top), and the weaker 
correlation between Sa(T1) and Ai(T1) / Sa(T1) (bottom), for T1=1.0 sec. 
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5.4.2 MULTI-MODE ELASTIC GMP'S 

It is understood that, for some structures, the contribution to response from higher modes can be 
significant. Very often, though, the response will be mainly dominated by the first few modes. 
Accordingly, we consider several vector GMPs that include spectral acceleration and/or input 
energy-equivalent acceleration for up to four modes.  In all of these vectors, either Sa(T1) or 
Ai(T1) is the first element. 

Since modal analysis for elastic structures involves computation of the response to a given 
ground motion via a weighted (by participation factors) combination of the spectral accelerations 
at the first few modal periods, we first consider vector GMPs of spectral accelerations.  The 
number of modal periods included in the vector is incrementally increased from two until 
additional modes do not improve the prediction (or reduce the dispersion) of structural response, 
as will be demonstrated later in this chapter. The values of the first few vibration periods of the 
three SMRF buildings are summarized in Table C.1 in Appendix C. 

Just as was the case with Sa(T1) and Ai(T1), the spectral accelerations at consecutive modal 
periods (e.g., Sa(T1) and Sa(T2)) can be highly correlated, especially if the periods are closely 
spaced, as demonstrated in Figure 5.2.  Hence, before regressing structural response measures on 
vectors of spectral accelerations, we again normalize each higher-mode spectral acceleration by 
the spectral acceleration at the previous (lower) modal period.  Thus, we will use Sa(T2)/Sa(T1), 
Sa(T3)/Sa(T2), etc. in our regressions.  Note that if we were to instead divide all of the higher-
mode spectral accelerations by Sa(T1), the (strong) correlation between, for example, 
Sa(T3)/Sa(T1) and Sa(T2)/Sa(T1) would be the same as the original correlation between Sa(T3) and 
Sa(T2). 

Similar to the GMP vectors comprised of spectral accelerations, we consider analogous vectors 
involving input energy-equivalent accelerations.  As will be demonstrated with the regression 
results that follow, however, replacing spectral acceleration with input energy-equivalent 
acceleration at the same period does not appear to improve the prediction of structural response.  
Hence, for the most part we only check whether adding to the vector GMP the input energy-
equivalent acceleration at the "last" modal period considered in the regression model improves 
the prediction of structural response.  The last modal period considered is the one whose 
additional consideration in the spectral acceleration GMP vector does not improve the prediction 
of the response measures.  As before, in order to reduce correlation with other elements of the 
vector GMP, this higher-mode input energy-equivalent acceleration is normalized, as shown 
below.  

In summary, the multi-mode elastic GMPs considered are: 

• { Sa(T1),  Sa(T2)/Sa(T1),  … ,  Sa(Tn)/Sa(Tn-1) } 

• { Ai(T1),  Ai(T2)/Ai(T1),  … ,  Ai(Tn)/Ai(Tn-1) } 

• { Sa(T1),  Sa(T2)/Sa(T1),  … ,  Ai(Tn)/Sa(Tn-1)  or  Ai(Tn)/Sa(Tn) } 
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Figure 5.2 Illustration of the strong correlation between Sa(T1), Sa(T2), and Sa(T3) (left side), and 
the weaker correlation between Sa(T1), Sa(T2)/Sa(T1), and Sa(T3)/Sa(T2) (right side), for T1=1.0 
sec, T2=0.3 sec, T3=0.2 sec., the first three vibration periods of the 3-story SMRF building. 
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5.4.3 FIRST-MODE INELASTIC AND HIGHER-MODE ELASTIC GMP'S 

In an attempt to improve the prediction of nonlinear structural response, we also consider 
inelastic analogies to spectral acceleration and input or absorbed energy-equivalent acceleration, 
which are all described in detail in Section 3.4.  Again, because the dynamic response of a 
structure to ground shaking is often dominated by its first mode of vibration, it is difficult to 
establish the yield displacement (dy) associated with higher modes. Hence, the inelastic GMPs 
considered all correspond to the first modal period – i.e., Sa

I(T1), Ai
I(T1), and Aa

I(T1). The values 
of dy for the three buildings considered in this study are reported in Table C.1 in Appendix C. 

As demonstrated in Chapter 3 (Figures 3.10-12), the three inelastic first-mode GMPs are strongly 
correlated with Sa(T1), and therefore they themselves should not be included alongside Sa(T1) in a 
vector GMP (in order to avoid unstable regression results due to multicollinearity of the 
predictors).  Accordingly, we normalize the three inelastic GMPs by Sa(T1) and include them, 
individually, with the vectors of multi-mode elastic GMPs described in the preceding subsection. 

In summary, the first-mode inelastic and higher-mode elastic GMPs considered are: 

• { Sa(T1),  Sa(T2)/Sa(T1),  … ,  Sa(Tn)/Sa(Tn-1),  Sa
I(T1)/Sa(T1) } 

• { Sa(T1),  Sa(T2)/Sa(T1),  … ,  Sa(Tn)/Sa(Tn-1),  Ai
I(T1)/Sa(T1) } 

• { Sa(T1),  Sa(T2)/Sa(T1),  … ,  Sa(Tn)/Sa(Tn-1),  Aa
I(T1)/Sa(T1) } 

 

5.4.4 OTHER COMBINATIONS OF GMP'S 

It is obvious that numerous other vector combinations of GMPs can be considered, but those 
listed above are thought to be the most likely to improve the prediction of nonlinear structural 
response.  Using the GMP and nonlinear structural response data provided in Appendix C with 
the MMLR (multivariate multiple linear regression) methodology outlined above, other vector 
GMPs can readily be explored. 

 

5.5 REGRESSION RESULTS 

The vectors of response measures obtained from nonlinear dynamic analyses of each of the 
structures are regressed on the different GMP sets detailed above using the multivariate multiple 
linear regression (MMLR) method described in Section 5.2. From the regression analyses we 
obtain unbiased estimates of the model coefficients, bji for j = 0 to r (see Equation 5.5), and the 
covariance matrix of the regression residuals, Σ (see Equation 5.6). From the estimated 
covariance matrix, we get the individual standard deviations, σlnεi, and the correlation 
coefficients among the residuals of the n response measures included in the vector Y. The 
standard deviations of the residuals are directly related to uncertainty in our predictions of each 
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Yi response using the ground motion parameters in X, and hence they are used to compare the 
predictive power of the different choices of GMP vectors.  

The regression results are presented here separately for each of the three categories of ground 
motion parameters considered: (i) first-mode elastic, (ii) multi-mode elastic, and (iii) first-mode 
inelastic and higher-mode elastic GMPs.  Within each of the three categories, results are 
presented for the structural response measures, (i) {MIDR, AIDR, RDR}, (ii) IDRs at all stories 
(also a vector), and (iii) RDR (a scalar).  The specific combinations considered and the 
subsections where they are discussed are included in the list below: 
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Subsection Ground Motion Parameter (GMP) 
Structural 
Response 
Measures 

Building 
Models 

5.5.1.1 Sa(T1) IDR Ductile 9-Story 
5.5.1.2 Sa(T1) {MIDR, 

AIDR, 
RDR} 

Ductile 9-Story 

5.5.1.3 Ai(T1) vs. Sa(T1) IDR Ductile 3-, 9-, 
and 20-Story 

5.5.1.4 Ai(T1) {MIDR, 
AIDR, 
RDR} 

Ductile 3-, 9-, 
and 20-Story 

5.5.1.5 {Sa(T1), Ai(T1)/Sa(T1)} IDR and 
{MIDR, 
AIDR, 
RDR} 

Ductile 3-, 9-, 
and 20-Story 

5.5.2.1 {Sa(T1), Sa(T2)/Sa(T1)} IDR Ductile 9-Story 
5.5.2.2 {Sa(T1), Sa(T2)/Sa(T1)} {MIDR, 

AIDR, 
RDR} 

Ductile 9-Story 

5.5.2.3 {Ai(T1), Ai(T2)/Ai(T1)} vs. {Sa(T1), 
Sa(T2)/Sa(T1)} 

IDR Ductile 3-, 9-, 
and 20-Story 

5.5.2.4 {Ai(T1), Ai(T2)/Ai(T1)} vs. {Sa(T1), 
Sa(T2)/Sa(T1)} 

{MIDR, 
AIDR, 
RDR} 

Ductile 3-, 9-, 
and 20-Story 

5.5.2.5 {Sa(T1), Ai(T2)/Sa(T1)} and {Sa(T1), 
Ai(T2)/Sa(T2)} 

IDR and 
RDR 

Elastic, Ductile, 
and Brittle 3-
Story 

    " {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2)} and  
{Sa(T1), Sa(T2)/Sa(T1), Ai(T3)/Sa(T3)} 

IDR and 
RDR 

Elastic, Ductile, 
and Brittle 9-
Story 

    " {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2)},  
{Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2), 
Sa(T4)/Sa(T3)}, and  
{Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2), 
Ai(T4)/Sa(T4)} 

IDR and 
RDR 

Elastic, Ductile, 
and Brittle 20-
Story 

5.5.3.1 {Sa(T1), …, Sa(Tn)/Sa(Tn-1), Sa
I(T1)/Sa(T1)} IDR and 

RDR 
Ductile and 
Brittle 3-, 9-, and 
20-Story 

5.5.3.2 {Sa(T1), …, Sa(Tn)/Sa(Tn-1), Ai
I(T1)/Sa(T1)} 

and {Sa(T1), …, Sa(Tn)/Sa(Tn-1), 
Aa

I(T1)/Sa(T1)} 

IDR and 
RDR 

Ductile and 
Brittle 3-, 9-, and 
20-Story 
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5.5.1 REGRESSIONS ON FIRST-MODE ELASTIC GMP'S 

5.5.1.1 USE OF Sa(T1) IN PREDICTING IDR'S FOR THE DUCTILE 9-STORY 
BUILDING 

The regression coefficients and the standard deviations of the errors obtained from regressing the 
vector of response measures IDRi (i = 1 to 9) on Sa(T1) alone are given in Table 5.1 for the 
ductile 9-story building, while the error correlations for the nine response measures are given in 
Table 5.2. Analogous results for the 3- and 20-story ductile buildings are provided in Appendix 
A (Tables A.1 to A.2 and A.13 to A.14, respectively). 
 
 

IDRi b0i b1i σlnε 
1 0.060 0.848 0.215 
2 0.054 0.877 0.175 
3 0.054 0.892 0.145 
4 0.055 0.877 0.164 
5 0.054 0.864 0.181 
6 0.053 0.847 0.233 
7 0.059 0.836 0.284 
8 0.059 0.784 0.355 
9 0.044 0.711 0.392 

Table 5.1 Regression coefficients and standard deviations of the residuals for the ductile 9-story 
building peak inter-story drift ratios regressed on Sa(T1). 

 

ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.93 0.74 0.63 0.75 0.84 0.80 0.80 0.77 
2 * 1.00 0.82 0.59 0.65 0.74 0.75 0.73 0.67 
3 * * 1.00 0.77 0.63 0.67 0.63 0.60 0.59 
4 * * * 1.00 0.84 0.65 0.48 0.51 0.55 
5 * * * * 1.00 0.84 0.65 0.68 0.70 
6 * * * * * 1.00 0.91 0.88 0.86 
7 * * * * * * 1.00 0.96 0.90 
8 * * * * * * * 1.00 0.96 
9 * * * * * * * * 1.00 

Table 5.2 Error correlation matrix for the ductile 9-story building peak inter-story drift ratios 
regressed on Sa(T1). 

It appears from the results in Table 5.1 that IDR values in the lower floors (below, say, the 5th 
floor) are well predicted by the first-mode Sa(T1). At higher floors, however, the standard 
deviations of the residuals are larger, indicating that Sa(T1) alone is ineffective in predicting IDR 
values there. Note that the increase in the response measures with Sa(T1) is less than proportional, 
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i.e., b1i is less than unity for each Yi.  This means that the equal displacement rule (Veletsos and 
Newmark, 1960; Veletsos et al., 1965) is not very accurate for this 9-story building. 

As might be expected, the residuals from the IDR values at adjacent stories are highly correlated 
with each other, as can be confirmed from Table 5.2. Certain other pairs of residuals are also 
highly correlated with each other – e.g., residuals of the first and the sixth story IDR values. 
These correlations among residuals of inter-story drifts at non-adjacent stories likely result from 
the contribution to these drifts by factors other than the first-mode type of vibration (i.e., 
contribution from higher modes). 

5.5.1.2 USE OF Sa(T1) IN PREDICTING {MIDR, AIDR, RDR} FOR THE DUCTILE 9-
STORY BUILDING 

The regression coefficients and the standard deviations of the errors obtained from regressing the 
vector of response measures {MIDR, AIDR, RDR} on Sa(T1) alone are given in Table 5.3 for the 
ductile 9-story building, while the error correlations for the response measures are given in Table 
5.4. Analogous results for the 3- and 20-story ductile buildings are provided in Appendix A 
(Tables A.19 to A.20 and A.31 to A.32, respectively). 

 

Yi b0i b1i σlnε 
MIDR 0.064 0.796 0.336 
AIDR 0.055 0.832 0.228 
RDR 0.047 0.922 0.133 

Table 5.3 Regression coefficients and standard deviations of the residuals for the ductile 9-story 
building response regressed on Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.47 
AIDR * 1.00 0.57 
RDR * * 1.00 

Table 5.4 Error correlation matrix for the ductile 9-story building response regressed on Sa(T1). 

The error correlation matrix suggests that the residuals for the response measures MIDR and 
AIDR are highly correlated with each other, but not as highly correlated with RDR.  We expect 
this, due to the influence of the higher modes on the response measures MIDR and AIDR.  As 
evidenced by its relatively low σlnε (in Table 5.3), RDR is quite adequately predicted by the first-
mode-based parameter Sa(T1) alone, and hence the residuals for RDR are not as highly correlated 
with MIDR and AIDR. 
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5.5.1.3 USE OF Ai(T1) VS. Sa(T1) IN PREDICTING IDR'S 

Here, the results of regressing vectors of peak inter-story drift ratios (IDRs) on the scalar ground 
motion parameter Ai(T1) are compared to the results of regression on Sa(T1).  Figure 5.3 shows 
plots of the IDR values for the ductile 9-story building against the fundamental-period spectral 
acceleration, Sa(T1). Figure 5.4 shows similar plots using the fundamental-period input energy-
equivalent acceleration, Ai(T1). As expected given the high correlation between Sa(T1) and  Ai(T1) 
shown in Figure 3.7, the fits to the data based on regression on Ai(T1) are very similar to the fits 
obtained for Sa(T1) at all the stories. This can be seen not only by studying the regression lines 
and the data, but also by comparing the standard deviations of the residuals, which are given in 
the figures and are summarized in Table 5.6.  Note that the relatively large scatter at higher 
stories in IDR for a given Sa(T1), which was mentioned in Subsection 5.5.1.1, is clearly visible in 
Figure 5.3. 

 

 

Figure 5.3 Plots of peak inter-story drift ratio versus first-mode spectral acceleration, ordered 
from top to bottom and left to right (i.e., story 1 is at the top left-hand corner; story 9 is at the 
bottom right-hand corner). 
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Figure 5.4 Plots of peak inter-story drift ratio versus first-mode input energy-equivalent 
acceleration, ordered from top to bottom and left to right (i.e., story 1 is at the top left-hand 
corner; story 9 is at the bottom right-hand corner). 

 

For all three of the ductile building models, the standard deviations of the residuals from the 
regressions of the vector of peak inter-story drift ratios (IDRs) on the scalar ground motion 
parameter (Ai(T1) versus Sa(T1)) are presented in Tables 5.5 through 5.7. Also presented in the 
tables (here and in subsequent subsections) are the standard deviations of the response measures 
before regressing on any GMP.  These standard deviations are much larger, emphasizing the 
usefulness of GMPs for predicting nonlinear structural response. Although not discussed until 
later (in Section 5.5.1.5), for the sake of conciseness in presentation, results of regressing on a 
vector that includes information regarding both scalar GMPs, i.e., {Sa(T1), Sa(T1)/Ai(T1)}, are also 
included in these tables. 

 

Story σlnY σlnY|Sa(T1) σlnY|Ai(T1) σlnY|Sa(T1),  

Ai(T1)/Sa(T1) 
1 0.833 0.168 0.194 0.161 
2 0.863 0.121 0.163 0.112 
3 0.804 0.194 0.218 0.190 

Table 5.5 Summary of the standard deviations of residuals from regressions of IDR on first-
mode elastic GMPs for the ductile 3-story building. 
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Story σlnY σlnY|Sa(T1) σlnY|Ai(T1)
σlnY|Sa(T1), 

Ai(T1)/Sa(T1) 
1 0.894 0.215 0.219 0.209 
2 0.914 0.175 0.187 0.168 
3 0.924 0.145 0.164 0.139 
4 0.912 0.164 0.183 0.160 
5 0.903 0.181 0.193 0.175 
6 0.897 0.233 0.230 0.223 
7 0.900 0.284 0.277 0.274 
8 0.877 0.355 0.352 0.350 
9 0.825 0.392 0.387 0.387 

Table 5.6 Summary of the standard deviations of residuals from regressions of IDR on first-
mode elastic GMPs for the ductile 9-story building. 

