Slab Models for Subduction Zones

Slab1.0 is a three-dimensional compilation of global subduction geometries, separated into regional models for each major subduction zone. Each model is based on a probabilistic non-linear fit to data from a combined catalog consisting of several independent data sets - historic earthquake catalogs, CMT solutions, active seismic profiles, global plate boundaries, bathymetry and sediment thickness information.

Show More Information

A key step in many earthquake source inversions requires knowledge of the geometry of the fault on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry mislocation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocenter and CMT mechanism can be risky when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. The initial motivation for the SIGA project was to improve the quality of fast finite-fault inversion results by combining several independent and complementary datasets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the 'most likely' planar and non-planar fault interface. In the case of large events (M > ~7.5), these planes can be used directly in new finite fault in versions. For smaller events, this method provides a quick analysis of the tectonic setting of an event and a 'most likely' depth assuming the earthquake occurred on the subduction interface, which can be used as a check against other depth estimates produced at the NEIC (for examples, see the "individual events" tab).

Outside of realtime analyses, we have used this approach to build a suite of 2D cross-sections of global subduction geometries where data coverage is sufficiently dense to sample the interface. To improve data coverage, we have supplemented our original data sets (catalogs of historic earthquakes, mechanisms, trench locations and bathymetry, and seafloor sediment thickness data) with locally collected active source seismic data, which images the shallow aseismic thrust interface that is otherwise unconstrained in our models. We use these 2D cross-sections in a three-dimensional interpolation scheme to produce the models available below.

Region Depth Grid Strike Grid Dip Grid Contours Model Limits
Alaska-Aleutians Aleutian Islands Figure See detailed figure [JPEG] [PDF - 12.4 MB] Last Updated: November 16, 2011

NetCDF - 7 MB
alu_slab1.0_clip.grd [1]

ASCII - 31 MB [2]

NetCDF - 7 MB
alu_slab1.0_strclip.grd [1]

ASCII - 30.4 MB [2]

NetCDF - 7 MB
alu_slab1.0_dipclip.grd [1]

ASCII - 30.8 MB [2]

ASCII - 471.3 KB [3]

ArcGIS Shapefile - 99.8 KB [6]

Perimeter - 9 KB
alu_slab1.0.clip [4]

Top - 7 KB [5]

Base - 7 KB [5]

Central America Central America Figure See detailed figure [JPEG] [PDF - 7.4 MB] Last Updated: July 22, 2011

NetCDF - 3.4 MB
mex_slab1.0_clip.grd [1]

ASCII - 14.3 MB [2]

NetCDF - 3.4 MB
mex_slab1.0_strclip.grd [1]

ASCII - 14.4 MB [2]

NetCDF - 3.4 MB
mex_slab1.0_dipclip.grd [1]

ASCII - 14.3 MB [2]

ASCII - 230.3 KB [3]

ArcGIS Shapefile - 51.3 KB [6]

Perimeter - 7.2 KB
mex_slab1.0.clip [4]

Top - 5.5 KB [5]

Base - 5.5 KB [5]

Cascadia Cascadia Figure See detailed figure [JPEG] [PDF - 2.6 MB]

Cascadia model generated by a different methodology than other Slab1.0 models owing to the sparsity of slab earthquakes. It is included here for global completeness. See McCrory et al. (2012) for discussion of methodology; see Blair et al. (2012) for additional ArcGIS files.

Last Updated: September 1, 2012

NetCDF - 1 MB
cas_slab1.0_clip.grd [1]

ASCII - 4.8 MB [2]

NetCDF - 1 MB
cas_slab1.0_strclip.grd [1]

ASCII - 6 MB [2]

NetCDF - 1 MB
cas_slab1.0_dipclip.grd [1]

ASCII - 6 MB [2]

ASCII - 113.3 KB [3]

ArcGIS Shapefile - 48.5 KB [6]

Perimeter - 7.2 KB
cas_slab1.0.clip [4]

Izu-Bonin Izu-Bonin Figure See detailed figure [JPEG] [PDF - 5.7 MB] Last Updated: November 16, 2011

NetCDF - 5.3 MB
izu_slab1.0_clip.grd [1]

ASCII - 22.7 MB [2]

NetCDF - 5.3 MB
izu_slab1.0_strclip.grd [1]

ASCII - 22.5 MB [2]

NetCDF - 5.3 MB
izu_slab1.0_dipclip.grd [1]

