Seismic Network Operations

IU TRQA

Tornquist, Argentina

IU TRQA commences operations on: 2000,302

Country Flag
Host: University of La Plata
Latitude: -38.057
Longitude: -61.979
Elevation: 540
Datalogger: Q330
Broadband: KS-54000
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo 

Vault Condition: Borehole

Site Geology: The borehole cuttings consisted of primarily gray siltstone with minor amounts of gray shale and gray sandstone.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
10VMZGuralp CMG3-T Seismometer (borehole)CH0.100.000.0057.00
10VM2Guralp CMG3-T Seismometer (borehole)CH0.100.000.0057.00
10VM1Guralp CMG3-T Seismometer (borehole)CH0.100.000.0057.00
10VHZGuralp CMG3-T Seismometer (borehole)CG0.10-90.000.0030.00
10VH2Guralp CMG3-T Seismometer (borehole)CG0.100.00180.0030.00
10VH1Guralp CMG3-T Seismometer (borehole)CG0.100.0090.0030.00
00VMZGeotech KS-54000 Borehole SeismometerCH0.100.000.00145.00
00VM2Geotech KS-54000 Borehole SeismometerCH0.100.000.00145.00
00VM1Geotech KS-54000 Borehole SeismometerCH0.100.000.00145.00
00VHZGeotech KS-54000 Borehole SeismometerCG0.10-90.000.00101.00
00VH2Geotech KS-54000 Borehole SeismometerCG0.100.00211.00101.00
00VH1Geotech KS-54000 Borehole SeismometerCG0.100.00121.00101.00
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.0030.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.0030.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.0030.00
10LHZGuralp CMG3-T Seismometer (borehole)CG1.00-90.000.0030.00
10LH2Guralp CMG3-T Seismometer (borehole)CG1.000.00180.0030.00
10LH1Guralp CMG3-T Seismometer (borehole)CG1.000.0090.0030.00
00LHZGeotech KS-54000 Borehole SeismometerCG1.00-90.000.00101.00
00LH2Geotech KS-54000 Borehole SeismometerCG1.000.00211.00101.00
00LH1Geotech KS-54000 Borehole SeismometerCG1.000.00121.00101.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.0030.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.0030.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.0030.00
10HHZGuralp CMG3-T Seismometer (borehole)TG100.00-90.000.0030.00
10HH2Guralp CMG3-T Seismometer (borehole)TG100.000.00180.0030.00
10HH1Guralp CMG3-T Seismometer (borehole)TG100.000.0090.0030.00
00BHZGeotech KS-54000 Borehole SeismometerCG20.00-90.000.00101.00
00BH2Geotech KS-54000 Borehole SeismometerCG20.000.00211.00101.00
00BH1Geotech KS-54000 Borehole SeismometerCG20.000.00121.00101.00
10BHZGuralp CMG3-T Seismometer (borehole)CG40.00-90.000.0030.00
10BH2Guralp CMG3-T Seismometer (borehole)CG40.000.00180.0030.00
10BH1Guralp CMG3-T Seismometer (borehole)CG40.000.0090.0030.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
10BH22013:1272012:010 to No Ending TimeA0.0901740.0227110.537650.43628CMG3-T-BRandom
10BHZ2013:1272012:010 to No Ending TimeA0.00852770.00995310.0631980.083415CMG3-T-BRandom
10BH12013:1272012:010 to No Ending TimeA0.0926950.0229580.520820.43231CMG3-T-BRandom
00BH22013:1262012:009 to No Ending TimeD0.778130.17853.92715.981354000Random
00BH12013:1262012:009 to No Ending TimeD0.706810.390636.71988.558254000Random
00BHZ2013:1262012:009 to No Ending TimeA0.467610.28794.55845.647954000Random
  1. Current Issues.
    The site has been damaged by fire and has stopped transmitting. The microbarograph appears to have failed on 10 Oct 2009. The LN1 Episensor channel is noisy. The KS-54000 appears to have died on 2-8-2013. There is work being done on the regional power lines causing intermittent outages.
  2. 2009-05-22
    Upgraded to Q330 digitizer.