 

Story σlnY σlnY|Sa(T1) σlnY|Ai(T1)
σlnY|Sa(T1), 

Ai(T1)/Sa(T1) 
1 0.880 0.340 0.312 0.312 
2 0.915 0.329 0.301 0.302 
3 0.926 0.304 0.274 0.274 
4 0.928 0.276 0.246 0.247 
5 0.931 0.257 0.232 0.233 
6 0.924 0.245 0.226 0.226 
7 0.928 0.245 0.225 0.225 
8 0.925 0.246 0.224 0.224 
9 0.906 0.252 0.229 0.229 
10 0.882 0.254 0.233 0.234 
11 0.870 0.282 0.260 0.261 
12 0.864 0.309 0.287 0.288 
13 0.860 0.332 0.310 0.311 
14 0.852 0.355 0.333 0.334 
15 0.840 0.389 0.365 0.365 
16 0.828 0.415 0.391 0.389 
17 0.819 0.441 0.417 0.415 
18 0.817 0.474 0.451 0.447 
19 0.803 0.497 0.475 0.471 
20 0.781 0.501 0.483 0.480 

Table 5.7 Summary of the standard deviations of residuals from regressions of IDR on first-
mode elastic GMPs for the ductile 20-story building. 

Overall, the standard deviations of the IDR residuals are comparable when the scalar GMP is 
Ai(T1) versus Sa(T1).  The standard deviations are slightly larger for Ai(T1) in the case of the 3-
story building and the lower five stories of the 9-story building, whereas they are slightly smaller 
for Ai(T1) in the case of the 20-story building and the upper four stories of the 9-story building. 
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It should be pointed out that the standard deviations of the residuals when using Sa(T1) or Ai(T1) 
for the 3-story model are not very different between stories, as is to be expected for a low-rise 
building whose response is governed mostly by the fundamental mode of vibration. For the 9-
story and the 20-story models, however, the standard deviations of the residuals at the higher 
stories are greater than at the lower stories. This suggests that response predictions at higher 
stories of mid-rise and high-rise frame buildings will generally require a greater number of 
analyses to achieve levels of confidence similar to those at lower stories or for low-rise buildings 
(if such predictions are based on an elastic first-mode GMP). 

5.5.1.4 USE OF Ai(T1) IN PREDICTING {MIDR, AIDR, RDR} 

The standard deviations of the residuals for the response vector comprised of the summary drift 
measures {MIDR, AIDR, RDR} are presented in Tables 5.8 through 5.10 for all three ductile 
building models, based on regression on the scalar ground motion parameters Ai(T1) or, as a basis 
for comparison, Sa(T1).  Again, note that the results of regressing on the vector {Sa(T1), 
Sa(T1)/Ai(T1)} are also included in these tables, but their discussion is deferred until the next 
subsection. 

 

Response  
Variable σlnY σlnY|Sa(T1) σlnY|Ai(T1)

σlnY|Sa(T1),  

Ai(T1)/Sa(T1) 
MIDR 0.820 0.175 0.203 0.170 
AIDR 0.827 0.144 0.176 0.137 
RDR 0.866 0.129 0.163 0.118 

Table 5.8 Summary of the standard deviations of residuals from regressions of the vector 
{MIDR, AIDR, RDR} on first-mode elastic GMPs for the ductile 3-story building. 

Response  
Variable σlnY σlnY|Sa(T1) σlnY|Ai(T1)

σlnY|Sa(T1),  

Ai(T1)/Sa(T1) 
MIDR 0.881 0.336 0.332 0.329 
AIDR 0.881 0.228 0.229 0.221 
RDR 0.953 0.133 0.143 0.120 

Table 5.9 Summary of the standard deviations of residuals from regressions of the vector 
{MIDR, AIDR, RDR} on first-mode elastic GMPs for the ductile 9-story building. 

Response  
Variable σlnY σlnY|Sa(T1) σlnY|Ai(T1)

σlnY|Sa(T1),  

Ai(T1)/Sa(T1) 
MIDR 0.883 0.414 0.390 0.390 
AIDR 0.858 0.320 0.293 0.293 
RDR 0.949 0.177 0.162 0.157 

Table 5.10 Summary of the standard deviations of residuals from regressions of the vector 
{MIDR, AIDR, RDR} on first-mode elastic GMPs for the ductile 20-story building. 
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As was observed in the preceding subsection for the response vector IDR, the standard deviations 
of the residuals for the three response measures are similar whether the regressions are on Sa(T1) 
or Ai(T1). For the ductile 3-story building, the standard deviations are slightly larger for Ai(T1), 
whereas the opposite is true for the ductile 20-story building. 

Note that the standard deviations for RDR are at similar levels across the three buildings. 
However, the standard deviations for MIDR and AIDR (conditional on either scalar GMP) are 
significantly higher for the 9- and 20-story structures compared to the 3-story structure. This 
suggests that if one uses only a scalar first-mode elastic GMP as the predictor variable, response 
predictions (other than those of RDR) for mid- and high-rise frame structures will in general 
require a greater number of analyses to achieve levels of confidence similar to those for low-rise 
frame buildings.  

5.5.1.5 USE OF {Sa(T1), Ai(T1)/Sa(T1)} IN PREDICTING IDR'S OR {MIDR, AIDR, RDR} 

As one might expect, given that the results of regressing on Sa(T1) versus Ai(T1) are very similar 
(as demonstrated above), the standard deviations of the residuals reported in Tables 5.5 through 
5.10 above indicate that there is little advantage in using the vector {Sa(T1), Sa(T1)/Ai(T1)} to 
predict any of the structural response measures considered, over the use of either Sa(T1) or Ai(T1) 
alone as a scalar GMP.  If there is any benefit at all, the standard deviations of the residuals are 
only very slightly smaller when the vector GMP is used in lieu of the scalar Sa(T1) or Ai(T1). 
However, the complication of using two predictor variables instead of one is not worth this 
negligible prediction gain. 

5.5.1.6 MEDIAN LEVELS OF MIDR, AIDR, RDR, AND IDR 

Before investigating the standard deviations of residuals from regressions on (i) multi-mode 
elastic GMPs and (ii) first-mode inelastic and higher-mode elastic GMPs, median response 
estimates as obtained from regressions on Sa(T1) and Ai(T1) are presented here.  Tables 5.11 and 
5.12 compare the median response of the ductile 9-story frame for five bins of 28 earthquake 
records that have been organized (from the complete set of 140 earthquake records described in 
Chapter 3) based on increasing values of the first-mode elastic ground motion parameters, Sa(T1) 
and Ai(T1). The median response values of MIDR, AIDR, and RDR calculated directly from the 
data (resulting from nonlinear dynamic analyses) are compared against estimates based on the 
regression equation (by setting the predictor variable to the same median value as in the data – 
see the first column in Tables 5.11 and 5.12). It can be seen that the predicted response values 
closely match the values from the data over all levels of input motion and for both of the ground 
motion parameters. 
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MIDR AIDR Roof Drift Ratio Median 
Sa(T1) (g) 

for Bin Data Predicted Data Predicted Data Predicted 

0.02 0.0030 0.0032 0.0022 0.0024 0.0013 0.0015 
0.04 0.0046 0.0054 0.0038 0.0041 0.0026 0.0027 
0.07 0.0078 0.0078 0.0065 0.0060 0.0043 0.0041 
0.12 0.0117 0.0118 0.0101 0.0093 0.0071 0.0067 
0.31 0.0251 0.0255 0.0201 0.0208 0.0157 0.0163 

Table 5.11 Median response values of MIDR, AIDR, and RDR for 5 bins of 28 earthquake 
records each, sorted according to Sa(T1), and corresponding predicted values based on regression 
on Sa(T1). 

 

MIDR AIDR Roof Drift Ratio Median 
Ai(T1) (g) 
for Bin Data Predicted Data Predicted Data Predicted 

0.04 0.0030 0.0032 0.0022 0.0024 0.0013 0.0015 
0.07 0.0046 0.0052 0.0038 0.0039 0.0026 0.0026 
0.12 0.0081 0.0079 0.0064 0.0061 0.0043 0.0042 
0.22 0.0122 0.0132 0.0101 0.0104 0.0071 0.0076 
0.44 0.0251 0.0244 0.0201 0.0198 0.0157 0.0154 

Table 5.12 Median response values of MIDR, AIDR, and RDR for 5 bins of 28 earthquake 
records each, sorted according to Ai(T1), and corresponding predicted values based on regression 
on Ai(T1). 

 

Note that the predictions (and the data) based on Sa(T1) versus Ai(T1) are very similar because of 
the high degree of correlation (ρ = 0.98) between the two GMPs (as was seen in Figure 3.7).  

Figure 5.5 shows median peak inter-story drift ratios (IDRs) predicted by the regression model 
based on Sa(T1) alone, again for median values of the 5 bins of 28 records sorted according to 
increasing Sa(T1). Note that these regression predictions compare well with the median deformed 
shapes obtained empirically from the nonlinear dynamic analyses for each set of records directly. 
Also, note that the response at higher stories grows with Sa(T1) at different rates than does the 
response at lower stories.  
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Figure 5.5 Median peak inter-story drift response of the ductile 9-story building model for 5 bins 
of 28 earthquake records each, sorted according to Sa(T1). 

 

5.5.1.7 SUMMARY OF RESULTS USING FIRST-MODE ELASTIC GMP'S 

The predictions of response measures based on Sa(T1) or Ai(T1) (or on the vector {Sa(T1), 
Ai(T1)/Sa(T1)}) are very similar for the building frames under consideration, most likely due to 
the high degree of correlation between the two scalar GMPs (see Figure 3.8). Overall, the 
response prediction using either of the parameters is good. However, we see significant 
variability in the response at higher stories (e.g., for IDR at the sixth story and above in the 9- 
and 20-story structures). Also, the variability in MIDR and AIDR is greater when compared to 
that in RDR for mid- and high-rise buildings. Next we discuss results from regression based on 
vectors of elastic GMPs at multiple modes. By including more variables in our predictor set we 
expect to achieve lower variability in our response measures, as we shall see. 

5.5.2 REGRESSIONS ON MULTI-MODE ELASTIC GMP'S 

5.5.2.1 USE OF {Sa(T1), Sa(T2)/Sa(T1)} IN PREDICTING IDR FOR THE DUCTILE 9-
STORY BUILDING 

The regression coefficients and the standard deviations of the residuals obtained from regressing 
the vector of response measures IDRi (i = 1 to 9) on the vector GMP {Sa(T1), Sa(T2)/Sa(T1)} are 
given in Table 5.13 for the ductile 9-story building, while the error correlations for the response 
measures are given in Table 5.14. Analogous results for the 3- and 20-story ductile buildings are 
provided in Appendix A (Tables A.37 to A.38 and A.45 to A.46, respectively). 
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IDRi b0i b1i b2i σlnε 
1 0.053 0.908 0.235 0.167 
2 0.050 0.919 0.165 0.146 
3 0.051 0.918 0.100 0.133 
4 0.052 0.899 0.088 0.156 
5 0.050 0.903 0.153 0.158 
6 0.045 0.919 0.285 0.164 
7 0.048 0.937 0.399 0.163 
8 0.045 0.919 0.528 0.176 
9 0.033 0.858 0.577 0.201 

Table 5.13 Regression coefficients and standard deviations of the residuals for the ductile 9-
story building peak inter-story drift ratios regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 

 

ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.90 0.68 0.59 0.65 0.71 0.64 0.65 0.56 
2 * 1.00 0.78 0.53 0.52 0.60 0.62 0.61 0.47 
3 * * 1.00 0.74 0.54 0.59 0.57 0.55 0.52 
4 * * * 1.00 0.83 0.64 0.41 0.51 0.59 
5 * * * * 1.00 0.80 0.50 0.59 0.62 
6 * * * * * 1.00 0.81 0.74 0.70 
7 * * * * * * 1.00 0.87 0.65 
8 * * * * * * * 1.00 0.85 
9 * * * * * * * * 1.00 

Table 5.14 Error correlation matrix for the ductile 9-story building peak inter-story drift ratios 
regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 

 

Overall, we see significant reduction in the standard deviation of the residuals that results from 
adding the second-mode GMP (compare Table 5.13 with Table 5.1), especially at the higher 
stories. Note also that the response is closer to being proportional with Sa(T1) (i.e., b1i ≅ 1) 
compared to when Sa(T1) was the sole predictor (see Table 5.1). 

Table 5.15 shows the decrease in the error correlations for the inter-story drift ratios of the 
ductile 9-story building when regressed first on Sa(T1) (see Table 5.2) and then on the vector 
{Sa(T1), Sa(T2)/Sa(T1)} (see Table 5.14). Note that for most pairs of stories the correlation is 
reduced by including the second-mode parameter. This is indicative of the contribution of the 
second mode in improved prediction, simultaneously, of the response at different stories that was 
not achieved as effectively by regression on Sa(T1) alone. 
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ρ 1 2 3 4 5 6 7 8 9 
1 0.00 0.03 0.06 0.04 0.10 0.13 0.17 0.15 0.21 
2 * 0.00 0.04 0.06 0.13 0.15 0.13 0.12 0.21 
3 * * 0.00 0.03 0.09 0.07 0.06 0.05 0.07 
4 * * * 0.00 0.01 0.01 0.07 0.00 -0.03 
5 * * * * 0.00 0.04 0.15 0.10 0.08 
6 * * * * * 0.00 0.10 0.13 0.17 
7 * * * * * * 0.00 0.09 0.24 
8 * * * * * * * 0.00 0.11 
9 * * * * * * * * 0.00 

Table 5.15 Reduction in the error correlations for the ductile 9-story building response (IDR) 
when first regressed on Sa(T1) and then on the vector {Sa(T1), Sa(T2)/Sa(T1)}. 

 

5.5.2.2 USE OF {Sa(T1), Sa(T2)/Sa(T1)} IN PREDICTING {MIDR, AIDR, RDR} FOR THE 
DUCTILE 9-STORY BUILDING 

The regression coefficients and the standard deviations of the errors obtained from regressing the 
vector of response measures {MIDR, AIDR, RDR} on the vector of GMPs {Sa(T1), Sa(T2)/Sa(T1)} 
are given in Table 5.16 for the ductile 9-story building, while the error correlations for the 
response measures are given in Table 5.17. Analogous results for the 9- and 20-story ductile 
buildings are provided in Appendix A (Tables A.49 to A.50 and A.57 to A.58, respectively). 

Note that the standard deviations of the residuals for MIDR and AIDR in Table 5.16 are reduced 
significantly compared to those found when Sa(T1) was the sole GMP (as we saw in Table 5.3). 
There is almost no similar beneficial effect, however, on the standard deviation of the residuals 
for RDR, again because RDR is mostly driven by the first mode. 

 

Yi b0i b1i b2i σlnε 
MIDR 0.050 0.917 0.474 0.191 
AIDR 0.047 0.910 0.307 0.141 
RDR 0.046 0.936 0.053 0.130 

Table 5.16 Regression coefficients and standard deviations of the residuals for the ductile 9-
story building response regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 

ρ MIDR AIDR RDR 
MIDR 1.00 0.93 0.51 
AIDR * 1.00 0.64 
RDR * * 1.00 

Table 5.17 Error correlation matrix for the ductile 9-story building response regressed on Sa(T1) 
and the ratio Sa(T2)/Sa(T1). 
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Despite the predictive power gained from including Sa(T2)/Sa(T1) with Sa(T1) in a vector GMP, it 
can be seen from Table 5.17 that the residuals for the response measures MIDR and AIDR are 
still highly correlated, perhaps due to the contributions of even higher modes of vibration and/or 
the effects of nonlinearity. 

5.5.2.3 USE OF {Ai(T1), Ai(T2)/Ai(T1)} vs. {Sa(T1), Sa(T2)/Sa(T1)} IN PREDICTING IDR 

The results of regressing the vector of peak inter-story drift ratios (IDR) on the vector GMP 
{Ai(T1), Ai(T2)/Ai(T1)} for each of the three ductile structures (3-, 9-, and 20-story) are 
summarized in Tables 5.18 to 5.20. Also shown in the tables for comparison purposes are the 
results for the GMP vector, {Sa(T1), Sa(T2)/Sa(T1)}, and the GMP scalars, Sa(T1) and Ai(T1), 
separately. 

As was the case when we studied the differences resulting from regressions on Ai(T1) alone 
versus Sa(T1) alone, there is only a slight difference between the standard deviations of the 
residual IDR values resulting from regressions on {Ai(T1), Ai(T2)/Ai(T1)} versus {Sa(T1), 
Sa(T2)/Sa(T1)}. Furthermore, here we see that for the 3-story building there is little reduction in 
the standard deviation of the residuals (at any story) brought about by the use of either of the two 
GMP vectors instead of a single scalar first-mode GMP.  This is again because the response of 
the 3-story model is mainly governed by the first mode.  The standard deviations of the residuals 
for the 9-story and 20-story structures, however, are reduced significantly by including a second-
mode based GMP, especially at the higher stories.  In fact, when a second-mode GMP is used, 
the standard deviations of the residuals for the 9- and 20-story buildings are comparable to those 
for the 3-story building at almost all levels, including the higher stories. Hence, about the same 
number of analyses would be required to achieve similar levels of confidence in our response 
predictions for mid-rise and high-rise frame buildings if a multi-mode elastic GMP vector is used 
in predictions of response. 

 

 

Multi-mode GMPs First-mode GMPs Story 
σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

1 0.152 0.179 0.168 0.194 
2 0.121 0.163 0.121 0.163 
3 0.151 0.186 0.194 0.218 

Table 5.18 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 3-story building. 
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Multi-mode GMPs First-mode GMPs Story 
σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

1 0.167 0.178 0.215 0.219 
2 0.146 0.165 0.175 0.187 
3 0.133 0.157 0.145 0.164 
4 0.156 0.179 0.164 0.183 
5 0.158 0.177 0.181 0.193 
6 0.164 0.166 0.233 0.230 
7 0.163 0.159 0.284 0.277 
8 0.176 0.182 0.355 0.352 
9 0.201 0.202 0.392 0.387 

Table 5.19 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 9-story building.  