ASCII - 22.7 MB [2]

ASCII - 675.2 KB [3]

ArcGIS Shapefile - 139.5 KB [6]

Perimeter - 6.4 KB
izu_slab1.0.clip [4]

Top - 5.6 KB [5]

Base - 5.6 KB [5]

Kermadec-Tonga Kermadec-Tonga Figure See detailed figure [JPEG] [PDF - 7 MB] Last Updated: November 16, 2011

NetCDF - 3.4 MB
ker_slab1.0_clip.grd [1]

ASCII - 16 MB [2]

NetCDF - 3.4 MB
ker_slab1.0_strclip.grd [1]

ASCII - 15.8 MB [2]

NetCDF - 3.4 MB
ker_slab1.0_dipclip.grd [1]

ASCII - 16 MB [2]

ASCII - 862.5 KB [3]

ArcGIS Shapefile - 164.4 KB [6]

Perimeter - 6.5 KB
ker_slab1.0.clip [4]

Top - 6.5 KB [5]

Base - 6.5 KB [5]

Kamchatka/Kurils/Japan Kamchatka/Kurils/Japan Figure See detailed figure [JPEG] [PDF - 10.5 MB] Last Updated: July 22, 2011

NetCDF - 8.2 MB
kur_slab1.0_clip.grd [1]

ASCII - 37.3 MB [2]

NetCDF - 8.2 MB
kur_slab1.0_strclip.grd [1]

ASCII - 37 MB [2]

NetCDF - 8.2 MB
kur_slab1.0_dipclip.grd [1]

ASCII - 37.3 MB [2]

ASCII - 1.3 MB [3]

ArcGIS Shapefile - 288.6 KB [6]

Perimeter - 8.9 KB
kur_slab1.0.clip [4]

Top - 6.9 KB [5]

Base - 6.9 KB [5]

Philippines Philippines Figure See detailed figure [JPEG] [PDF - 2.8 MB] Last Updated: November 16, 2011

NetCDF - 475.1 KB
phi_slab1.0_clip.grd [1]

ASCII - 2 MB [2]

NetCDF - 475.1 KB
phi_slab1.0_strclip.grd [1]

ASCII - 2 MB [2]

NetCDF - 475.1 KB
phi_slab1.0_dipclip.grd [1]

ASCII - 2 MB [2]

ASCII - 76.7 KB [3]

ArcGIS Shapefile - 17.7 KB [6]

Perimeter - 2.3 KB
phi_slab1.0.clip [4]

Top - 1.7 KB [5]

Base - 1.7 KB [5]

Ryukyu Ryukyu  Figure See detailed figure [JPEG] [PDF - 4.5 MB] Last Updated: November 16, 2011

NetCDF - 2.6 MB
ryu_slab1.0_clip.grd [1]

ASCII - 11.4 MB [2]

NetCDF - 2.6 MB
ryu_slab1.0_strclip.grd [1]

ASCII - 11.2 MB [2]

NetCDF - 2.6 MB
ryu_slab1.0_dipclip.grd [1]

ASCII - 11.4 MB [2]

ASCII - 226.4 KB [3]

ArcGIS Shapefile - 52 KB [6]

Perimeter - 10.6 KB
ryu_slab1.0.clip [4]

Top - 4 KB [5]

Base - 4 KB [5]

Santa Cruz Islands/Vanuatu/Loyalty Islands Santa Cruz Islands/Vanuatu/Loyalty Islands Figure See detailed figure [JPEG] [PDF - 2.7 MB] Last Updated: November 16, 2011

NetCDF - 1.3 MB
van_slab1.0_clip.grd [1]

ASCII - 5.7 MB [2]

NetCDF - 1.3 MB
van_slab1.0_strclip.grd [1]

ASCII - 5.6 MB [2]

NetCDF - 1.3 MB
van_slab1.0_dipclip.grd [1]

ASCII - 5.7 MB [2]

ASCII - 211.3 KB [3]

ArcGIS Shapefile - 42.8 KB [6]

Perimeter - 4 KB
van_slab1.0.clip [4]

Top - 3.1 KB [5]

Base - 3.1 KB [5]

Scotia Scotia Figure See detailed figure [JPEG] [PDF - 903.7 KB] Last Updated: November 16, 2011

NetCDF - 535.8 KB
sco_slab1.0_clip.grd [1]

ASCII - 2.5 MB [2]

