NGA West 2
Estimation of Epistemic Uncertainty

Bob Youngs and Linda Al Atik

USGS National Seismic Hazard Map (NSHMp) Workshop on Ground Motion Prediction Equations (GMPEs) for the 2014 Update
December 13, 2012
Components of Epistemic Uncertainty

1. Model to model differences
 – Represented by 5 NGA models

2. Uncertainty in predictions from an individual GMPE
 – Can be quantified statistically

3. Other uncertainty not covered by 1 & 2
Model to Model Component

• Measured by computing standard deviation of GMPE predictions as a function of M and R

$$\sigma_{\mu_{\ln(\text{SA}|M,R)}} = \sqrt{\frac{\sum_i w_i [\mu_{\ln(\text{SA}|M,R)_i} - \mu_{\ln(\text{SA}|M,R)}]^2}{\sum_i w_i}}$$

with

$$\mu_{\ln(\text{SA}|M,R)} = \frac{\sum_i w_i \mu_{\ln(\text{SA}|M,R)_i}}{\sum_i w_i}$$
Example Calculations

- Set up a set of scenarios for M, R, and faulting type
- Compute median values for NGA GMPEs, $\mu_{(\ln \text{SA}|M,R)}$
- Computed standard error of these median estimates
Model to Model σ_{μ}
Uncertainty in Median Prediction for a Single GMPE

- Simple linear model

\[y = a + bx \]

- Uncertainty in mean of \(y \) given a new value \(x_0 \)

\[\sigma^2_{\bar{y}|x_0} = \frac{\sigma^2}{n} \left[1 + \frac{(x_0 - \bar{x})}{\sigma_x^2} \right] \]

- GMPE

\[\sigma^2_{\ln(y)|x_0} = f^T \left[F^T V^{-1} F \right]^{-1} f \]

\[F = \left. \frac{\partial \ln(y)}{\partial C} \right|_{x_i} \]

Gradient of model with respect to coefficients \(C \) evaluated at data \(x_i \) used in regression

\[f = \left. \frac{\partial \ln(y)}{\partial C} \right|_{x_0} \]

Gradient of model with respect to coefficients \(C \) evaluated at new data \(x_0 \) used for prediction

\[V \]

Block diagonal variance matrix
Example Calculations for Chiou and Youngs (2008)
NGA West 2 Epistemic Model

• Compute variance of model predictions for each of the NGA GMPEs
 – Begin with NGA 2008
 – Repeat with final NGA 2012

• Provide recommended model to represent epistemic uncertainty in individual NGA GMPEs for inclusion in final composite epistemic uncertainty recommendation from developers