 

Multi-mode GMPs First-mode GMPs Story 
σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

1 0.223 0.211 0.340 0.312 
2 0.227 0.213 0.329 0.301 
3 0.225 0.207 0.304 0.274 
4 0.214 0.197 0.276 0.246 
5 0.207 0.196 0.257 0.232 
6 0.211 0.206 0.245 0.226 
7 0.218 0.212 0.245 0.225 
8 0.212 0.207 0.246 0.224 
9 0.204 0.202 0.252 0.229 

10 0.179 0.184 0.254 0.233 
11 0.171 0.179 0.282 0.260 
12 0.169 0.175 0.309 0.287 
13 0.170 0.169 0.332 0.310 
14 0.172 0.166 0.355 0.333 
15 0.174 0.168 0.389 0.365 
16 0.179 0.175 0.415 0.391 
17 0.192 0.192 0.441 0.417 
18 0.214 0.222 0.474 0.451 
19 0.243 0.256 0.497 0.475 
20 0.267 0.286 0.501 0.483 

Table 5.20 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 20-story building. 
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5.5.2.4 USE OF {Ai(T1), Ai(T2)/Ai(T1)} vs. {Sa(T1), Sa(T2)/Sa(T1)} IN PREDICTING {MIDR, 
AIDR, RDR} 

The results of regressing the vector {MIDR, AIDR, RDR} on the vector GMP {Ai(T1), 
Ai(T2)/Ai(T1)} for the three ductile structures are given in Tables 5.22 to 5.24. Also shown in the 
tables, for comparison purposes, are the results for the GMP vector, {Sa(T1), Sa(T2)/Sa(T1)}, and 
the GMP scalars, Sa(T1) and Ai(T1), separately. 

As was seen for the IDR response in the preceding subsection, there is little difference between 
the standard deviations of the residuals resulting from regressions on {Ai(T1), Ai(T2)/Ai(T1)} 
versus {Sa(T1), Sa(T2)/Sa(T1)}, especially for the 9- and 20-story buildings.  For the 3-story 
structure, there is little reduction in the standard deviation of the residuals (for any of the 
response variables) caused by the use of either of the two GMP vectors instead of the 
corresponding scalar first-mode GMP.  For the 9- and 20-story models, there is also insignificant 
reduction in the standard deviation of the residuals for RDR caused by going to a GMP vector for 
regression.  This is because, as mentioned before, RDR is dominated by the first mode of 
vibration of the structure.  The standard deviations of the residuals for the response variables 
MIDR and AIDR for the 9- and 20-story structures are reduced significantly, however, by adding 
a second-mode GMP, whether it be Ai(T2)/Ai(T1) or Sa(T2)/Sa(T1). For the 20-story structure, for 
example, there is a reduction by almost a factor of two in the standard deviation of the residuals, 
which translates to a reduction by a factor of four in the number of nonlinear dynamic analyses 
that would be required to predict the response with a comparable level of accuracy. 

Finally, note that MIDR and AIDR are derived from the IDRs and hence the lower variability in 
the IDR values when multi-mode elastic GMPs are used is what leads to smaller variations in the 
MIDR and AIDR as well.  In light of this, when inelastic first-mode and elastic higher-mode 
GMPs are investigated next (in Sections 5.5.3), only the vector response measure IDR and the 
scalar RDR will be considered. 

 

Multi-mode GMPs First-mode GMPs Response  
Variable σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

MIDR 0.148 0.184 0.175 0.203 
AIDR 0.125 0.163 0.144 0.176 
RDR 0.129 0.163 0.129 0.163 

Table 5.22 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 3-story building. 
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Multi-mode GMPs First-mode GMPs Response  
Variable σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

MIDR 0.191 0.195 0.336 0.332 
AIDR 0.141 0.153 0.228 0.229 
RDR 0.130 0.141 0.133 0.143 

Table 5.23 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 9-story building. 

 

Multi-mode GMPs First-mode GMPs Response  
Variable σlnY|Sa(T1),  

Sa(T2)/Sa(T1) 
σlnY|Ai(T1),  

Ai(T2)/Ai(T1) 
σlnY|Sa(T1) σlnY|Ai(T1) 

MIDR 0.237 0.245 0.414 0.390 
AIDR 0.173 0.170 0.320 0.293 
RDR 0.165 0.160 0.177 0.162 

Table 5.24 Summary of standard deviations of residuals based on first- and multi-mode elastic 
GMPs for the ductile 20-story building. 

 

5.5.2.5 USE OF OTHER MULTI-MODE ELASTIC GMP'S 

Besides {Sa(T1), Sa(T2)/Sa(T1)} and {Ai(T1), Ai(T2)/Ai(T1)}, several other multi-mode elastic GMP 
combinations were considered for the 3-, 9-, and 20-story buildings.  The standard deviations of 
the IDR and RDR residuals for not only the ductile models of these building, but for models that 
consider (i) elastic behavior and (ii) brittle beam-column connection behavior, are reported in 
Appendix B.  For reasons discussed later, the results presented in Appendix B make use of 
building models that are approximately half as strong as the ductile models considered so far.  
Nevertheless, the observations above based on the ductile building models, related to the 
differences between various first-mode elastic and multi-mode elastic GMPs, also apply to the 
results in Appendix B.  Here we merely summarize the regression results for those multi-mode 
elastic GMPs that have not been considered in the preceding sections. 

For the 3-story building models (elastic, ductile, and brittle), two additional multi-mode elastic 
ground motion parameters were considered: {Sa(T1), Ai(T2)/Sa(T1)} and {Sa(T1), Ai(T2)/Sa(T2)}.  
Neither of these GMP vectors, however, reduces the standard deviations of the IDR and RDR 
residuals appreciably, if at all, relative to the vector, {Sa(T1), Sa(T2)/Sa(T1)}.  This supports our 
observation that, when considering the 3-story building, none of the second-mode GMPs 
improved on the predictive power of Sa(T1) alone. 
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For the 9-story building models, the following additional multi-mode elastic GMPs were 
considered: {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2)} and {Sa(T1), Sa(T2)/Sa(T1), Ai(T3)/Sa(T3)}.  
Again, neither of these two GMP vectors reduces the standard deviation of the IDR and RDR 
residuals appreciably, if at all, relative to the vector {Sa(T1), Sa(T2)/Sa(T1)}.  Recall, however, that 
the inclusion of Sa(T2)/Sa(T1) in a vector in addition to the first-mode scalar GMP, Sa(T1), did 
improve the predictive power for the IDR (but not RDR) response of the 9-story building. 

Finally, for the 20-story building models, three additional multi-mode elastic GMP vectors were 
considered:  

• {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2)}, 

• {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2), Sa(T4)/Sa(T3)}, and  

• {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2), Ai(T4)/Sa(T4)}. 

In a few of the highest stories, the first of the three GMP vectors listed above does indeed reduce 
the standard deviations of the IDR residuals relative to the results based on regression on {Sa(T1), 
Sa(T2)/Sa(T1)}.  Neither of the other two GMP vectors, however, provides any additional 
predictive power.  For the first-mode-dominated RDR response, recall that even {Sa(T1), 
Sa(T2)/Sa(T1)} does not improve on the prediction relative to the scalar Sa(T1). 

5.5.2.6 SUMMARY OF RESULTS USING MULTI-MODE ELASTIC GMP'S 

For the 3-story models studied, there is little reduction in the structural response variation that 
results from including a second-mode GMP, in addition to a first-mode GMP, in the regression 
studies carried out.  This is because the response of the 3-story building is dominated by the first 
mode. However, by including a second-mode GMP in our set of predictor variables, we are able 
to better predict the response for the 9- and 20-story building models, especially at the higher 
stories, where higher-mode effects contribute significantly to the building deformation.  In fact, 
for the 20-story building models, including Sa(T3)/Sa(T2) in the multi-mode elastic vector GMP 
further improves the prediction at a few of the highest stories. The improvement in the level of 
prediction at lower stories is not significant compared to that at the higher stories. This can be 
attributed to the fact that there is relatively little contribution to the response from higher modes 
at the lower stories. The variation in MIDR is significantly reduced by using multi-mode elastic 
GMPs for the cases in which the maximum inter-story drift occurs at higher stories. There is 
little improvement in the prediction of RDR, which depends mainly on the first mode of vibration 
of the structure. 

Finally, it is important to note that there is little improvement in response prediction achieved by 
combining the spectral acceleration and energy-based parameters, or by using energy-based 
GMPs in lieu of spectral accelerations. Hence, given the greater familiarity with spectral 
accelerations, in the next subsection we build upon the use of Sa(T1) for the 3-story building 
models, {Sa(T1), Sa(T2)/Sa(T1)} for the 9-story building models, and {Sa(T1), Sa(T2)/Sa(T1), 
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Sa(T3)/Sa(T2)} for the the 20-story building models.  In all three cases, we add inelastic first-
mode GMPs to obtain vectors of ground motion parameters. 

5.5.3 REGRESSIONS ON FIRST-MODE INELASTIC AND HIGHER-MODE 
ELASTIC GMP'S 

Building upon the multi-mode elastic GMP vectors that were found (in the preceding subsection) 
to best predict the nonlinear structural response of each of the three buildings (3-, 9-, and 20-
story) considered, we investigate whether addition of the first-mode inelastic GMPs described in 
Section 5.4.3 can further improve the predictions.  The standard deviations of the residual IDR 
and RDR responses are listed in Appendix B for the elastic, ductile, and brittle models of each 
building.  The regression results confirm that for the elastic models there is no benefit in 
including the inelastic first-mode GMPs; hence, only the ductile and brittle models are discussed 
here. 

As mentioned earlier, the results presented in Appendix B make use of building models that are 
each half as strong as the corresponding ductile building model used to obtain the results that 
were tabulated and illustrated earlier in this chapter.  Weaker versions of the three buildings are 
considered because, as is evident from Figure 5.3, for example, the response of the original 
buildings for a large portion of the 140 ground motions considered is, in fact, elastic (i.e., IDR 
values less than about 0.01).  Instead of actually halving the strength of each structure, we take 
the approximate (but exact for single-degree-of-freedom structures – see, for example, page 250 
of Chopra, 1995) approach of doubling the amplitude of the ground motion records.  By this 
approach, the stiffness of each structure remains unchanged, whereas in reality the stiffness 
would also be affected by a change in strength.  Nevertheless, the regression results for these 
weaker versions of the buildings are consistent with those presented above for the first-mode 
elastic and multi-mode elastic GMPs. 

5.5.3.1 USE OF {Sa(T1), …, Sa(Tn)/Sa(Tn-1), Sa
I(T1)/Sa(T1)} IN PREDICTING IDR AND 

RDR 

The standard deviations of the residuals resulting from regressing (i) the vector of IDR responses 
and (ii) the scalar RDR response on the vector ground motion parameter {Sa(T1), …,  
Sa(Tn)/Sa(Tn-1), Sa

I(T1)/Sa(T1)} are reported in Appendix B. 

For the ductile and brittle 3-story building models, adding the ground motion parameter 
Sa

I(T1)/Sa(T1) decreases the standard deviation and thereby increases the predictive power relative 
to the regression on Sa(T1) alone.  This is true for both the IDR and RDR response measures. 

For the ductile 9-story building model, the addition of Sa
I(T1)/Sa(T1) to the multi-mode elastic 

ground motion parameter {Sa(T1), Sa(T2)/Sa(T1)} does significantly improve the prediction (i.e., it 
reduces the standard deviations) of the IDR responses at lower stories (say, 1st through 3rd), but 
the improvement is minimal at the higher stories (where the higher modes dominate) and for the 
RDR response.  As a result, the predictive power of the first-mode inelastic ground motion 
parameter {Sa(T1), Sa(T2)/Sa(T1), Sa

I(T1)/Sa(T1)} is comparable across all stories.  For the brittle 9-
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story model, Sa
I(T1)/Sa(T1) also improves the predictive power of the vector GMP, but to a lesser 

extent.  Again the biggest improvements are at the lowest stories. 

For the ductile and brittle models of the 20-story building, the addition of the first-mode inelastic 
GMP, Sa

I(T1)/Sa(T1), to the multi-mode elastic vector {Sa(T1), Sa(T2)/Sa(T1), Sa(T3)/Sa(T2)} does 
not appreciably improve the predictive power of the GMP vector for either the vector IDR (at 
any story level) or the scalar RDR.  This is likely due to the fact that Sa

I(T1) is roughly equal to 
Sa(T1) at the long fundamental period of the 20-story building (T1 = 4.0 sec). 

5.5.3.2 USE OF {Sa(T1), …, Sa(Tn)/Sa(Tn-1), Ai
I(T1)/Sa(T1) OR Aa

I(T1)/Sa(T1)} IN 
PREDICTING IDR AND RDR 

The standard deviations of the residuals resulting from regressing (i) the vector of IDR responses 
and (ii) the scalar RDR response on the vector ground motion parameters {Sa(T1), …, 
Sa(Tn)/Sa(Tn-1), Ai

I(T1)/Sa(T1) or Aa
I(T1)/Sa(T1)} are also reported in Appendix B.  In no cases 

(across buildings and stories) does the introduction of Ai
I(T1)/Sa(T1) or Aa

I(T1)/Sa(T1) in lieu of 
Sa

I(T1)/Sa(T1) reduce the standard deviation of the residuals by more than two percentage points.  
In some cases (e.g., for the RDR response of the brittle 3-story model), the predictive power of 
the GMP vector containing Sa

I(T1)/Sa(T1) is superior, and hence overall it is preferred. 

5.5.3.3 SUMMARY OF RESULTS USING FIRST-MODE INELASTIC AND HIGHER-
MODE ELASTIC GMP'S 

For ductile and brittle models of the three buildings considered that are roughly half as strong as 
the original building designed, we have found that the addition of a first-mode inelastic GMP to 
a multi-mode elastic GMP vector can indeed improve the predictive power of the resulting vector 
GMP.  The improvement, however, may be minimal for long-period structures (such as for the 
20-story building) because of the "equal displacements rule" (Veletsos and Newmark, 1960; 
Veletsos et al., 1965), which indicates that the inelastic GMP will be roughly equal to its elastic 
counterpart.  The use of inelastic energy-based GMPs does not appear to have any advantage 
over inelastic spectral acceleration. 

 

5.6 "SUFFICIENCY" OF FIRST-MODE ELASTIC VS. FIRST-MODE INELASTIC 
AND HIGHER-MODE ELASTIC GMP'S 

Recall that the regressions of nonlinear structural response measures (e.g., IDR) on ground 
motion parameters (GMPs) result in estimates of (i) the median (or geometric mean) response, 
via the regression coefficients, and (ii) the logarithmic standard deviation of the response (σlnε), 
both for a given level of ground motion.  Assuming that the response conditional on a given level 
of ground motion is lognormally distributed, the regression results can be used to compute the 
probability of exceeding a specified response conditioned on the ground motion level, denoted 
here as G[IDR|GMP] for IDR response.  Note that this conditional complementary cumulative 
distribution function (CDF) for all ground motion levels can be convolved with the ground 
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motion hazard to obtain a hazard curve in terms of nonlinear structural response (e.g., Bazzurro 
and Cornell, 1994). 

For some ground motion parameters more so than for others, the regression results, and therefore 
G[IDR|GMP], can depend on the set of earthquake records used – e.g., "near-source" versus 
"ordinary," as described in Chapter 3 – even if the record sample size is very large.  A 
"sufficient" GMP, however, will provide approximately the same regression results regardless of 
the types of ground motions considered (Luco, 2002).  A major advantage of the use of a 
sufficient GMP is that regression of nonlinear structural response on such a GMP can be carried 
out for an arbitrary set of earthquake records, rather than for a set of records whose 
characteristics match those for the earthquake scenarios that control the hazard at the particular 
building site. 

The sufficiency of Sa(T1) and {Sa(T1), Sa(T2)/Sa(T1), Sa
I(T1)/Sa(T1)} with respect to (i) near-source 

versus "ordinary" ground motions, and (ii) ground motions from relatively large versus small 
magnitude earthquakes, is illustrated in Figures 5.6 and 5.7, respectively.  Recall (from Chapter 
3) that the near-source ground motions are defined as those with Rclose < 16km, and the large 
magnitude earthquakes are taken to be those with Mw > 6.5.  The G[IDR|GMP] results are shown 
for IDR responses at only the first and ninth stories of the ductile 9-story building model, but the 
results at the other stories exhibit similar trends.  The ground motion level considered for these 
figures is the median level across the full set of 140 earthquake records. 