NetCDF - 535.8 KB
sco_slab1.0_strclip.grd [1]

ASCII - 2.4 MB [2]

NetCDF - 535.8 KB
sco_slab1.0_dipclip.grd [1]

ASCII - 2.5 MB [2]

ASCII - 90.7 KB [3]

ArcGIS Shapefile - 19.9 KB [6]

Perimeter - 4.8 KB
sco_slab1.0.clip [4]

Top - 1.3 KB [5]

Base - 1.3 KB [5]

Solomon Islands Solomon Islands Figure See detailed figure [JPEG] [PDF - 2.9 MB] Last Updated: July 22, 2011

NetCDF - 1.9 MB
sol_slab1.0_clip.grd [1]

ASCII - 8.3 MB [2]

NetCDF - 1.9 MB
sol_slab1.0_strclip.grd [1]

ASCII - 8.4 MB [2]

NetCDF - 1.9 MB
sol_slab1.0_dipclip.grd [1]

ASCII - 8.3 MB [2]

ASCII - 354.6 KB [3]

ArcGIS Shapefile - 76.1 KB [6]

Perimeter - 5.3 KB
sol_slab1.0.clip [4]

Top - 4.1 KB [5]

Base - 4.1 KB [5]

South America South America Figure See detailed figure [JPEG] [PDF - 17.9 MB] Last Updated: July 22, 2011

NetCDF - 10.5 MB
sam_slab1.0_clip.grd [1]

ASCII - 49.3 MB [2]

NetCDF - 10.5 MB
sam_slab1.0_strclip.grd [1]

ASCII - 48.3 MB [2]

NetCDF - 10.5 MB
sam_slab1.0_dipclip.grd [1]

ASCII - 49.3 MB [2]

ASCII - 1.5 MB [3]

ArcGIS Shapefile - 302.4 KB [6]

Perimeter - 11.1 KB
sam_slab1.0.clip [4]

Top - 11.9 KB [5]

Base - 11.9 KB [5]

Sumatra-Java Sumatra-Java Figure See detailed figure [JPEG] [PDF - 9.8 MB] Last Updated: July 22, 2011

NetCDF - 7.3 MB
sum_slab1.0_clip.grd [1]

ASCII - 30.6 MB [2]

NetCDF - 7.3 MB
sum_slab1.0_strclip.grd [1]

ASCII - 30.8 MB [2]

NetCDF - 7.3 MB
sum_slab1.0_dipclip.grd [1]

ASCII - 30.6 MB [2]

ASCII - 878.9 KB [3]

ArcGIS Shapefile - 185.9 KB [6]

Perimeter - 9.2 KB
sum_slab1.0.clip [4]

Top - 9.8 KB [5]

Base - 9.8 KB [5]


For instructions on use, see these directions.

  • [1] grd format. For use with GMT grdimage.
  • [2] ascii format. Listed as xyz (lat, lon, depth).
  • [3] ascii format, multi-segment file, contours in 20 km intervals.
  • [4] ascii format. Clipping mask for grid (region of grid applicability). For use with GMT grdclip.
  • [5] ascii format. Top and base of model region.
  • [6] ArcGIS shapefile
For further information, please use the contact form or email Gavin Hayes.

Slab Surface vs. Slab Earthquake Depths

The following figures describe the average difference in depth between the computed 3D slab surfaces, and the earthquakes used to construct each surface. These figures thus provide a qualitative assessment of how well we are fitting the earthquakes that define the subduction geometry in each location; if we assume that the ideal geometry should approximately envelope a slabs' seismicity, then differences should average slightly less than zero (cream-white-light blue colors). Areas where large misfits exist highlight a poorly-fit surface, and may be indicative of structural complexity in the slab geometry.

