Seismic Network Operations

IU CASY

Casey, Antarctica

IU CASY commences operations on: 1996,050

Country Flag
Host: Geoscience Australia
Latitude: -66.279
Longitude: 110.535
Elevation: 10
Datalogger: Q330
Broadband: STS-1VBB_w/E300
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo Station Photo 

Vault Condition: The vault is a concrete structure in rock 6 meters below the surface. The pier is not isolated.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
10VMWStreckeisen STS-2/VBB SeismometerCH0.100.000.005.00
10VMVStreckeisen STS-2/VBB SeismometerCH0.100.000.005.00
10VMUStreckeisen STS-2/VBB SeismometerCH0.100.000.005.00
10VHZStreckeisen STS-2 Standard-gainCG0.10-90.000.005.00
10VH2Streckeisen STS-2 Standard-gainCG0.100.0090.005.00
10VH1Streckeisen STS-2 Standard-gainCG0.100.000.005.00
10LHZStreckeisen STS-2 Standard-gainCG1.00-90.000.005.00
10LH2Streckeisen STS-2 Standard-gainCG1.000.0090.005.00
10LH1Streckeisen STS-2 Standard-gainCG1.000.000.005.00
10HHZStreckeisen STS-2 Standard-gainTG100.00-90.000.005.00
10HH2Streckeisen STS-2 Standard-gainTG100.000.0090.005.00
10HH1Streckeisen STS-2 Standard-gainTG100.000.000.005.00
10BHZStreckeisen STS-2 Standard-gainCG40.00-90.000.005.00
10BH2Streckeisen STS-2 Standard-gainCG40.000.0090.005.00
10BH1Streckeisen STS-2 Standard-gainCG40.000.000.005.00
00VMZStreckeisen STS-1VBB w/E300CH0.100.000.005.00
00VM2Streckeisen STS-1VBB w/E300CH0.100.000.005.00
00VM1Streckeisen STS-1VBB w/E300CH0.100.000.005.00
00VHZStreckeisen STS-1VBB w/E300CG0.10-90.000.005.00
00VH2Streckeisen STS-1VBB w/E300CG0.100.0090.005.00
00VH1Streckeisen STS-1VBB w/E300CG0.100.000.005.00
00LHZStreckeisen STS-1VBB w/E300CG1.00-90.000.005.00
00LH2Streckeisen STS-1VBB w/E300CG1.000.0090.005.00
00LH1Streckeisen STS-1VBB w/E300CG1.000.000.005.00
00BHZStreckeisen STS-1VBB w/E300CG20.00-90.000.005.00
00BH2Streckeisen STS-1VBB w/E300CG20.000.0090.005.00
00BH1Streckeisen STS-1VBB w/E300CG20.000.000.005.00
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.005.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.005.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.005.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.005.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.005.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.005.00
31LDOCI/PAS pressure sensorCW1.000.000.005.00
30LDOCI/PAS pressure sensorCW1.000.000.005.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
00BHZ2012:025 2012:020 to No Ending TA0.0152370.00875340.115620.16768 STS1VBBE3Random
00BH22012:025 2012:020 to No Ending TA0.0156320.00896260.112730.16615 STS1VBBE3Random
00BH12013:0422012:020 to No Ending TimeA0.0170170.00925960.121140.17735STS1VBBE3Random
00BH12012:025 2012:020 to No Ending TA0.0162620.00890960.1160.16418 STS1VBBE3Random
10BHZ2012:024 2012:020 to No Ending TA0.0148560.0145130.0940170.093013 STS-2-SGRandom
00BHZ2013:0422012:020 to No Ending TimeA0.0148820.0117360.113350.095463STS1VBBE3Random
00BH22013:0422012:020 to No Ending TimeA0.0162650.00938340.116180.17079STS1VBBE3Random
10BHZ2013:0432012:020 to No Ending TimeA0.0150330.0145680.0932050.093832STS-2-SGRandom
  1. Current Issues
    The LNZ component is noisy.
  2. 2012-01-31
    Power restored and station upgraded to Q330 digitizer. STS-1 components rebuilt fixing persistent lowered response at long periods which had been present since a major flood in 1998.
  3. 2012-01-03
    The power cable to the station was severed.