Note from Figures 5.6 and 5.7 that the G[IDR|GMP] results are more similar across distance 
(nearby vs. non-nearby) and magnitude (small vs. large) ranges when the GMP is comprised of 
the first-mode inelastic and higher-mode elastic vector {Sa(T1), Sa(T2)/Sa(T1), Sa

I(T1)/Sa(T1)}.  
Hence, not only does this vector GMP better predict nonlinear structural response than the 
conventional Sa(T1), as demonstrated earlier, it appears to be more "sufficient" as well. 
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Figure 5.6 Complementary CDFs of first- and ninth-story IDR for the ductile 9-story building, 
conditioned on the median ground motion level defined in terms of Sa(T1) and {Sa(T1), 
Sa(T2)/Sa(T1), Sa

I(T1)/Sa(T1)} and for the near-source (or "nearby") versus ordinary (or "non-
nearby") subsets of earthquake records. 
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Figure 5.7 Complementary CDFs of first- and ninth-story IDR for the ductile 9-story building, 
conditioned on the median ground motion level defined in terms of Sa(T1) and {Sa(T1), 
Sa(T2)/Sa(T1), Sa

I(T1)/Sa(T1)} and for the smaller versus larger magnitude subsets of earthquake 
records. 
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5.7  CONCLUDING REMARKS 

Using elastic, ductile, and brittle models of three different steel moment-resisting frame 
structures (3-, 9-, and 20-story buildings) and 140 earthquake ground motion records, different 
scalar and vector ground motion parameter (GMP) sets were used as predictor variables to 
estimate various response measure vectors that included (i) maximum (over all stories) peak 
inter-story drift ratio (MIDR), (ii) average (over all stories) peak inter-story drift ratio (AIDR), 
(iii) peak roof drift ratio (RDR), and (iv) peak inter-story drift ratios for individual stories (IDR). 
The two response vectors considered were {MIDR, AIDR, RDR} and {IDRi; i = 1 to number of 
stories}.  In general, we have found that a GMP vector that includes a higher-mode elastic 
spectral acceleration [e.g., Sa(T2)/Sa(T1)] and first-mode inelastic spectral acceleration [e.g., 
Sa

I(T1)/Sa(T1)], in addition to the first-mode elastic spectral acceleration [i.e., Sa(T1)], better 
predicts nonlinear structural response than Sa(T1) alone.  The response prediction is especially 
improved for the 9-story building.  Energy-based GMPs [e.g., Ai(T1)], however, do not 
appreciably improve the predictive power of such vectors due, in part, to the strong correlation of 
Ai(T1) with Sa(T1). 
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CHAPTER 6 – SIMPLIFIED ILLUSTRATIONS OF LOSS ESTIMATION 

 

6.1 INTRODUCTION 

A reasonable and commonly sought goal is to estimate building damage and associated monetary 
losses in the face of future earthquake events.  Accurate and reliable estimates of monetary losses 
can form the basis for rational decision making related to risk management.  For example, 
accurate loss estimates guide insurers in selecting fair earthquake insurance premiums and 
owners in adopting risk mitigation strategies, such as embarking on preemptive structural 
retrofitting or buying earthquake insurance, or a combination of both.  Monetary losses due to 
damage to buildings can be related to several factors – e.g., damage to connections, damage to 
structural members, and damage to partitions and other non-structural components.  Loss 
estimation studies are usually carried out from knowledge of the response of the structures 
involved. 

In this chapter, we will attempt to demonstrate by means of intentionally simple illustrations how 
the MMLR-based studies resulting in predictions of structural response given ground motion 
parameters can be employed in loss estimation studies.  There are three main reasons why the 
illustrations that we present here are simplified ones.  First, data from past earthquakes on 
structural and non-structural damage observed in buildings and on monetary losses due to the 
need to repair or replace damaged components are very rare and, for liability reasons, extremely 
difficult to obtain.  Even when available, they are insufficient for making any statistical inference 
on losses from physical damage for buildings of different characteristics (e.g., material, lateral-
force resisting system, and number of stories).  Hence, in research studies such as this one, the 
missing empirical loss data are simply “simulated” from the levels of deformation computed by 
nonlinear dynamic analyses of the buildings subject to ground motions of different intensity.  
The loss data are sometimes inferred using a detailed approach (e.g., see the methodology 
pursued by the Pacific Earthquake Engineering Research Center) that links the level of story 
deformation to the damage state of each element present at that story and from there to the 
appropriate repair strategy and, finally, to repair costs.  The global loss is then computed by 
adding the losses from all stories.  In this study, however, we derived functional relationships 
between building responses and loss in a simplified way that will be discussed later in this 
chapter.  Second, for the sake of simplicity, we restrict our illustrations only to the ductile 
models of the three buildings discussed in Chapter 5 and, in fact, mostly to the 9-story building.  
Third, though MMLR studies in Chapter 5 suggested that not only multi-mode elastic GMPs but 
also first-mode inelastic mode GMPs can lead to better predictions of structural performance 
(e.g., IDRs), we restrict our illustrations to ones where only elastic GMPs are employed 
including only up to second-mode elastic Sa.  No inelastic GMPs and no energy-related GMPs 
are included. 
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Note that our first simplification (namely that of needing to simulate loss data for steel MRF 
buildings, which is explained later) implies that our conclusions regarding which structural 
performance measures (Y) predicted from which GMPs (X) leads to loss estimates with least 
uncertainty are often not realistic.  In other words, the procedure that we outline here is what we 
wish to emphasize, not the findings in the hypothetical cases studied.  Notwithstanding these 
problems, we present results on estimates for losses and uncertainty on such estimates using 
simulated loss data; if we had real damage data to use in the illustrations, the procedures that we 
outline below for loss estimation would stay the same but the findings would be intuitively more 
in line with engineering intuition. 

Our second and third simplifications – those of confining the loss estimation studies to elastic 
one- and two-mode GMPs and to the use of the 9-story ductile building model – are made 
despite indications that inelastic first-mode GMPs can lead to better predictions of structural 
response, Y.  This is done merely so that we could focus on the procedure involved in the loss 
estimation.  The procedure described can be easily repeated for all of the buildings with brittle 
connection models and where the most efficient and sufficient MMLR-based models are 
employed instead.  The extension to those cases from the simpler case presented here would be 
direct. 

 

6.2 A MODEL FOR LOSS ESTIMATION 

In Section 5.2, we have seen that the prediction of an n-dimensional response vector, Y, (e.g., the 
maximum interstory drift and the peak roof drift) from an r-dimensional ground motion 
parameter vector, X, (e.g., the spectral accelerations at multiple oscillator frequencies) may be 
carried using the following model for regression: 
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where bji and the covariance matrix of the residual error terms, εi, (denoted hereafter as Σ) are 
estimated by carrying out multiple multivariate regression analyses as described in Section 5.2.  
Estimates of bji and Σ obtained for different choices of the ground motion parameter vector, X, 
and the response vector, Y, are given in Appendix A.  If the model in Equation 6.1 leads to 
unbiased estimates of Yi(X), then εi has a median value of unity. 

Consider now a loss or damage function that is related to a vector, Y, comprised of n structural 
response measures.  Depending on the choice of elements included in Y, the loss function, Ln, is 
subject to uncertainty.  Assume that Ln can be predicted as follows: 
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where α0 and αi (i = 1 to n) are regression coefficients for the loss model and the variable εLn is 
introduced to account for the uncertainty in predicting losses given Y.  For unbiased predictions 
of losses given Y, εLn may be modeled as a log-normal random variable with a median value of 
unity.  The coefficient of variation, CoV, of εLn will, in general, be estimated from data on losses 
and studies relating losses to structural performance.  Unless the response measures included in 
Y are highly correlated, it is expected that the inclusion of a larger number of response measures 
in Y will, in general, reduce standard errors in the model of Equation 6.2 or, equivalently, lead to 
smaller CoV estimates for εLn.  Estimation of losses is greatly affected by the variability due to 
an inadequate model, which is associated with a large CoV for the model error random variable, 
εLn, in Equation 6.2.  Loss estimation is also influenced by the underlying variability in Y given 
X (the vector of GMPs) for the structure(s) and site under consideration.  If we are interested in 
estimating losses for structures at a site that is characterized by the various ground motions likely 
to be experienced there, it is useful to be able to estimate Y efficiently and without bias from 
parameters, X, that describe those ground motions.  The GMPs that comprise X ideally should: 

• be easy to compute given an earthquake record, 

• “efficiently” allow prediction of Y – i.e., it is important that the uncertainty in predicting 
Y from X be small so that both a small number of structural analyses will suffice (see 
Equation 2.1) and errors propagating to prediction of losses do not get excessively large, 
thereby leading to large uncertainty in loss estimation, and 

• be “predictable” given the characteristics of the causative earthquake (e.g., magnitude, 
M, and source-to-site distance, R).  If uncertainty in predicting the parameters in X is 
large given M and R, then this uncertainty propagates to the loss estimates for a structure 
located at a given site.  Note that this source of uncertainty is not considered in what 
follows, because only conditional losses (on X) are estimated. 

Taking into account the dependency of the n-dimensional Y on the r-dimensional X, we can 
rewrite Equation 6.2 as follows: 
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where the median loss is given by ∏ ∑
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Note that if the εi’s and εLn are assumed to be lognormal, then Lnr(X) is also a lognormal random 
variable.  Statistics of ln Lnr(X) can be written as follows: 
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where the approximation for Var[ln Lnr(X)] is good if the CoV of Lnr (given X) is less than say 
30%.  For unbiased estimates of losses, conditioned on X, we have (since the individual error 
terms are all unit-median lognormal random variables) 

0][lnE | =XnrLε                                                           (6.5) 

The variance of the losses, conditioned on X, can be written in terms of the loss model 
parameters in Equation 6.2 and the covariance matrix Σ of the individual error terms (from 
regression of Y on X) as follows: 
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It is clear that the uncertainty in predicting losses is directly related to the variance, 
][lnVar |XnrLε .  For two alternative unbiased loss models, we will have greater confidence in loss 

estimates based on the model with the smaller variance.   

Equation 6.6 shows the contribution of different factors towards the total uncertainty (variance) 
in loss estimates.  The first term is related to the uncertainty in predicting each response variable, 
Yi (i = 1 to n), from knowledge of the selected ground motion parameter vector, X.  Smaller 
uncertainty in predicting each response variable, Yi (by using a suitable choice for the ground 
motion parameter vector, X), will propagate to smaller errors in estimating losses.  The second 
term on the right hand side of Equation 6.6 takes into account the cross-correlation among the 
different response measures, Yi.  Neglecting the correlation among the various response measures 
can lead to unconservative estimates of confidence bounds on, say, mean losses.  Note that this 
needed information on the cross-correlation of the response measures is obtained as a direct 
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result of multivariate multiple linear regressions (MMLR), as was demonstrated in Chapter 5.  
The last term on the right hand side of Equation 6.6 is related to the model uncertainty resulting 
from estimating losses based upon knowledge of the structural response, Y.  In the optimal 
situation where structural response data and loss data are available, the use of a larger number of 
response measures in Y to correlate with monetary losses would likely reduce this model 
uncertainty.  (In our case, where simulated loss data are employed, this reduction in uncertainty, 
when present, is very small, as we shall see.) 

Note that in the illustrations that follow, we ensure that the alternative loss models lead to the 
same median losses at a given level of the GMP vector, X as that of a Base Case (0) unbiased 
model by enforcing the following: 
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where α0,I refers to the α0 parameter for a generic Model I and α0,0 is the α0 parameter for the 
unbiased Base Case model.  The trailing “,I” and “,0” on the b0i and bji parameters also refer to 
the alternate models (I and 0, respectively) while n(I) and r(I) are the size of the vector, Y, 
included in computing losses and the size of the vector, X, included in computing Y for model I, 
and n(0) and r(0) are defined similarly for the Base Case (0) model.  The calibration of the 
various loss models suggested by Equation (6.7) results in unbiased losses only at the level 
selected for X.  In the illustrations that follow, we ensure unbiased models only at the median 
level of X.  Alternative loss models are understood to mean that both n and r as well as the 
constituent structural response parameters (Yi, i = 1 to n) and the constituent GMPs (Xj, j = 1 to r) 
can vary. 

For a lognormal random variable, the mean losses can be written as follows: 
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Note that the mean losses )(X
nrLµ  are dependent (see Equation 6.3) on the loss model 

parameters, αi, the model parameters for predicting response from ground motion parameters, bji, 
the variance of the random error terms, ][lnVar |XnrLε , and the levels of intensity for each of the 
GMPs in the vector, X.  In addition to estimates of the mean losses, it is also of interest to 
estimate the range of values of losses that can result for a given X.  This can be done by studying 
specific percentile confidence intervals of losses.  We will present results of the 95% (central) 
confidence intervals on losses that are computed using the 2.5% non-exceedance losses, 
Lnr,2.5(X), and the 97.5% non-exceedance losses, Lnr,97.5(X), for a given X: 

X

X

XX

XX
|ln

|ln

96.1
5.97,

96.1
5.2,

)(ˆ)(

)(ˆ)(
Lnr

Lnr

eLL

eLL

nrnr

nrnr

ε

ε

σ

σ

+

−

=

=
                                           (6.9) 



 79

The 95% confidence interval on losses, L95(X), is computed as: 

)()()( 5.2,5.97,95 XXX nrnr LLL −=                                          (6.10) 

In the following, we compare estimates of the mean losses and the 95% confidence intervals on 
losses conditioned on X for various choices of the response variable vector, Y, and the ground 
motion parameter vector, X.  

 

6.3 SIMULATED DATA ON LOSSES 

In order to compare the predictive power of different choices of the response measure vector, Y, 
and the ground motion parameter vector, X, we need loss models that are consistent for the 
different choices of Y.  As mentioned earlier, such models could be easily developed if we had 
real data on losses and corresponding response measures.  However, since such data do not 
currently exist, we rely here on losses that are not a result of actual documentation of quantitative 
losses that followed earthquakes, but rather are “simulated” based on nonlinear dynamic time-
history analyses performed on steel MRF buildings.  In particular, we used the ductile model of 
the 9-story building subject to the 140 ground motions presented in Chapter 3.  These simulated 
losses as developed for this study represent a composite but fictitious indication of damage that 
is related to the following different performance measures that are obtained from the nonlinear 
analyses: 

• peak inter-story drift ratios (at all stories); 

• peak roof drift ratio; 

• ratio of plastic hinges formed to the total number of possible hinge locations; 

• state of stress (degree of inelastic behavior) of individual structural members. 

In plain words, every one of the 140 ground motions is run through the building model and, in 
each case, the building response quantities itemized above are monitored and recorded.  The 
“loss” is a function of those four quantities. 

The various performance measures are combined to yield the composite simulated “loss” 
measure.  In addition, these simulated losses are best studied only in relative terms, not in 
absolute values such as repair costs in dollars.  In the following studies, then, it is most useful to 
compare loss estimates from the various loss models discussed in relative terms – for example, 
relative to the base case model to be discussed first.  As was stated in Section 6.1, a limitation of 
this brief study on the use of MMLR results from Chapter 5 in loss estimation illustrations is that 
we are forced to employ simulated loss data instead of real data.  Moreover, recognizing that we 
are merely developing a procedure for loss estimation here, the nonlinear dynamic analyses from 
which we simulate loss data are the same analyses that were performed on one of the buildings 
(the 9-story building ductile model) using the 140 ground motions described in Chapter 3. 
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Note that while there are obvious limitations to using simulated loss data in lieu of actual data 
from the field, or even simulated data obtained from an accurate analysis of the repair or 
replacement cost of each building component in different damage states, it is reasonable to 
expect that the performance indicators used to arrive at the simulated data are likely to be 
correlated with damage and, thus, with losses.  The main purpose for using simulated loss data 
that are based on realistic structural performance indicators associated with damage is so that we 
can have consistent loss estimates to be studied in our examples.  In particular, once such loss 
data are simulated, regression of these losses on any single scalar or vector of response variables, 
Y, can yield estimates of α0 and αi in Equation 6.2 as well as coefficient of variation estimates of 
losses, V(Ln), for a model where n structural response measures are employed.  Table 6.1 
summarizes results for the 9-story building from regressions of loss data on four different 
choices of Y: {MIDR}, {RDR}, {MIDR, RDR}, and {IDR1, IDR5, IDR8}.  These four loss models 
are discussed in the examples that follow. 

It is also worth noting at this point that the loss data were not based on use of the brittle models 
for the structures and as such will not be applied to those cases.  Moreover, only a single building 
(i.e., the 9-story one) was considered in the loss data simulation.  As such, we limit our 
illustrative studies of loss estimation to such ductile 9-story buildings (except for one very brief 
case where we apply the same loss model definition to the 3-, 9- and 20-story ductile building 
models in the Base Case model with Y = {MIDR}). 

From Table 6.1, it may be noted that the uncertainty levels (characterized by the coefficient of 
variation of losses given Y) in the four loss models presented there are remarkably similar.  This 
is a result of the approach followed here for simulating loss data from engineering analyses.  In 
reality, one might expect that there would be significant benefit and thus a greatly reduced V(Ln) 
for a 9-story building from using a model where Y = {IDR1, IDR5, IDR8} versus one where Y = 
{RDR}, for example.  Another important point to note is that the levels of uncertainty associated 
with loss estimation in more realistic cases are expected to be a lot higher than is seen here with 
these simulated data where the coefficients of variation are never greater than 20%. 

 

 

Response Vector, Y n α0 αi (i = 1 to n) V(Ln) 
{MIDR} 1 5.346 0.538 0.181 
{RDR} 1 6.066 0.499 0.177 

{MIDR, RDR} 2 6.192 0.263, 0.270 0.159 
{IDR1, IDR5, IDR8} 3 6.300 0.114, 0.217, 0.218 0.156 

Table 6.1 Estimates of loss model parameters and coefficient of variation for losses based on 
different selections of Y in regressions of losses on Y. 
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Next we study estimates of mean losses and 95% confidence intervals on losses based on 
different loss models and different MMLR regression choices involving Y and X.  While any of 
the regression models for Y on X presented in Chapter 5 could have been chosen, our 
illustrations are only for the ductile building models, only for the loss models shown in Table 
6.1, and only for elastic first- and higher-mode displacement-based GMPs in X (i.e., X does not 
include any of the inelastic GMPs discussed in Chapter 5, nor any of the energy-based GMPs 
discussed there).  Furthermore, as mentioned earlier, in the illustrations that follow, losses are not 
in real monetary terms but are best discussed in relative terms – for instance, with direct 
comparisons with a Base Case model that we present first. 