Slab 1.0 Interactive Map


  • Hayes, G. P., D. J. Wald, and R. L. Johnson (2012), Slab1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res., 117, B01302, doi:10.1029/2011JB008524.
  • Hayes, G.P., and Wald, D.J., 2009. Developing framework to constrain the geometry of the seismic rupture plane of subduction interface a priori - a probabilistic approach, Geophys. Jour. Int., 176, 951-964
  • Hayes, G.P., Wald, D.J., and Keranen, K., 2009. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - higher order functional fits, Geochem. Geophys. Geosyst., 10, Q09006, doi:10.1029/2009GC002633.
Local Passive Datasets and Relocations
  • Abers, G., Relationship Between Shallow- and Intermediate-Depth Seismicity in the Eastern Aleutian Subduction Zone, Geophys. Res. Letters, 19(20), 1992, pp. 2019-2022.
  • DeShon, H. R., Schwartz S.Y., Bilek S.L., Dorman L. M., Gonzalez V., Protti J. M, Flueh E. R., and Dixon T. H., Seismogenic zone structure of the southern Middle America Trench, Costa Rica, J. Geophys. Res., 108(B10), 2491, DOI:10.1029/2002JB002294, 2003.
  • Haberland, C., Rietbrock, A., Lange, D., Bataille, K., and Dahm, T., Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography, J. Geophys. Res., 114, B01317, 2009.
  • Haberland, C., Rietbrock, A., Lange, D., Bataille, K., and Hofmann, S., Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data, Geophys. Res. Letters, 33, L23302, 2006.
  • Hino, R., Ito S., Shiobara, H., Shimamura, H., Sato T., Kanazawa, T., Kasahara, J., and Hasegawa, A., Aftershock distribution of the 1994 Sanriku-oki earthquake (Mw 7.7) revealed by ocean bottom seismographic observation, J. Geophys. Res., 105(B9), 21697-21710, 2000.
  • Newman A. V., Schwartz, S.Y., Gonzalez, V., DeShon H. R., Protti, J. M., and Dorman, L. M., Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica, Geophys. Res. Letters, 29(20), 1977, DOI:10.1029/2002GL015409, 2002.
  • Obana, K., Kodaira, S., and Kaneda, Y., Seismicity in the incoming/subducting Philippine Sea plate off the Kii Peninsula, central Nankai trough, J. Geophys. Res., 110, B11311, DOI:10.1029/2004JB003487, 2005.
  • Obana, K., Kodaira, S., and Kaneda, Y., Seismicity related to heterogeneous structure along the western Nankai trough off Shikoku Island, Geophys. Res. Letters, 33, L23310, DOI:10.1029/2006GL028179, 2006.
  • Obana, K., Kodaira, S., and Kaneda, Y., Seismicity at the eastern end of the 1944 Tonankai earthquake rupture areas, Bull. Seismol. Soc. Am., 99, DOI: 10.1785/0120070236, 2009, pp. 110-122.
  • Rietbrock, A., Haberland, C., Bataille, K., Dahm, T., and Oncken, O., Studying the Seismogenic Coupling Zone with a Passive Seismic Array, EOS Transactions, AGU, 86(32), DOI: 10.1029/2005EO320001, 2005.
  • Robertson Maurice, S. D., Wiens, D. A., Shore, P. J., Vera, E., and Dorman, L. M, Seismicity and tectonics of the South Shetland Islands and Bransfield Strait from a regional broadband seismograph deployment, J. Geophys. Res., 108(B10), 2461, DOI:10.1029/2003JB002416, 2003.
  • Syracuse, E. M., Abers, G. A., Fischer, K., MacKenzie, L., Rychert, C., Protti, M., Gonzalez, V., and Strauch, W., Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle, Geochem. Geophys. Geosystems, 9, Q07S08, DOI:10.1029/2008GC001963, 2008.
  • Tilmann, F., Grevemeyer, I., Suwargadi, B., Kopp, H., and Flueh, E., The updip seismic/aseismic transition as seen by aftershocks of the 28 March 2005 Nias and 26 December 2004 Aceh-Andaman earthquakes, Geophysical Research Abstracts, 10, EGU2008-A-02802, 2008.
  • Fuis, G. S., Moore, T. E., Plafker, G., Brocher, T. M., Fisher, M. A., Mooney, W. D., Nokleberg, W. J., Page, R. A., Beaudoin, B. C., Christensen, N. I., Levander, A. R., Lutter, W. J., Saltus, R. W., and Ruppert, N. A., Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting, Geology, 36, 2008, pp. 267-270.
  • Holbrook, W. S., Lizarraled, D., McGeary, S., Bangs, N., and Diebold, J., Structure and composition of the Aleutian island arc and implications for continental crustal growth, Geology, 27, 1999, pp. 31-34.
