Seismic Network Operations

IU KONO

Kongsberg, Norway

IU KONO commences operations on: 1991,171

Country Flag
Host: University of Bergen
Latitude: 59.649
Longitude: 9.598
Elevation: 216
Datalogger: Q330
Broadband: STS-1VBB_w/E300
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo 

Vault Condition: The vault is located in an abandoned silver mine, 340 meters beneath the surface and 2200 meters into the side of a hill. Seismometers are set on a concrete floor which is attached to bedrock. Temperature and humidity are stable.

Site Geology: Vault is located inside an abandoned mine in Pre-Cambrian gneiss.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.00340.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.00340.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.00340.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.00340.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.00340.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.00340.00
10VMZGuralp CMG3-T SeismometerCH0.100.000.00340.00
10VM2Guralp CMG3-T SeismometerCH0.100.000.00340.00
10VM1Guralp CMG3-T SeismometerCH0.100.000.00340.00
10VHZGuralp CMG3-T SeismometerCG0.10-90.000.00340.00
10VH2Guralp CMG3-T SeismometerCG0.100.0090.00340.00
10VH1Guralp CMG3-T SeismometerCG0.100.000.00340.00
10LHZGuralp CMG3-T SeismometerCG1.00-90.000.00340.00
10LH2Guralp CMG3-T SeismometerCG1.000.0090.00340.00
10LH1Guralp CMG3-T SeismometerCG1.000.000.00340.00
10HHZGuralp CMG3-T SeismometerTG100.00-90.000.00340.00
10HH2Guralp CMG3-T SeismometerTG100.000.0090.00340.00
10HH1Guralp CMG3-T SeismometerTG100.000.000.00340.00
10BHZGuralp CMG3-T SeismometerCG40.00-90.000.00340.00
10BH2Guralp CMG3-T SeismometerCG40.000.0090.00340.00
10BH1Guralp CMG3-T SeismometerCG40.000.000.00340.00
00VMZStreckeisen STS-1VBB w/E300CH0.100.000.00340.00
00VM2Streckeisen STS-1VBB w/E300CH0.100.000.00340.00
00VM1Streckeisen STS-1VBB w/E300CH0.100.000.00340.00
00VHZStreckeisen STS-1VBB w/E300CG0.10-90.000.00340.00
00VH2Streckeisen STS-1VBB w/E300CG0.100.0090.00340.00
00VH1Streckeisen STS-1VBB w/E300CG0.100.000.00340.00
00LHZStreckeisen STS-1VBB w/E300CG1.00-90.000.00340.00
00LH2Streckeisen STS-1VBB w/E300CG1.000.0090.00340.00
00LH1Streckeisen STS-1VBB w/E300CG1.000.000.00340.00
00BHZStreckeisen STS-1VBB w/E300CG20.00-90.000.00340.00
00BH2Streckeisen STS-1VBB w/E300CG20.000.0090.00340.00
00BH1Streckeisen STS-1VBB w/E300CG20.000.000.00340.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
00BHZ2011:010 2009:255 to No Ending TiA0.0201610.0102310.121180.10961 STS1VBBE3Random
00BH22011:010 2009:255 to No Ending TiA0.0145490.0110650.115060.089679 STS1VBBE3Random
00BH12011:010 2009:255 to No Ending TiA0.0149250.0080850.125670.13751 STS1VBBE3Random
10BHZ2011:011 2009:255 to No Ending TiA0.0111580.00992210.0712720.069786 CMG3-TRandom
10BH22011:011 2009:255 to No Ending TiA0.010830.00989520.070220.094206 CMG3-TRandom
10BH12011:011 2009:255 to No Ending TiA0.0110640.00991720.0693960.081387 CMG3-TRandom
10BH12014:0432011:011 to No Ending TimeA0.0750930.0267680.22940.44367CMG3-TRandom
10BH22014:0432011:011 to No Ending TimeA0.0107250.00954410.0663930.083964CMG3-TRandom
10BHZ2014:0432011:011 to No Ending TimeA0.0106880.011310.0878510.074191CMG3-TRandom
00BH22014:0422011:010 to No Ending TimeA0.014690.00867240.111370.15166STS1VBBE3Random
00BHZ2014:0422011:010 to No Ending TimeA0.0219950.00896940.122130.15969STS1VBBE3Random
00BH12014:0422011:010 to No Ending TimeA0.0162240.00849890.116340.14636STS1VBBE3Random
  1. Current Issues
    The STS-1 N-S component has LP pulsing present.
  2. 2009-09-17
    Upgraded to Q330 digitizer.