 

6.4 LOSS ESTIMATION USING A FIRST-MODE ELASTIC GMP 

Base Case: n = 1; r = 1; Y = {MIDR}; X = {Sa(T1)} 

Most types of damage in framed structures, and some non-structural damage as well (e.g., 
damage to partitions), are known to be related to inter-story drifts.  The maximum (over all 
stories) peak inter-story drift ratio (MIDR) is commonly thought to be related to local collapse.  
As a result, MIDR is often used as a response measure related to damage and, hence, monetary 
losses resulting from an earthquake.  Figure 6.1 shows a plot of non-dimensional mean losses 
versus first-mode spectral acceleration for all the three buildings assuming ductile behavior at 
connections.  As we discussed in Section 6.3, all the loss estimation studies that we will discuss 
presently will apply to the 9-story building alone.  However, in this first very brief case at the 
outset, we assume that the same loss model (developed from data on the ductile 9-story building) 
is applicable to all three building types with the same level of uncertainty.  This may not be the 
case in general – for example, the uncertainty in predicting losses might increase with number of 
stories due to increased variability in the response.  An increased variability in the response for 
taller buildings would tend to raise the curves for the 9- and 20-story buildings in Figure 6.1 even 
more.  If data were available, such plots could also be prepared for buildings of other types and 
sizes and for different locations.  Then from knowledge of the levels of ground motion intensity 
likely to be experienced, one could estimate a probabilistic distribution of losses resulting from 
an earthquake with appropriate weightings for different GMP (intensity) levels based on their 
likelihood of occurrence.  As was discussed earlier, the mean losses conditional on X (see 
Equation 6.8) are directly related to the regression parameters obtained in Section 5.5, to the 
variability in predicting response from ground motion parameters, to the variability in the loss 
model, and to the loss model parameters.   
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Figure 6.1 Plots of mean losses versus first-mode elastic spectral acceleration for the 3-, 9-, and 
20-story buildings. 

 

Figure 6.1 suggests that the mean losses predicted for the 9- and 20-story buildings are 
considerably higher than for the 3-story building.  This is due to the greater variability in 
response predictions for the 9- and 20-story structures (see Table 6.2).  There is greater 
variability in predicting MIDR based on first-mode spectral acceleration, Sa(T1), for the 9- and 
20-story structures, as this response measure is contributed to significantly by higher modes for 
these structures.  This is different for the 3-story structure where the response measure (MIDR) is 
mainly dominated by the first mode. 

 

 

Building b0i b1i 1|ln SaMIDRεσ

3-Story 0.034 0.850 0.175 
9-Story 0.064 0.796 0.336 
20-Story 0.068 0.705 0.414 

Table 6.2 Model parameters and standard deviation of residuals for the response measure MIDR 
regressed on Sa(T1) for the 3-, 9-, and 20-story buildings (ductile models).  (See Tables A.19, A. 
25, and A.31.) 
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To compare the uncertainty in loss estimates based on different choices of the ground motion 
parameter vector, X, and the response measure vector, Y, with the uncertainty for the base case 
model, we study the mean loss and the 95% confidence interval on losses predicted with each 
model with respect to the corresponding loss predictions for the base case.  The extent of the 
reduction (if any) in the 95% confidence interval for any given model over the base case 95% 
confidence interval will indicate the effectiveness of that model in estimating losses. 

Case 1: n = 1; r = 1; Y = {RDR}; X = {Sa(T1)}; 

The peak roof drift ratio (RDR) is often used as a measure of global damage to structures and is 
also related to the global stability of the structure.  Hence, we consider the use of RDR as a 
response measure to estimate losses.  Figure 6.2 shows comparative plots of the mean losses and 
the 95% confidence intervals on losses for the ductile 9-story building using two models, the 
Base Case and Case 1.  The mean losses are close to each other for small levels of Sa(T1) (< 
0.2g), and are only slightly different at higher levels.  However, the confidence intervals 
(indicated by the vertical separation between the top and bottom curves for each set) for loss 
estimates based on RDR are smaller than those based on MIDR.  For example, at the median 
level of Sa(T1) of 0.08g, based on the 140 selected ground motions, the ratio of the 95% 
confidence intervals for Case1 to that for the Base Case is 0.72.  This is mainly due to the 
smaller errors in predicting RDR from knowledge of Sa(T1) versus the errors in predicting MIDR 
(see Table 5.3), as the peak roof drift ratio is dominated by the first-mode response of the 
structure.  It is worth pointing out that though it can be agreed that RDR is in fact better predicted 
using Sa(T1) than is MIDR, the uncertainty in loss estimates using RDR instead of MIDR may not 
be lower if actual loss data were used rather than the simulated loss data that led to smaller 
standard errors for the RDR-based model relative to the MIDR-based model (see Table 6.1).  It is 
reasonable to expect that the maximum inter-story drift ratio could be a better predictor of 
damage and losses than the roof drift ratio.  Nevertheless, for the simulated loss data used here, 
the results are as discussed above. 
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Figure 6.2 Mean losses and 95% confidence intervals on losses predicted by using {MIDR} and 
{RDR} for the ductile 9-story structure following regression on the fundamental-mode spectral 
acceleration, Sa(T1). 

 

Case 2: n = 2; r = 1; Y = {MIDR, RDR}; X = {Sa(T1)}; 

The maximum (over all stories) peak inter-story drift ratio (MIDR) is related more to local 
damage, whereas the peak roof drift ratio (RDR) is related more to global damage and overall 
stability of the structure.  The two measures when taken together can represent two different 
damage aspects (e.g., the structure may have a low overall drift but may have a large localized 
story drift or vice versa).  By considering either of the two measures singly we may not be able 
to capture the true state of damage to the structure.  By combining these two measures to 
estimate losses we could expect to improve our confidence in the results (i.e., obtain smaller 
confidence intervals).  Figure 6.3 shows comparative plots of the mean losses and the 95% 
confidence intervals on losses for the ductile 9-story building using two models, the Base Case 
and Case 2.  As expected we have a smaller 95% confidence interval in Case 2 (e.g., at the 
median level of Sa(T1) of 0.08g, the ratio of the 95% confidence interval for Case 2 to that for the 
Base Case is 0.74).  When we consider a vector of response measures for estimating losses, we 
need to take into account the correlation among the response measures involved.  The 
normalized 95% confidence intervals for Case 2, with and without consideration for correlation 
among the response measures, are presented in Table 6.3.  It can be clearly seen that, if we 
ignore the effect of correlation among the different response measures, we would 
unconservatively estimate smaller confidence intervals on losses.  However, these differences in 
this case are not very great here – this, however, is partly due to the fact that we had 
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unrealistically small standard errors in our loss models (as can be confirmed from Table 6.1).  
Also, though, the correlation between MIDR and RDR is only 0.47 (see Table 5.4) and hence the 
additional uncertainty in loss estimates due to the second term on the right hand side of Equation 
6.6 is not significant. 

 

 

Figure 6.3 Mean losses and 95% confidence intervals on losses predicted by using {MIDR} and 
{MIDR, RDR} for the ductile 9-story structure following regression on the fundamental-mode 
spectral acceleration, Sa(T1). 

 

 

 

Case 2 With Correlation Without Correlation 
Normalized 95% 

Confidence interval 0.74 0.71 

Table 6.3 Normalized 95% confidence intervals on losses predicted by using a vector of 
response measures {MIDR, RDR} with and without consideration for the correlation among the 
response measures for the ductile 9-story building at the median level of Sa(T1) equal to 0.08g. 
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Case 3: n = 3; r = 1; Y = {IDR1, IDR5, IDR8}; X = {Sa(T1)}; 

Since most types of structural damage as well as some non-structural damage (e.g., damage to 
partitions) are known to be related to inter-story drifts, by employing a response vector that 
includes several peak inter-story drift ratios over the height of the structure we might expect to 
reduce the uncertainty in estimating losses (see Table 6.1).  Figure 6.4 shows comparative plots 
of the mean losses and the 95% confidence intervals on losses for the ductile 9-story building 
using two models, the Base Case and Case 3.  As expected we have a smaller 95% confidence 
interval in the latter case (e.g., at the median level of Sa(T1) of 0.08g, the ratio of the 95% 
confidence intervals for Case 3 to that for the Base Case is 0.78).  The normalized 95% 
confidence intervals for this case, with and without consideration for the correlation among the 
different response measures, are presented in Table 6.4.  As we have a greater number of 
response measures here (relative to Case 2), we see an even greater underestimation of the 
confidence intervals if we ignore the effect of correlation among the response measures.  As 
pointed out before, this error due to neglecting correlation is often unconservative.  The 
correlation coefficients needed here are obtained directly using multivariate multiple linear 
regression (MMLR).  Unlike in Case 2, here the correlations between the three IDR values are 
significantly larger (between 0.68 and 0.80, as can be verified from Table 5.2) and hence, the 
omission of the second term on the right hand side of Equation leads to significant reduction in 
the confidence interval. 

 

 

Figure 6.4 Mean losses and 95% confidence intervals on losses predicted by using {MIDR} and 
{IDR1, IDR5, IDR8} for the ductile 9-story structure following regression on the fundamental-
mode spectral acceleration, Sa(T1). 
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Case 3 With Correlation Without Correlation 
Normalized 95% 

Confidence interval 0.78 0.68 

Table 6.4 Normalized 95% confidence intervals on losses predicted by using a vector of 
response measures, {IDR1, IDR5, IDR8}, with and without consideration for the correlation 
among the response measures for the ductile 9-story building at the median level of Sa(T1) equal 
to 0.08g. 

 

Loss Model GMP 
X 

Response Measure 
Y 

Normalized 95%  
Confidence Interval 

Base Case Sa(T1) {MIDR} 1.00 
Case 1 Sa(T1) {RDR} 0.72 
Case 2 Sa(T1) {MIDR; RDR} 0.74 
Case 3 Sa(T1) {IDR1, IDR5, IDR8} 0.78 

Table 6.5 Normalized 95% confidence intervals on losses predicted for the ductile 9-story 
building for different cases at the median level of Sa(T1) of 0.08g. 

 

Table 6.5 summarizes the normalized 95% confidence intervals for Cases 1 through 3.  We see 
that the confidence interval is smallest for predictions based on RDR alone as the response 
measure (Case 1).  This is due to the smaller variability in predicting RDR and the greater 
variability in predicting peak inter-story drift ratios (and MIDR) from knowledge of the first-
mode-based parameter, Sa(T1), alone (see Tables 5.1 and 5.3). 

We point out again that any suggestion resulting from the results summarized in Table 6.5 such 
as that the use of RDR alone leads to models for losses that have the least uncertainty may not be 
true in general when one employs real data on losses.  Only because the conditional uncertainty 
on losses, Lnr, given Y is fairly comparable in the four models (see Table 6.1), the net uncertainty 
is driven by the ability to predict Y from Sa(T1), and here RDR is best predicted from knowledge 
of Sa(T1). 

 

6.5 LOSS ESTIMATION USING FIRST- AND SECOND-MODE ELASTIC GMP’S 

As was explained earlier (see Equation 6.6), the uncertainty in loss estimation is influenced by 
the uncertainty in predicting Y from X.  It was shown in Section 5.5 that the uncertainty in 
prediction of response variables can be reduced significantly if we use a vector of GMPs (such as 
a vector comprising of Sa(T1) and the ratio Sa(T2)/Sa(T1)) instead of a single scalar GMP.  
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Therefore, if we use a vector of ground motion parameters, we might expect to reduce the errors 
that propagate towards uncertainty in loss estimation.  In this section, we consider loss estimation 
based on the use of two ground motion parameters.  First, we consider the estimation of losses 
using a single scalar response measure and later we consider estimation of losses based on the 
use of a vector of response measures. 

Case 1’: n = 1; r = 2; Y = {MIDR}; X = {Sa(T1), Sa(T2)/Sa(T1)}; 

Figure 6.5 shows a 3-D plot of mean losses versus {Sa(T1), Sa(T2)/Sa(T1)} for the ductile 9-story 
building.  Note that such a plot would in general need to be combined with the joint likelihood of 
{Sa(T1), Sa(T2)/Sa(T1)} pairs at a given site to evaluate a probabilistic distribution on losses.  In 
general, large Sa(T1) values are not associated with large Sa(T2)/Sa(T1) values.  Intuitively, when 
Sa(T1) is on a peak of a response spectrum, it is relatively unlikely that Sa(T2) is also on a peak.  
For example, based on the 140 selected ground motions of this study, the joint distribution of 
Sa(T1) and Sa(T2)/Sa(T1) is plotted in Figure 6.6.  It is clear that the joint occurrence of large 
values of Sa(T1) and Sa(T2)/Sa(T1) is not very likely.  Therefore, mean losses are expected to 
remain at lower levels than those suggested by the peak of the graph in Figure 6.5. 

 

 

 

Figure 6.5 Plot of mean losses versus the vector {Sa(T1), Sa(T2)/Sa(T1)} for the ductile 9-story 
building. 
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Figure 6.6 Joint distribution of spectral acceleration at the first mode, Sa(T1), and the ratio of 
spectral accelerations at the first two modes, Sa(T2)/Sa(T1), for the ductile 9-story building, based 
on the 140 selected ground motions. 

 

Loss Model X = {Sa(T1), Sa(T2)/Sa(T1)} X = {Sa(T1)} 
Normalized 95% 

Confidence interval 0.80 1.0 

Table 6.6 Normalized 95% confidence intervals on losses estimated from {MIDR} using 
different ground motion parameter vectors, X, at median levels of Sa(T1) and Sa(T2)/Sa(T1).  

 

Table 6.6 shows the normalized 95% confidence interval on losses for this case (Case 1’) 
evaluated at the median values of the variables in the ground motion parameter vector, X.  As 
expected, this confidence interval is significantly tighter (by 20%) than the corresponding 
interval for the Base Case (reported in the last column of the table) since the GMP vector 
includes second-mode consideration, which reduces uncertainty in predicting MIDR.  This can be 
explained by studying Tables 5.3 and 5.16 where standard errors are seen to be greatly reduced 
upon adding Sa(T2)/Sa(T1) to Sa(T1) in X for predicting MIDR. 
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Case 2’: n = 1; r = 2; Y = {RDR}; X = {Sa(T1), Sa(T2)/Sa(T1)}; 

This case differs from Case 1’ only in the use of RDR rather than MIDR as the response 
parameter of choice for estimating losses.  Table 6.7 presents normalized confidence intervals at 
the median values of the variables in the ground motion parameter vector, X.  As expected there 
is not much improvement in the accuracy of loss predictions by including a second-mode 
parameter when the response measure employed is the peak roof drift ratio.  Peak roof drift ratio, 
being dominated by the first-mode response of the structure, is very well correlated with the first-
mode spectral acceleration and little is gained from using a vector of GMPs that includes second-
mode spectral acceleration instead of the first-mode spectral acceleration (e.g., standard errors in 
predicting RDR are only slightly decreased by addition of Sa(T2)/Sa(T1) to Sa(T1) in X, as can be 
verified from Tables 5.3 and 5.16). 

 

 X = {Sa(T1), Sa(T2)/Sa(T1)} X = {Sa(T1)} 
Normalized 95% 

Confidence interval 0.722 0.724 

Table 6.7 Normalized 95% confidence intervals on losses estimated from {RDR} using different 
ground motion parameter vectors, X, at median levels of Sa(T1) and Sa(T2)/ Sa(T1). 

 

Case 3’: n = 2; r = 2; Y = {MIDR, RDR}; X = {Sa(T1), Sa(T2)/Sa(T1)}; 

Table 6.8 presents normalized confidence intervals at the median values of the variables in the 
ground motion parameter vector, X.  Since the maximum inter-story drift ratio (MIDR) is better 
correlated with a vector of ground motion parameters that includes second-mode spectral 
acceleration (as we saw in Case 1’), we see an improvement in the accuracy of loss estimations 
in this case compared to Case 2.  As seen in Table 6.9, the error due to neglecting correlation 
among the two response variables (MIDR and RDR) is small because overall uncertainty is 
artificially small in this case where simulated loss data were used.  We commented about reasons 
for this when discussing Case 2 and Table 6.3 before. 

 

 X = {Sa(T1), Sa(T2)/Sa(T1)} X = {Sa(T1)} 
Normalized 95% 

Confidence interval 0.67 0.74 

Table 6.8 Normalized 95% confidence intervals on losses estimated by using {MIDR, RDR} 
with different ground motion parameter vectors, X, at median levels of Sa(T1) and Sa(T2)/ Sa(T1).  
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Case 3’ With Correlation Without Correlation 
Normalized 95% 

Confidence interval 0.67 0.65 

Table 6.9 Normalized 95% confidence intervals on losses predicted by using a vector of 
response measures {MIDR, RDR} with and without consideration for the correlation among the 
response measures for the ductile 9-story building at median levels of Sa(T1) and Sa(T2)/ Sa(T1). 

 

Case 4’: n = 3; r = 2; Y = {IDR1, IDR5, IDR8}; X = {Sa(T1), Sa(T2)/Sa(T1)}; 

Table 6.10 presents normalized confidence intervals at the median values of the variables in the 
ground motion parameter vector, X.  The errors in predicting the peak inter-story drift ratios are 
smaller, particularly at the eighth story level (compare standard errors in Tables 5.1 and 5.13), 
resulting in a smaller confidence interval for the losses relative to Case 3.  Also, as seen in Table 
6.11, the error due to neglecting correlation among the three response measures is not very large 
here. 

