Seismic Network Operations
IU TRQA
Tornquist, Argentina
IU TRQA commences operations on: 2000,302
Host:  University of La Plata 

Latitude:  38.057 
Longitude:  61.979 
Elevation:  540 
Datalogger:  Q330 
Broadband:  KS54000 
Accelerometer:  FBA_EST_EpiSensor_Accelerometer 
Telemetry Status at the NEIC:  No Data In More Than 24 Hours 
Vault Condition: Borehole
Site Geology: The borehole cuttings consisted of primarily gray siltstone with minor amounts of gray shale and gray sandstone.
Location Code  Channel Code  Instrument  Flags  Sample Rate  Dip  Azimuth  Depth 

20  LNZ  Kinemetrics FBA EST EpiSensor Accelerometer  CG  1.00  90.00  0.00  30.00 
20  HNZ  Kinemetrics FBA EST EpiSensor Accelerometer  TG  100.00  90.00  0.00  30.00 
10  VHZ  Guralp CMG3T Seismometer (borehole)  CG  0.10  90.00  0.00  30.00 
10  LHZ  Guralp CMG3T Seismometer (borehole)  CG  1.00  90.00  0.00  30.00 
10  HHZ  Guralp CMG3T Seismometer (borehole)  TG  100.00  90.00  0.00  30.00 
10  BHZ  Guralp CMG3T Seismometer (borehole)  CG  40.00  90.00  0.00  30.00 
00  VHZ  Geotech KS54000 Borehole Seismometer  CG  0.10  90.00  0.00  101.00 
00  LHZ  Geotech KS54000 Borehole Seismometer  CG  1.00  90.00  0.00  101.00 
00  BHZ  Geotech KS54000 Borehole Seismometer  CG  20.00  90.00  0.00  101.00 
20  LN2  Kinemetrics FBA EST EpiSensor Accelerometer  CG  1.00  0.00  90.00  30.00 
20  LN1  Kinemetrics FBA EST EpiSensor Accelerometer  CG  1.00  0.00  0.00  30.00 
20  HN2  Kinemetrics FBA EST EpiSensor Accelerometer  TG  100.00  0.00  90.00  30.00 
20  HN1  Kinemetrics FBA EST EpiSensor Accelerometer  TG  100.00  0.00  0.00  30.00 
10  VMZ  Guralp CMG3T Seismometer (borehole)  CH  0.10  0.00  0.00  57.00 
10  VM2  Guralp CMG3T Seismometer (borehole)  CH  0.10  0.00  0.00  57.00 
10  VM1  Guralp CMG3T Seismometer (borehole)  CH  0.10  0.00  0.00  57.00 
10  VH2  Guralp CMG3T Seismometer (borehole)  CG  0.10  0.00  180.00  30.00 
10  VH1  Guralp CMG3T Seismometer (borehole)  CG  0.10  0.00  90.00  30.00 
10  LH2  Guralp CMG3T Seismometer (borehole)  CG  1.00  0.00  180.00  30.00 
10  LH1  Guralp CMG3T Seismometer (borehole)  CG  1.00  0.00  90.00  30.00 
10  HH2  Guralp CMG3T Seismometer (borehole)  TG  100.00  0.00  180.00  30.00 
10  HH1  Guralp CMG3T Seismometer (borehole)  TG  100.00  0.00  90.00  30.00 
10  BH2  Guralp CMG3T Seismometer (borehole)  CG  40.00  0.00  180.00  30.00 
10  BH1  Guralp CMG3T Seismometer (borehole)  CG  40.00  0.00  90.00  30.00 
00  VMZ  Geotech KS54000 Borehole Seismometer  CH  0.10  0.00  0.00  145.00 
00  VM2  Geotech KS54000 Borehole Seismometer  CH  0.10  0.00  0.00  145.00 
00  VM1  Geotech KS54000 Borehole Seismometer  CH  0.10  0.00  0.00  145.00 
00  VH2  Geotech KS54000 Borehole Seismometer  CG  0.10  0.00  211.00  101.00 
00  VH1  Geotech KS54000 Borehole Seismometer  CG  0.10  0.00  121.00  101.00 
00  LH2  Geotech KS54000 Borehole Seismometer  CG  1.00  0.00  211.00  101.00 
00  LH1  Geotech KS54000 Borehole Seismometer  CG  1.00  0.00  121.00  101.00 
00  BH2  Geotech KS54000 Borehole Seismometer  CG  20.00  0.00  211.00  101.00 
00  BH1  Geotech KS54000 Borehole Seismometer  CG  20.00  0.00  121.00  101.00 
PDF, Last Month
PDF, Month
PDF, Current Week
PDF, Year
Availability, Since 1972
Availability, 2 Month
As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations. Â The USGS analyzes the random binary calibration signal in order to estimate the instrument response. Â The figures below show the results from the analysis of the most recent processed calibration at the station.
We use an iterative threestep method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a localminimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least squares bestfit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rdsoctave band centered at each bestfit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.
Loc  Chan  Cal Date  EpochSpan  Grade  Amp Nominal Error (dB)  Amp Best Fit Error (dB)  Phase Nominal Error (degree)  Phase Best Fit Error (degree)  Sensor  Cal Type 

10  BH2  2013:127  2012:010 to No Ending Time  A  0.090174  0.022711  0.53765  0.43628  CMG3TB  Random 
10  BHZ  2013:127  2012:010 to No Ending Time  A  0.0085277  0.0099531  0.063198  0.083415  CMG3TB  Random 
10  BH1  2013:127  2012:010 to No Ending Time  A  0.092695  0.022958  0.52082  0.43231  CMG3TB  Random 
00  BH2  2013:126  2012:009 to No Ending Time  D  0.77813  0.1785  3.9271  5.9813  54000  Random 
00  BH1  2013:126  2012:009 to No Ending Time  D  0.70681  0.39063  6.7198  8.5582  54000  Random 
00  BHZ  2013:126  2012:009 to No Ending Time  A  0.46761  0.2879  4.5584  5.6479  54000  Random 

Current Issues.The site has been damaged by fire and has stopped transmitting. The microbarograph appears to have failed on 10 Oct 2009. The LN1 Episensor channel is noisy. The KS54000 appears to have died on 282013. There is work being done on the regional power lines causing intermittent outages.

20090522Upgraded to Q330 digitizer.