The normalized 95% confidence intervals for Cases 1’, 2’, 3’ and 4’ where first- and second-
mode elastic GMPs were used to estimate losses are summarized in Table 6.12.  The smallest 
confidence intervals are for the loss models predicted from two or more response measures 
(Cases 3’ and 4’) that are in turn predicted from a vector comprised of two elastic ground motion 
parameters, Sa(T1) and Sa(T2)/Sa(T1). 

 

 X = {Sa(T1), Sa(T2)/Sa(T1)} X = {Sa(T1)} 
Normalized 95% 

Confidence interval 0.67 0.78 

Table 6.10 Normalized 95% confidence intervals on losses estimated by using {IDR1, IDR5, 
IDR8} with different ground motion parameter vectors, X at median levels of Sa(T1) and Sa(T2)/ 
Sa(T1).  

Case 4’ With Correlation Without Correlation 
Normalized 95% 

Confidence interval 0.67 0.63 

Table 6.11 Normalized 95% confidence intervals on losses predicted by using a vector of 
response measures {IDR1, IDR5, IDR8} with and without consideration for the correlation among 
the response measures for the ductile 9-story building at median levels of Sa(T1) and Sa(T2)/ 
Sa(T1). 



 92

 

Loss Model GMP 
X 

Response Measure 
Y 

Normalized 95%  
Confidence Interval

Case 1’ Sa(T1), Sa(T2)/Sa(T1) {MIDR} 0.80 
Case 2’ Sa(T1), Sa(T2)/Sa(T1) {RDR} 0.72 
Case 3’ Sa(T1), Sa(T2)/Sa(T1) {MIDR; RDR} 0.67 
Case 4’ Sa(T1), Sa(T2)/Sa(T1) {IDR1, IDR5, IDR8} 0.67 

Table 6.12 Normalized 95% confidence intervals on losses predicted for the ductile 9-story 
building for different cases and at the median levels of the ground motion parameter vector, X. 

6.6  SUMMARY 

Loss models were developed that relate losses to various structural response measures.  This was 
achieved by means of nonlinear dynamic analyses of ductile building models because field data 
on structural response and associated damage/loss pairs are unavailable.  Several consistent loss 
models were developed using the simulated data.  The response measures considered were the 
maximum (over all stories) peak inter-story drift ratio (MIDR), the peak roof drift ratio (RDR), 
and a group of individual peak inter-story drift ratios (IDRs).  Studies were focused on the 9-
story building with ductile connections. 

Results summarizing mean losses and 95% confidence intervals on losses were presented for 
various models.  There are several sources of uncertainty that arise in predicting losses.  One 
source relates to the number and type of response measures used to predict losses.  Another 
source relates to the GMP set used to predict the response measures.  A third source was shown 
to be directly related to simultaneous estimation of pairs of response measures (and hence their 
correlation) that are involved in the loss model. 

While the loss estimation examples are merely illustrative and were based on simulated loss data, 
the benefit of using multivariate multiple linear regression (MMLR) and thus of estimating the 
correlation between different response measures involved, as well as the benefit of using a GMP 
vector (over a scalar, even though only illustrated for elastic GMPs) was demonstrated in the loss 
estimation examples.  Such studies need to expand to consider real data, whenever available, or 
loss data simulated using a more refined approach than that adopted here, and to include 
alternative response measures in Y and other elastic and inelastic ground motion parameters in X.  
As long as nonlinear dynamics analyses can be carried out for the class of structures of interest 
so that MMLR studies can relate structural performance to ground motion parameters, available 
loss data and correlations within a subset of the structural response variables can help establish 
the loss model.  Then, the methodology presented here could be of considerable use if 
implemented in decision making and planning against earthquake-related losses. 
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CHAPTER 7 – CONCLUSIONS 

 

7.1 GENERAL SUMMARY 

The objectives of this research were (i) to investigate whether vector combinations of ground 
motion parameters (GMPs) (also referred to as intensity measures or IMs in the literature) could 
more accurately predict vector and scalar measures of structural response than the use of a single 
scalar GMP (e.g., spectral acceleration); and (ii) to study the predictive power of energy- versus 
displacement-based GMPs.  The derivation of input and absorbed energy-based parameters was 
presented and differences between the conventional spectral acceleration and the energy-
equivalent accelerations were also discussed.  Inelastic GMPs, both energy- and displacement-
based, were also defined. 

A total of 140 ground motions relevant to the Southern California region were obtained from the 
Pacific Earthquake Engineering Research (PEER) Center Strong Motion Database assembled by 
Dr. Walter Silva.  The records included "near-source" and "ordinary" ground motions from small 
and large (Mw>6.5) magnitude earthquakes.  Elastic and inelastic time-history analysis of SDOF 
oscillators subject to these records produced GMPs for a range of periods of interest for the three 
buildings that were considered.  Two-dimensional computational models of the three moment-
resisting frame buildings were analyzed, again for all 140 records, using the non-linear dynamic 
analysis programs RUAUMOKO and DRAIN-2DX.  Three different models were considered for 
each building that assumed (i) elastic, (ii) ductile, and (iii) brittle beam-column connection 
behavior. 

Multivariate multiple linear regressions (MMLRs) were carried out for various vector and scalar 
choices of ground motion parameters (X) and response measures (Y).  Estimates of the regression 
model parameters and the covariance matrix of the residuals were obtained.  The predictive 
power of the various GMPs was measured in terms of the standard deviations of the residuals, 
since uncertainty in response predictions based on regression models is directly related to them. 

Results from the regression analyses were used to illustrate loss estimation calculations and the 
benefit of the MMLR analyses with vector GMPs and vector structural response measures. 

 

7.2 CONCLUSIONS 

The energy- and displacement-based ground motion parameters considered (i.e., input and 
absorbed energy-equivalent acceleration, and spectral acceleration) were found to be highly 
correlated with each other over the range of periods of interest, and therefore they tend to have 
similar predictive power for the responses of the chosen frames.  In other words, including the 
energy-based GMPs in a vector with spectral acceleration(s) did not appreciably improve the 
structural response predictions.  Despite the fairly strong correlation between the inelastic and 
elastic counterparts of these GMPs, however, the use of inelastic GMPs did improve the 
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predictions of structural response, as did the inclusion of elastic GMPs at multiple periods 
corresponding to the modes of vibration for each building. 

The response of the 3-story frame considered was dominated by the first mode.  As a result, the 
response measures were very highly correlated with first-mode-based intensity measures.  By 
including a second-mode-based parameter in our response regressions for the 3-story building, 
little reduction was achieved in the standard deviation of the residuals.  However, consideration 
of an inelastic GMP in lieu of an elastic one did significantly improve the prediction of nonlinear 
structural response. 

In contrast to the 3-story building, as expected the response of the 9- and 20-story structures was 
significantly influenced by higher modes.  Standard deviations of the residuals of the peak 
interstory drift ratios (IDRs) regressed on first-mode-based parameters were, in general, larger at 
the higher stories where higher modes were important.  Also, standard deviations of the residuals 
for maximum peak interstory drift ratio (MIDR) and the average peak interstory drift ratio 
(AIDR) were higher than that for the peak roof drift ratio (RDR), which was more highly 
dominated by the first mode.  There was strong correlation among the residuals of adjacent 
stories, as well as between pairs of stories whose response was significantly influenced by higher 
modes.  By including higher-mode-based parameters in a vector-valued GMP set, the response 
predictions of the 9- and 20-story frames were improved.  The standard deviations of the 
residuals of the response measures (especially MIDR, AIDR and the higher-floor IDRs) were 
smaller.  For example, for the 20-story frame, these standard deviations were sometimes reduced 
by a factor of two, which would translate into a four-fold reduction in the number of analyses 
required to achieve results with similar levels of confidence (as compared to when one uses a 
single scalar first-mode GMP to predict response).  The use of inelastic GMPs also improved the 
prediction of some IDRs in the 9-story building, but for the long-period 20-story building, the 
inelastic GMPs were comparable to their elastic counterparts (as expected based on the "equal 
displacements rule"), and hence did little to improve the predictions. 

In summary, for all three buildings considered here a vector of GMPs that includes higher-mode 
and/or inelastic terms has proven to be superior to single scalar GMPs in predicting localized 
structural responses such as IDRs.  The gain is not significant, however, when trying to estimate 
more global response measures such as the RDR.  

The benefits of using MMLR analyses to predict a vector of response measures using a vector of 
GMPs as predictor variables was demonstrated in the loss estimation examples.  The use of a 
vector GMP instead of a scalar, and the availability of correlation information among the 
response measures (obtained directly through MMLR analyses), both improved loss estimates. 

 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

An important element missing from the current study is that actual recorded data on losses 
correlated with structural response measures were not available.  Regression studies using well-
documented data from past earthquakes need to be carried out to establish more realistic 
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relationships between loss and response measures that can then be used in loss estimation 
studies. 

This study could be easily extended to other regions and structure types.  Uncertainty in material 
strength and other modeling assumptions can also be considered.  Other ground motion 
parameters could be included in addition to the ones considered here. 

If a GMP vector is useful in predicting the response of structures, as was true for the cases 
considered in this study, it follows that ground motion studies will need to be carried to establish 
the joint occurrence of these ground motion parameters as a function of magnitude, distance, and 
other pertinent quantities, as is customarily done in attenuation models.  Then to estimate the 
joint likelihood of a vector of ground motion parameters at a particular site, we will need to 
perform a vector-valued probabilistic seismic hazard analysis.  Even though such vector-valued 
seismic hazard analyses are not routinely carried out in practice, the methodology and software 
for carrying out such analyses are available to the earthquake engineering community, and these 
hazard analyses can usefully complement studies such as this one that focus on correlation of 
structural performance and losses with vectors of GMPs.  The present study using MMLR with 
vectors of GMPs as predictors of vectors of structural response measures (ultimately linking 
them to loss models) is, in fact, one example of the type of study that motivates the need for 
vector-valued seismic hazard analyses.  By combining such studies, either site-specific or region-
specific loss studies can be carried out that employ probabilistic information on a suitable GMP 
vector together with robust models of structural performance vectors to yield probabilistic 
distributions on damage/losses. 

Specifically, then, one can efficiently compute, for example, the annual likelihood that 
earthquake-induced losses exceeding any specified amount are suffered by a building at a given 
site.  This can be done by convolving the site hazard, either in terms of a vector of GMPs or of a 
scalar GMP, with the loss versus response measure(s) relationships mentioned at the beginning 
of this subsection.  Such fully probabilistic loss estimation analyses are key studies for the 
different stakeholders, such as property owners, insurance and reinsurance companies, capital 
lending institutions, local government agencies, and structural engineers, all of whom strive to 
make informed decisions regarding earthquake risk mitigation strategies. 
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APPENDIX A 

Presented here are the results of all the regression analyses for the ductile 3-, 9-, and 20-story 
buildings, modeled with the RUAUMOKO program and subjected to the 140 ground motion 
records considered.  They are organized into sections based on the structural response vector and 
the GMP set on which the response vector is regressed. 

A.1 REGRESSIONS OF PEAK INTER-STORY DRIFT RATIOS (IDR'S) ON FIRST-
MODE ELASTIC GMP'S 

 

i b0i b1i σlnε 
1 0.025 0.866 0.168 
2 0.034 0.907 0.121 
3 0.031 0.829 0.194 

Table A.1 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 3-story model regressed on Sa(T1). 

 

ρ 1 2 3 
1 1.00 0.62 0.70 
2 * 1.00 0.51 
3 * * 1.00 

Table A.2 Error correlation matrix for the IDR response of the 3-story model regressed on 
Sa(T1). 

 

i b0i b1i σlnε 
1 0.016 0.916 0.194 
2 0.021 0.959 0.163 
3 0.020 0.876 0.218 

Table A.3 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 3-story model regressed on Ai(T1). 

 

ρ 1 2 3 
1 1.00 0.74 0.77 
2 * 1.00 0.65 
3 * * 1.00 

Table A.4 Error correlation matrix for the IDR response of the 3-story model regressed on 
Ai(T1). 
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i b0i b1i b2i σlnε 
1 0.022 0.888 0.287 0.161 
2 0.030 0.928 0.274 0.112 
3 0.028 0.848 0.245 0.190 

Table A.5 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 3-story model regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 

 

ρ 1 2 3 
1 1.00 0.58 0.68 
2 * 1.00 0.48 
3 * * 1.00 

Table A.6 Error correlation matrix for the IDR response of the 3-story model regressed Sa(T1) 
and the ratio Ai(T1)/Sa(T1). 

 

i b0i b1i σlnε 
1 0.060 0.848 0.215 
2 0.054 0.877 0.175 
3 0.054 0.892 0.145 
4 0.055 0.877 0.164 
5 0.054 0.864 0.181 
6 0.053 0.847 0.233 
7 0.059 0.836 0.284 
8 0.059 0.784 0.355 
9 0.044 0.711 0.392 

Table A.7 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 9-story model regressed on Sa(T1). 
 

ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.93 0.74 0.63 0.75 0.84 0.80 0.80 0.77 
2 * 1.00 0.82 0.59 0.65 0.74 0.75 0.73 0.67 
3 * * 1.00 0.77 0.63 0.67 0.63 0.60 0.59 
4 * * * 1.00 0.84 0.65 0.48 0.51 0.55 
5 * * * * 1.00 0.84 0.65 0.68 0.70 
6 * * * * * 1.00 0.91 0.88 0.86 
7 * * * * * * 1.00 0.96 0.90 
8 * * * * * * * 1.00 0.96 
9 * * * * * * * * 1.00 

Table A.8 Error correlation matrix for the IDR response of the 9-story model regressed on 
Sa(T1). 
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i b0i b1i σlnε 
1 0.044 0.909 0.219 
2 0.040 0.939 0.187 
3 0.039 0.954 0.164 
4 0.040 0.938 0.183 
5 0.040 0.925 0.193 
6 0.039 0.910 0.230 
7 0.044 0.899 0.277 
8 0.045 0.843 0.352 
9 0.035 0.765 0.387 

Table A.9 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 9-story model regressed on Ai(T1). 

 

ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.93 0.75 0.66 0.76 0.84 0.79 0.79 0.75 
2 * 1.00 0.84 0.65 0.69 0.74 0.72 0.70 0.63 
3 * * 1.00 0.82 0.69 0.66 0.59 0.56 0.53 
4 * * * 1.00 0.86 0.65 0.46 0.49 0.51 
5 * * * * 1.00 0.83 0.63 0.66 0.66 
6 * * * * * 1.00 0.90 0.87 0.85 
7 * * * * * * 1.00 0.96 0.89 
8 * * * * * * * 1.00 0.96 
9 * * * * * * * * 1.00 

Table A.10 Error correlation matrix for the IDR response of the 9-story model regressed on 
Ai(T1).  

 

i b0i b1i b2i σlnε 
1 0.053 0.880 0.408 0.209 
2 0.049 0.905 0.347 0.168 
3 0.049 0.917 0.321 0.139 
4 0.050 0.900 0.291 0.160 
5 0.049 0.891 0.335 0.175 
6 0.046 0.885 0.492 0.223 
7 0.050 0.879 0.553 0.274 
8 0.051 0.823 0.496 0.350 
9 0.038 0.750 0.509 0.387 

Table A.11 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 9-story model regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 
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ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.93 0.72 0.61 0.73 0.82 0.79 0.79 0.76 
2 * 1.00 0.80 0.56 0.62 0.72 0.73 0.72 0.66 
3 * * 1.00 0.76 0.60 0.64 0.59 0.58 0.57 
4 * * * 1.00 0.83 0.63 0.44 0.49 0.53 
5 * * * * 1.00 0.83 0.63 0.67 0.69 
6 * * * * * 1.00 0.90 0.88 0.86 
7 * * * * * * 1.00 0.96 0.90 
8 * * * * * * * 1.00 0.96 
9 * * * * * * * * 1.00 

Table A.12 Error correlation matrix for the IDR response of the 9-story model regressed on 
Sa(T1) and the ratio Ai(T1)/Sa(T1). 

 

i b0i b1i σlnε 
1 0.052 0.733 0.340 
2 0.071 0.772 0.329 
3 0.070 0.791 0.304 
4 0.068 0.800 0.276 
5 0.066 0.809 0.257 
6 0.063 0.805 0.245 
7 0.062 0.808 0.245 
8 0.061 0.806 0.246 
9 0.058 0.786 0.252 
10 0.055 0.763 0.254 
11 0.055 0.744 0.282 
12 0.056 0.730 0.309 
13 0.054 0.717 0.332 
14 0.052 0.701 0.355 
15 0.049 0.673 0.389 
16 0.044 0.648 0.415 
17 0.041 0.624 0.441 
18 0.039 0.602 0.474 
19 0.035 0.571 0.497 
20 0.030 0.543 0.501 

Table A.13 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 20-story model regressed on Sa(T1). 
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i b0i b1i σlnε 
1 0.043 0.780 0.312 
2 0.057 0.819 0.301 
3 0.056 0.839 0.274 
4 0.054 0.848 0.246 
5 0.052 0.855 0.232 
6 0.049 0.850 0.226 
7 0.049 0.853 0.225 
8 0.048 0.851 0.224 
9 0.046 0.831 0.229 
10 0.044 0.806 0.233 
11 0.045 0.787 0.260 
12 0.045 0.773 0.287 
13 0.044 0.760 0.310 
14 0.043 0.744 0.333 
15 0.041 0.718 0.365 
16 0.037 0.692 0.391 
17 0.035 0.668 0.417 
18 0.034 0.646 0.451 
19 0.031 0.614 0.475 
20 0.026 0.583 0.483 

Table A.15 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 20-story model regressed on Ai(T1). 
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i b0i b1i b2i σlnε 
1 0.054 0.842 0.934 0.274 
2 0.053 0.849 0.888 0.247 
3 0.053 0.852 0.786 0.233 
4 0.052 0.844 0.695 0.226 
5 0.051 0.848 0.710 0.225 
6 0.050 0.846 0.728 0.224 
7 0.047 0.828 0.752 0.229 
8 0.045 0.803 0.718 0.234 
9 0.045 0.785 0.757 0.261 
10 0.045 0.775 0.815 0.288 
11 0.042 0.764 0.848 0.311 
12 0.041 0.750 0.887 0.334 
13 0.038 0.728 0.984 0.365 
14 0.033 0.705 1.046 0.389 
15 0.031 0.684 1.082 0.415 
16 0.028 0.665 1.144 0.447 
17 0.026 0.635 1.157 0.471 
18 0.022 0.602 1.076 0.480 
19 0.054 0.842 0.934 0.274 
20 0.053 0.849 0.888 0.247 

Table A.17 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 20-story model regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 
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A.2 REGRESSIONS OF {MIDR, AIDR, RDR} ON FIRST-MODE ELASTIC GMP'S  

 

i b0i b1i σlnε 
MIDR 0.034 0.850 0.175 
AIDR 0.030 0.864 0.144 
RDR 0.030 0.909 0.129 

Table A.19 Regression coefficients and standard deviations of the residuals for the 3-story 
model responses regressed on Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.96 0.66 
AIDR * 1.00 0.76 
RDR * * 1.00 

Table A.20 Error correlation matrix for the 3-story model responses regressed on Sa(T1). 

 

i b0i b1i σlnε 
MIDR 0.022 0.898 0.203 
AIDR 0.019 0.914 0.176 
RDR 0.019 0.962 0.163 

Table A.21 Regression coefficients and standard deviations of the residuals for the 3-story 
model responses regressed on Ai(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.76 
AIDR * 1.00 0.85 
RDR * * 1.00 

Table A.22 Error correlation matrix for the 3-story model responses regressed on Ai(T1). 

 

i b0i b1i b2i σlnε 
MIDR 0.030 0.870 0.252 0.170 
AIDR 0.027 0.886 0.270 0.137 
RDR 0.026 0.933 0.311 0.118 

Table A.23 Regression coefficients and standard deviations of the residuals for the 3-story 
model responses regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 
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ρ MIDR AIDR RDR 
MIDR 1.00 0.96 0.63 
AIDR * 1.00 0.73 
RDR * * 1.00 

Table A.24 Error correlation matrix for the 3-story model responses regressed Sa(T1) and the 
ratio Ai(T1)/Sa(T1). 

 

i b0i b1i σlnε 
MIDR 0.064 0.796 0.336 
AIDR 0.055 0.832 0.228 
RDR 0.047 0.922 0.133 

Table A.25 Regression coefficients and standard deviations of the residuals for the 9-story 
model responses regressed on Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.47 
AIDR * 1.00 0.57 
RDR * * 1.00 

Table A.26 Error correlation matrix for the 9-story model responses regressed on Sa(T1). 

 

i b0i b1i σlnε 
MIDR 0.049 0.857 0.332 
AIDR 0.041 0.893 0.229 
RDR 0.035 0.988 0.143 

Table A.27 Regression coefficients and standard deviations of the residuals for the 9-story 
model responses regressed on Ai(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.96 0.43 
AIDR * 1.00 0.57 
RDR * * 1.00 

Table A.28 Error correlation matrix for the 9-story model responses regressed on Ai(T1). 
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i b0i b1i b2i σlnε 
MIDR 0.055 0.837 0.525 0.329 
AIDR 0.048 0.866 0.431 0.221 
RDR 0.042 0.956 0.429 0.120 

Table A.29 Regression coefficients and standard deviations of the residuals for the 9-story 
model responses regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.43 
AIDR * 1.00 0.52 
RDR * * 1.00 

Table A.30 Error correlation matrix for the 9-story model responses regressed on Sa(T1) and the 
ratio Ai(T1)/Sa(T1). 

 

i b0i b1i σlnε 
MIDR 0.068 0.705 0.414 
AIDR 0.050 0.719 0.320 
RDR 0.053 0.842 0.177 

Table A.31 Regression coefficients and standard deviations of the residuals for the 20-story 
model responses regressed on Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.49 
AIDR * 1.00 0.61 
RDR * * 1.00 

Table A.32 Error correlation matrix for the 20-story model responses regressed on Sa(T1). 

 

i b0i b1i σlnε 
MIDR 0.056 0.751 0.390 
AIDR 0.040 0.764 0.293 
RDR 0.041 0.886 0.162 

Table A.33 Regression coefficients and standard deviations of the residuals for the 20-story 
model responses regressed on Ai(T1). 
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ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.36 
AIDR * 1.00 0.48 
RDR * * 1.00 

Table A.34 Error correlation matrix for the 20-story model responses regressed on Ai(T1). 

 

i b0i b1i b2i σlnε 
MIDR 0.052 0.761 1.019 0.390 
AIDR 0.039 0.770 0.915 0.293 
RDR 0.045 0.874 0.584 0.157 

Table A.35 Regression coefficients and standard deviations of the residuals for the 20-story 
model responses regressed on Sa(T1) and the ratio Ai(T1)/Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.97 0.40 
AIDR * 1.00 0.52 
RDR * * 1.00 

Table A.36 Error correlation matrix for the 20-story model responses regressed on Sa(T1) and the 
ratio Ai(T1)/Sa(T1). 
 

A.3 REGRESSIONS OF PEAK INTER-STORY DRIFT RATIOS (IDR'S) ON MULTI-
MODE ELASTIC GMP'S 

 

i b0i b1i b2i σlnε 
1 0.024 0.911 0.142 0.152 
2 0.034 0.914 0.022 0.121 
3 0.030 0.905 0.239 0.151 

Table A.37 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 3-story model regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 
 

ρ 1 2 3 
1 1.00 0.65 0.61 
2 * 1.00 0.59 
3 * * 1.00 

Table A.38 Error correlation matrix for the IDR response of the 3-story model regressed on 
Sa(T1) and the ratio Sa(T2)/Sa(T1). 
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i b0i b1i b2i σlnε 
1 0.014 0.965 0.173 0.179 
2 0.021 0.964 0.017 0.163 
3 0.017 0.951 0.266 0.186 

Table A.39 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 3-story model regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 

 

ρ 1 2 3 
1 1.00 0.78 0.72 
2 * 1.00 0.74 
3 * * 1.00 

Table A.40 Error correlation matrix for the IDR response of the 3-story model regressed on 
Ai(T1) and the ratio Ai(T2)/Ai(T1). 

 

i b0i b1i b2i σlnε 
1 0.053 0.908 0.235 0.167 
2 0.050 0.919 0.165 0.146 
3 0.051 0.918 0.100 0.133 
4 0.052 0.899 0.088 0.156 
5 0.050 0.903 0.153 0.158 
6 0.045 0.919 0.285 0.164 
7 0.048 0.937 0.399 0.163 
8 0.045 0.919 0.528 0.176 
9 0.033 0.858 0.577 0.201 

Table A.41 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 9-story model regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 

 

ρ 1 2 3 4 5 6 7 8 9 
1 1.00 0.90 0.68 0.59 0.65 0.71 0.64 0.65 0.56 
2 * 1.00 0.78 0.53 0.52 0.60 0.62 0.61 0.47 
3 * * 1.00 0.74 0.54 0.59 0.57 0.55 0.52 
4 * * * 1.00 0.83 0.64 0.41 0.51 0.59 
5 * * * * 1.00 0.80 0.50 0.59 0.62 
6 * * * * * 1.00 0.81 0.74 0.70 
7 * * * * * * 1.00 0.87 0.65 
8 * * * * * * * 1.00 0.85 
9 * * * * * * * * 1.00 

Table A.42 Error correlation matrix for the IDR response of the 9-story model regressed on 
Sa(T1) and the ratio Sa(T2)/Sa(T1). 
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i b0i b1i b2i σlnε 
1 0.036 0.963 0.261 0.178 
2 0.034 0.976 0.179 0.165 
3 0.036 0.976 0.104 0.157 
4 0.037 0.955 0.082 0.179 
5 0.035 0.958 0.160 0.177 
6 0.030 0.976 0.323 0.166 
7 0.030 0.994 0.461 0.159 
8 0.027 0.969 0.610 0.182 
9 0.020 0.903 0.669 0.202 

Table A.43 Regression coefficients and standard deviation of the residuals for the IDR response 
of the 9-story model regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 

 

 1 2 3 4 5 6 7 8 9 
1 1.00 0.91 0.73 0.67 0.71 0.74 0.67 0.68 0.58 
2 * 1.00 0.83 0.64 0.62 0.64 0.66 0.64 0.49 
3 * * 1.00 0.81 0.65 0.64 0.61 0.59 0.53 
4 * * * 1.00 0.87 0.71 0.50 0.59 0.63 
5 * * * * 1.00 0.84 0.57 0.65 0.65 
6 * * * * * 1.00 0.81 0.75 0.69 
7 * * * * * * 1.00 0.87 0.65 
8 * * * * * * * 1.00 0.85 
9 * * * * * * * * 1.00 

Table A.44 Error correlation matrix for the IDR response of the 9-story model regressed on 
Ai(T1) and the ratio Ai(T2)/Ai(T1). 



 113

 

i b0i b1i b2i σlnε 
1 0.047 0.886 0.395 0.223 
2 0.064 0.913 0.367 0.227 
3 0.064 0.912 0.314 0.225 
4 0.063 0.904 0.269 0.214 
5 0.062 0.900 0.237 0.207 
6 0.059 0.880 0.195 0.211 
7 0.059 0.876 0.175 0.218 
8 0.058 0.881 0.194 0.212 
9 0.054 0.875 0.229 0.204 
10 0.051 0.870 0.278 0.179 
11 0.050 0.876 0.344 0.171 
12 0.050 0.883 0.398 0.169 
13 0.048 0.886 0.439 0.170 
14 0.046 0.885 0.478 0.172 
15 0.043 0.879 0.535 0.174 
16 0.038 0.870 0.576 0.179 
17 0.035 0.859 0.610 0.192 
18 0.033 0.853 0.649 0.214 
19 0.030 0.828 0.665 0.243 
20 0.025 0.794 0.653 0.267 

Table A.45 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 20-story model regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 
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i b0i b1i b2i σlnε 
1 0.034 0.923 0.393 0.211 
2 0.046 0.953 0.364 0.213 
3 0.046 0.951 0.306 0.207 
4 0.046 0.941 0.254 0.197 
5 0.046 0.933 0.214 0.196 
6 0.045 0.908 0.160 0.206 
7 0.045 0.901 0.131 0.212 
8 0.044 0.905 0.147 0.207 
9 0.041 0.899 0.186 0.202 
10 0.038 0.896 0.246 0.184 
11 0.037 0.905 0.323 0.179 
12 0.036 0.915 0.389 0.175 
13 0.034 0.923 0.444 0.169 
14 0.032 0.924 0.493 0.166 
15 0.030 0.920 0.553 0.168 
16 0.026 0.910 0.596 0.175 
17 0.024 0.899 0.631 0.192 
18 0.022 0.891 0.668 0.222 
19 0.021 0.864 0.683 0.256 
20 0.017 0.826 0.664 0.286 

Table A.47 Regression coefficients and standard deviations of the residuals for the IDR response 
of the 20-story model regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 
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A.4 REGRESSIONS OF (MIDR, AIDR, RDR) ON MULTI-MODE ELASTIC GMP'S  

 

i b0i b1i b2i σlnε 
MIDR 0.032 0.908 0.184 0.148 
AIDR 0.029 0.909 0.141 0.125 
RDR 0.030 0.915 0.021 0.129 

Table A.49 Regression coefficients and standard deviations of the residuals for the 3-story 
model responses regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 
 

ρ MIDR AIDR RDR 
MIDR 1.00 0.95 0.73 
AIDR * 1.00 0.83 
RDR * * 1.00 

Table A.50 Error correlation matrix for the 3-story model responses regressed on Sa(T1) and the 
ratio Sa(T2)/Sa(T1). 
 

i b0i b1i b2i σlnε 
MIDR 0.019 0.956 0.203 0.184 
AIDR 0.017 0.960 0.161 0.163 
RDR 0.018 0.966 0.014 0.163 

Table A.51 Regression coefficients and standard deviations of the residuals for the 3-story 
model responses regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 
 

ρ MIDR AIDR RDR 
MIDR 1.00 0.96 0.83 
AIDR * 1.00 0.91 
RDR * * 1.00 

Table A.52 Error correlation matrix for the 3-story model responses regressed on Ai(T1) and the 
ratio Ai(T2)/Ai(T1). 
 

i b0i b1i b2i σlnε 
MIDR 0.050 0.917 0.474 0.191 
AIDR 0.047 0.910 0.307 0.141 
RDR 0.046 0.936 0.053 0.130 

Table A.53 Regression coefficients and standard deviations of the residuals for the 9-story 
model responses regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 
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ρ MIDR AIDR RDR 
MIDR 1.00 0.93 0.51 
AIDR * 1.00 0.64 
RDR * * 1.00 

Table A.54 Error correlation matrix for the 9-story model responses regressed on Sa(T1) and the 
ratio Sa(T2)/Sa(T1). 

 

i b0i b1i b2i σlnε 
MIDR 0.031 0.968 0.544 0.195 
AIDR 0.031 0.964 0.348 0.153 
RDR 0.033 0.998 0.045 0.141 

Table A.55 Regression coefficients and standard deviation of the residuals for the 9-story model 
responses regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.92 0.53 
AIDR * 1.00 0.70 
RDR * * 1.00 

Table A.56 Error correlation matrix for the 9-story model responses regressed on Ai(T1) and the 
ratio Ai(T2)/Ai(T1). 

 

i b0i b1i b2i σlnε 
MIDR 0.059 0.907 0.522 0.237 
AIDR 0.044 0.879 0.413 0.173 
RDR 0.052 0.880 0.099 0.165 

Table A.57 Regression coefficients and standard deviations of the residuals for the 20-story 
model responses regressed on Sa(T1) and the ratio Sa(T2)/Sa(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.90 0.36 
AIDR * 1.00 0.61 
RDR * * 1.00 

Table A.58 Error correlation matrix for the 20-story model responses regressed on Sa(T1) and the 
ratio Sa(T2)/Sa(T1). 
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i b0i b1i b2i σlnε 
MIDR 0.041 0.941 0.519 0.245 
AIDR 0.032 0.913 0.407 0.170 
RDR 0.040 0.907 0.056 0.160 

Table A.59 Regression coefficients and standard deviations of the residuals for the 20-story 
model responses regressed on Ai(T1) and the ratio Ai(T2)/Ai(T1). 

 

ρ MIDR AIDR RDR 
MIDR 1.00 0.91 0.32 
AIDR * 1.00 0.56 
RDR * * 1.00 

Table A.60 Error correlation matrix for the 20-story model responses regressed on Ai(T1) and the 
ratio Ai(T2)/Ai(T1). 
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APPENDIX B 

The standard deviations of the residual inter-story and roof drift ratios (IDRs and RDRs) from 
multivariate multiple linear regression (MMLR) analysis on (i) first-mode elastic, (ii) multi-
mode elastic, and (iii) inelastic first-mode and elastic higher-mode ground motion parameters 
(GMPs) are listed in Tables B.1 through B.9.  Also noted in the tables are the standard deviations 
of the IDRs and RDRs, before considering any GMP.  These results are for the elastic and 
"weaker" ductile and brittle models (using the DRAIN-2DX program) of the 3-, 9-, and 20-story 
buildings, obtained by doubling the amplitude of each of the 140 records considered. 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1      
Ai2/Sa1

Sa1      
Ai2/Sa2

Sa1    
SaI1/Sa1

Sa1    
AiI1/Sa1

Sa1    
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 0.88 0.18 0.21 0.17 0.17 0.17 0.18 0.18 0.18 0.18
Story 2 0.92 0.14 0.17 0.13 0.14 0.14 0.14 0.14 0.14 0.14
Story 3 0.87 0.20 0.23 0.19 0.18 0.18 0.19 0.20 0.20 0.20
Roof 0.92 0.15 0.17 0.13 0.15 0.15 0.15 0.15 0.15 0.15

σ        
for       
03E

 
Table B.1  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the elastic 3-story model (0 
collapses). 

 
 

No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1      
Ai2/Sa1

Sa1      
Ai2/Sa2

Sa1    
SaI1/Sa1

Sa1    
AiI1/Sa1

Sa1    
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 0.85 0.26 0.28 0.26 0.25 0.24 0.26 0.19 0.25 0.25
Story 2 0.84 0.20 0.22 0.19 0.20 0.19 0.20 0.14 0.18 0.18
Story 3 0.80 0.23 0.25 0.23 0.20 0.19 0.23 0.20 0.22 0.22
Roof 0.86 0.21 0.23 0.20 0.21 0.20 0.21 0.14 0.19 0.19

σ        
for      

03D

 
Table B.2  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the ductile 3-story model (0 
collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1      
Ai2/Sa1

Sa1      
Ai2/Sa2

Sa1    
SaI1/Sa1

Sa1    
AiI1/Sa1

Sa1    
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 1.04 0.41 0.43 0.41 0.40 0.39 0.40 0.34 0.40 0.40
Story 2 1.05 0.36 0.39 0.36 0.36 0.36 0.36 0.29 0.35 0.36
Story 3 1.04 0.41 0.43 0.41 0.39 0.37 0.41 0.35 0.40 0.40
Roof 1.08 0.39 0.41 0.38 0.39 0.38 0.38 0.31 0.38 0.38

σ        
for      

03B

 
Table B.3  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the brittle 3-story model (0 
collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1      
Sa2/Sa1 
Ai3/Sa3

Sa1     
Sa2/Sa1 
SaI1/Sa1

Sa1     
Sa2/Sa1 
AiI1/Sa1

Sa1     
Sa2/Sa1 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 0.95 0.22 0.22 0.21 0.17 0.17 0.17 0.17 0.17 0.17
Story 2 0.96 0.18 0.19 0.17 0.15 0.15 0.15 0.15 0.15 0.15
Story 3 0.96 0.15 0.17 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Story 4 0.94 0.16 0.18 0.15 0.15 0.14 0.15 0.15 0.15 0.15
Story 5 0.94 0.18 0.20 0.18 0.16 0.14 0.16 0.16 0.16 0.16
Story 6 0.93 0.23 0.23 0.22 0.16 0.16 0.16 0.16 0.16 0.16
Story 7 0.94 0.28 0.28 0.27 0.17 0.17 0.17 0.17 0.17 0.17
Story 8 0.93 0.34 0.35 0.34 0.18 0.18 0.18 0.18 0.18 0.18
Story 9 0.88 0.39 0.39 0.38 0.21 0.19 0.21 0.21 0.21 0.20
Roof 0.98 0.13 0.14 0.12 0.13 0.13 0.13 0.13 0.13 0.13

σ        
for       
09E

 
Table B.4  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the elastic 9-story model (0 
collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1      
Sa2/Sa1 
Ai3/Sa3

Sa1     
Sa2/Sa1 
SaI1/Sa1

Sa1     
Sa2/Sa1 
AiI1/Sa1

Sa1     
Sa2/Sa1 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 0.93 0.29 0.30 0.29 0.28 0.28 0.28 0.22 0.28 0.28
Story 2 1.00 0.26 0.28 0.26 0.26 0.26 0.26 0.19 0.26 0.26
Story 3 0.99 0.22 0.26 0.22 0.22 0.22 0.22 0.17 0.22 0.22
Story 4 0.94 0.20 0.24 0.20 0.20 0.19 0.20 0.17 0.20 0.20
Story 5 0.83 0.21 0.23 0.21 0.19 0.18 0.19 0.19 0.19 0.19
Story 6 0.74 0.26 0.26 0.25 0.21 0.20 0.21 0.21 0.20 0.20
Story 7 0.75 0.32 0.31 0.31 0.20 0.20 0.20 0.20 0.19 0.19
Story 8 0.75 0.37 0.37 0.37 0.20 0.20 0.20 0.20 0.19 0.18
Story 9 0.73 0.41 0.40 0.40 0.22 0.20 0.22 0.22 0.21 0.21
Roof 0.90 0.18 0.21 0.18 0.18 0.18 0.18 0.16 0.17 0.18

σ        
for      

09D

 
Table B.5  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the ductile 9-story model (0 
collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1      
Sa2/Sa1 
Ai3/Sa3

Sa1     
Sa2/Sa1 
SaI1/Sa1

Sa1     
Sa2/Sa1 
AiI1/Sa1

Sa1     
Sa2/Sa1 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Story 1 1.08 0.40 0.42 0.41 0.40 0.40 0.40 0.36 0.40 0.39
Story 2 1.20 0.40 0.44 0.40 0.40 0.40 0.40 0.36 0.40 0.40
Story 3 1.21 0.39 0.43 0.39 0.39 0.39 0.39 0.35 0.39 0.39
Story 4 1.14 0.36 0.40 0.36 0.36 0.36 0.36 0.33 0.36 0.36
Story 5 0.98 0.35 0.37 0.35 0.33 0.33 0.33 0.32 0.33 0.33
Story 6 0.78 0.37 0.36 0.36 0.31 0.31 0.31 0.31 0.31 0.31
Story 7 0.74 0.39 0.39 0.39 0.30 0.30 0.30 0.29 0.30 0.30
Story 8 0.75 0.43 0.43 0.43 0.29 0.29 0.29 0.29 0.29 0.29
Story 9 0.73 0.47 0.46 0.46 0.31 0.29 0.31 0.30 0.30 0.30
Roof 1.06 0.28 0.31 0.28 0.28 0.28 0.28 0.25 0.28 0.28

σ        
for      

09B

 
Table B.6  Standard deviations of the residual IDRs and RDR from regressions on various GMPs for the brittle 9-story model (4 
collapses). 



 126

 

No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Sa4/Sa3

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Ai4/Sa4

Sa1     
Sa2/Sa1 
Sa3/Sa2 
SaI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AiI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Story 1 0.96 0.34 0.32 0.32 0.19 0.18 0.18 0.18 0.18 0.18 0.18
Story 2 0.97 0.33 0.30 0.30 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Story 3 0.98 0.30 0.27 0.27 0.18 0.18 0.18 0.18 0.18 0.17 0.18
Story 4 0.99 0.27 0.24 0.24 0.17 0.17 0.17 0.17 0.16 0.16 0.17
Story 5 1.00 0.24 0.21 0.21 0.16 0.15 0.15 0.15 0.15 0.15 0.15
Story 6 1.00 0.22 0.20 0.20 0.17 0.15 0.15 0.15 0.14 0.15 0.15
Story 7 1.01 0.22 0.20 0.20 0.18 0.14 0.14 0.14 0.14 0.14 0.14
Story 8 1.01 0.22 0.21 0.20 0.18 0.14 0.14 0.14 0.14 0.14 0.14
Story 9 1.00 0.24 0.22 0.22 0.18 0.15 0.15 0.15 0.15 0.15 0.15
Story 10 0.97 0.25 0.23 0.23 0.16 0.15 0.15 0.15 0.15 0.15 0.15
Story 11 0.96 0.28 0.26 0.26 0.16 0.15 0.15 0.15 0.15 0.15 0.15
Story 12 0.95 0.32 0.29 0.29 0.17 0.16 0.16 0.16 0.16 0.16 0.16
Story 13 0.94 0.34 0.32 0.32 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Story 14 0.94 0.37 0.34 0.34 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Story 15 0.93 0.40 0.38 0.38 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Story 16 0.93 0.43 0.41 0.41 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Story 17 0.92 0.46 0.44 0.44 0.18 0.17 0.17 0.17 0.17 0.17 0.17
Story 18 0.91 0.49 0.47 0.46 0.20 0.17 0.17 0.17 0.17 0.17 0.17
Story 19 0.89 0.51 0.49 0.49 0.22 0.17 0.17 0.17 0.17 0.17 0.17
Story 20 0.87 0.52 0.50 0.50 0.25 0.18 0.17 0.18 0.18 0.18 0.18

Roof 1.04 0.17 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

σ        
for       
20E

 
Table B.7  Standard deviations of the residual IDRs and RDR for the elastic 20-story model (0 collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Sa4/Sa3

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Ai4/Sa4

Sa1     
Sa2/Sa1 
Sa3/Sa2 
SaI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AiI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Story 1 0.96 0.40 0.41 0.40 0.33 0.33 0.33 0.32 0.32 0.32 0.30
Story 2 1.04 0.38 0.37 0.37 0.29 0.29 0.29 0.29 0.28 0.29 0.28
Story 3 1.08 0.36 0.36 0.35 0.28 0.29 0.29 0.28 0.28 0.28 0.27
Story 4 1.09 0.34 0.34 0.33 0.28 0.28 0.28 0.28 0.27 0.27 0.26
Story 5 1.07 0.32 0.34 0.32 0.28 0.28 0.28 0.28 0.27 0.27 0.25
Story 6 0.94 0.27 0.29 0.27 0.24 0.23 0.24 0.23 0.22 0.23 0.22
Story 7 0.85 0.25 0.26 0.25 0.23 0.20 0.20 0.20 0.19 0.21 0.20
Story 8 0.78 0.25 0.24 0.24 0.22 0.20 0.20 0.20 0.19 0.20 0.20
Story 9 0.71 0.26 0.25 0.25 0.21 0.21 0.20 0.21 0.20 0.19 0.20

Story 10 0.67 0.26 0.26 0.26 0.20 0.20 0.20 0.20 0.20 0.19 0.19
Story 11 0.66 0.29 0.28 0.28 0.21 0.21 0.21 0.21 0.21 0.20 0.19
Story 12 0.67 0.32 0.31 0.31 0.22 0.22 0.21 0.22 0.22 0.20 0.20
Story 13 0.67 0.34 0.33 0.32 0.21 0.21 0.21 0.21 0.21 0.20 0.20
Story 14 0.66 0.36 0.35 0.35 0.21 0.21 0.21 0.21 0.21 0.19 0.20
Story 15 0.64 0.38 0.36 0.36 0.21 0.21 0.21 0.22 0.21 0.20 0.20
Story 16 0.64 0.41 0.39 0.38 0.23 0.23 0.23 0.23 0.23 0.22 0.22
Story 17 0.66 0.43 0.41 0.41 0.24 0.23 0.23 0.23 0.23 0.22 0.22
Story 18 0.68 0.47 0.45 0.44 0.25 0.22 0.22 0.22 0.22 0.21 0.21
Story 19 0.67 0.48 0.46 0.45 0.27 0.22 0.21 0.22 0.22 0.21 0.21
Story 20 0.63 0.47 0.45 0.45 0.28 0.23 0.21 0.23 0.23 0.22 0.22

Roof 0.90 0.20 0.22 0.20 0.18 0.18 0.18 0.18 0.18 0.18 0.18

σ        
for      

20D

 
Table B.8  Standard deviations of the residual IDRs and RDR for the ductile 20-story model (3 collapses). 
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No GMP Sa1 Ai1 Sa1      
Ai1/Sa1

Sa1     
Sa2/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Sa4/Sa3

Sa1     
Sa2/Sa1 
Sa3/Sa2 
Ai4/Sa4

Sa1     
Sa2/Sa1 
Sa3/Sa2 
SaI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AiI1/Sa1

Sa1     
Sa2/Sa1 
Sa3/Sa2 
AaI1/Sa1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Story 1 0.69 0.34 0.33 0.33 0.22 0.22 0.22 0.22 0.22 0.22 0.22
Story 2 0.79 0.35 0.34 0.34 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Story 3 0.84 0.35 0.33 0.33 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Story 4 0.83 0.32 0.31 0.31 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Story 5 0.79 0.30 0.30 0.29 0.23 0.23 0.23 0.23 0.22 0.23 0.22
Story 6 0.69 0.25 0.25 0.24 0.20 0.18 0.18 0.18 0.18 0.18 0.19
Story 7 0.67 0.25 0.25 0.24 0.21 0.18 0.18 0.18 0.17 0.18 0.18
Story 8 0.66 0.25 0.25 0.24 0.21 0.19 0.18 0.19 0.18 0.18 0.18
Story 9 0.64 0.24 0.24 0.24 0.20 0.19 0.19 0.19 0.18 0.18 0.19

Story 10 0.62 0.24 0.24 0.23 0.17 0.17 0.17 0.17 0.16 0.17 0.17
Story 11 0.63 0.27 0.26 0.26 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Story 12 0.64 0.30 0.29 0.29 0.18 0.18 0.18 0.18 0.17 0.18 0.18
Story 13 0.65 0.34 0.32 0.32 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Story 14 0.64 0.36 0.34 0.34 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Story 15 0.62 0.38 0.36 0.36 0.19 0.19 0.19 0.19 0.19 0.18 0.19
Story 16 0.63 0.41 0.39 0.39 0.21 0.20 0.20 0.20 0.20 0.20 0.20
Story 17 0.65 0.44 0.42 0.42 0.22 0.20 0.20 0.20 0.20 0.20 0.20
Story 18 0.68 0.48 0.46 0.45 0.23 0.20 0.20 0.20 0.20 0.19 0.20
Story 19 0.67 0.49 0.47 0.46 0.26 0.20 0.19 0.20 0.20 0.19 0.20
Story 20 0.64 0.48 0.47 0.46 0.28 0.21 0.20 0.21 0.21 0.21 0.21

Roof 0.71 0.18 0.20 0.18 0.17 0.17 0.17 0.17 0.16 0.17 0.17

σ        
for      

20B

 
Table B.9  Standard deviations of the residual IDRs and RDR for the brittle 20-story model (21 collapses). 
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APPENDIX C 

The modal vibration periods (Ti) and first-mode yield displacement (dy) for the three building 
models are given in Table C.1.  Recall that the damping ratio and the post-yield strain-hardening 
ratio are set equal to 5%. 

The earthquake ground motion records selected for this study are listed in Table C.2.  Note that 
the first 70 records in the list are the "near-source" records, and the second 70 are the "ordinary" 
records (see definitions in Chapter 3).  Within these two subsets the records are listed in order of 
increasing earthquake magnitude. 

The various elastic and inelastic spectral and energy-based accelerations computed for all 140 
records, each scaled by a factor of two, are listed in Table C.3 through C.5 for the 3-, 9-, and 20-
story buildings, respectively. 

Finally, the peak inter-story and roof drift ratios (IDRs and RDRs), as well the maximum and 
average IDR across stories (MIDRs and AIDRs), are listed in Tables C.6 through C.14 for the 
elastic, ductile, and brittle models of the 3-, 9-, and 20-story buildings.  These are the results of 
nonlinear dynamic analyses for the 140 records listed in Table C.2, each scaled by a factor of 
two. 

 

Building T 1 T 2 T 3 T 4 d y

(sec) (sec) (sec) (sec) (cm)
3-Story 1.0 0.3 0.2 -- 6
9-Story 2.3 0.9 0.5 0.3 12
20-Story 4.0 1.4 0.8 0.6 16

 

Table C.1  Modal vibration periods and first-mode yield displacement (explained in Chapter 3) 
for each of the three buildings considered. 
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Table C.2  List of the ground motion records selected for this study according to the criteria 
described in Chapter 3. 
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Table C.2 (continued)  List of the ground motion records selected for this study according to the 
criteria described in Chapter 3. 
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Table C.2 (continued)  List of the ground motion records selected for this study according to the 
criteria described in Chapter 3. 
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Table C.3  Ground motion parameters for the 3-story building. 
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Table C.3 (continued)  Ground motion parameters for the 3-story building. 
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Table C.3 (continued)  Ground motion parameters for the 3-story building. 
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Table C.4  Ground motion parameters for the 9-story building. 
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Table C.4 (continued)  Ground motion parameters for the 9-story building. 
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Table C.4 (continued)  Ground motion parameters for the 9-story building. 
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Table C.5  Ground motion parameters for the 20-story building. 
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Table C.5 (continued)  Ground motion parameters for the 20-story building. 
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Table C.5 (continued)  Ground motion parameters for the 20-story building. 
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Table C.6  Drift ratio demands for the elastic 3-story building model. 
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Table C.6 (continued)  Drift ratio demands for the elastic 3-story building model. 
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Table C.6 (continued)  Drift ratio demands for the elastic 3-story building model. 



 145

 

Table C.7  Drift ratio demands for the ductile 3-story building model. 
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Table C.7 (continued)  Drift ratio demands for the ductile 3-story building model. 
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Table C.7 (continued)  Drift ratio demands for the ductile 3-story building model. 
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Table C.8  Drift ratio demands for the brittle 3-story building model. 
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Table C.8 (continued)  Drift ratio demands for the brittle 3-story building model. 
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Table C.8 (continued)  Drift ratio demands for the brittle 3-story building model. 
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Table C.9  Drift ratio demands for the elastic 9-story building model. 
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Table C.9 (continued)  Drift ratio demands for the elastic 9-story building model. 
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Table C.9 (continued)  Drift ratio demands for the elastic 9-story building model. 

 



 154

 

Table C.10  Drift ratio demands for the ductile 9-story building model. 
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Table C.10 (continued)  Drift ratio demands for the ductile 9-story building model. 
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Table C.10 (continued)  Drift ratio demands for the ductile 9-story building model. 
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Table C.11  Drift ratio demands for the brittle 9-story building model.  Note the collapses 
(###'s). 
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Table C.11 (continued)  Drift ratio demands for the brittle 9-story building model.  Note the 
collapses (###'s). 
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Table C.11 (continued)  Drift ratio demands for the brittle 9-story building model. 
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Table C.12  Drift ratio demands for the elastic 20-story building model. 
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Table C.12 (continued)  Drift ratio demands for the elastic 20-story building model. 
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Table C.12 (continued)  Drift ratio demands for the elastic 20-story building model. 
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Table C.12 (continued)  Drift ratio demands for the elastic 20-story building model. 

 



 164

 

Table C.13  Drift ratio demands for the ductile 20-story building model. 
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Table C.13 (continued)  Drift ratio demands for the ductile 20-story building model.  Note the collapses (###'s). 
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Table C.13 (continued)  Drift ratio demands for the ductile 20-story building model. 
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Table C.13 (continued)  Drift ratio demands for the ductile 20-story building model. 
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Table C.14  Drift ratio demands for the brittle 20-story building model.  Note the collapses (###'s). 
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Table C.14 (continued)  Drift ratio demands for the brittle 20-story building model.  Note the collapses (###'s). 
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Table C.14 (continued)  Drift ratio demands for the brittle 20-story building model. 

 



 171

 

Table C.14 (continued)  Drift ratio demands for the brittle 20-story building model.  Note the collapses (###'s). 