  • Lizarralde, D., Holbrook, W. S., McGeary, S., Bangs, N. L., and Diebold, J. B., Crustal construction of a volcanic arc, wide-angle seismic results from the western Alaska Peninsula, J. Geophys. Res., 107(B8), 2164, DOI: 10.1029/2001JB000230, 2002.
  • Ryan, H. F., and Scholl, D. W., The Evolution of Forearc Structures Along an Oblique Convergent Margin, Central Aleutian Arc, Tectonics, 8(3), 1989, pp. 497-516.
  • Ye, S., Flueh, E. R., Klaeschen, D., and von Huene, R., Crustal structure along the EDGE transect beneath the Kodiak shelf off Alaska derived from OBH seismic refraction data, Geophys. J. Int., 130, 1997, pp. 283-302.
  • Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D. W., Brink, U., Tre'hu, A. M., and Vidal, N., New seismic images of the Cascadia subduction zone from cruise SO108 -ORWELL, Tectonophysics, 293, 2998, pp. 69-84.
  • Gerdom, M., Tre'hu, A. M., Flueh, E. R., Klaeschen, D., The continental margin off Oregon from seismic investigations, Tectonophysics, 329, 2000, pp. 79-97.
  • McCrory, P.A., Blair, J.L., Waldhauser, F., and Oppenheimer, D.H., 2012. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity, J. Geophys. Res. 117, B09306, doi:10.1029/2012JB009407.
Izu Bonin
  • Oakley, A. J., Taylor, B., and Moore, G. F., Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin, Geochem. Geophys. Geosystems, 9(6), DOI: 10.1029/2007GC001820, 2008.
  • Takahashi, N., Suyehiro, K., and Shinohara, M., Implications from the seismic crustal structure of the northern Izu-Bonin arc, The Island arc, 7, 1998, pp. 383-394.
  • Kido, Y., Tsuru, T., Park, J-O., Higashikata, T., Kaneda, Y., and Kono, Y., Three-dimensional overview of the Japan Trench - an example of using the Frontier database system, Computers & Geosciences, 27(1), DOI: 10.1016/S0098-3004(00)00064-9, 2001, pp. 43-57.
  • Kimura, H., Kasahara, K., and Takeda, T., Subduction process of the Philippine Sea Plate off the Kanto district, central Japan, as revealed by plate structure and repeating earthquakes, Tectonophysics, 472, 2009, pp. 18-27.
  • Kodaira, S., Iwasaki, T., Urabe, T., Kanazawa, T., Egloff, F., Makris, J., and Simamura, H., Crustal structure across the middle Ryukyu trench obtained from ocean bottom seismographic data, Tectonophysics, 263, 1996, pp. 39-60.
  • Kodaira, S., Takahashi, N., Nakanishi, A., Miurs, S., and Kaneda, Y., Subducted Seamount Imaged in the Rupture Zone of the 1946 Nankaido Earthquake, Science, 289, 5476, 2000, pp. 104-106.
  • Kodaira, S., Nakanishi, A., Park, J-O., Takahashi, N., and Kaneda, Y., What control segmentations of mega-thrust earthquakes in the Nankai seismogenic zone; a review of high-resolution wide-angle seismic surveys, Bulletin of the Earthquake Research Institute, 78(2), 2003, pp. 175-183.
  • Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S., and Kaneda, Y., Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study, Tectonophysics, 407, 2005, pp. 165-188.
  • Nishizawa, A., Kaneda, K., and Oikawa, M., Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan, Earth Planets Space, 61, 2009, pp. e37-e40
  • Obana, K., Kodaira, S., and Kaneda, Y., Seismicity in the incoming//subducting Philippine Sea plate off the Kii Peninsula, central Nankai trough, J. Geophys. Res., 110, B11311, DOI: 10.1029/2004JB003487, 2005.
  • Takahashi, N., Kodaira, S., Nakanishi, A., Park, J-O., Miura, S., Tsuru, T., Kaneda, Y., Suyehiro, K., and Kinoshita, H., Seismic structure of western end of the Nankai trough seismogenic zone, J. Geophys. Res., 107(B10), 2212, DOI: 10.1029/2000JB000121, 2002.
  • Tsuru, T., Park. J-O., Miura, S., Kodaira, S., Kido, Y., Hayashi, T., Along-arc structural variation of the plate boundary at the Japan, Trench margin: Implication of interplate coupling, J. Geophys. Res., 107(B12), 2357, DOI:10.1029/2001JB001664, 2002.
  • Wang, T. K., McIntosh, K., Nakamura, Y., Liu, C-S., and Chen, H-W., Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW9509-1 OBS/MCS Data, Marine Geophysical Researches, 22, 2001, pp. 265-287.
  • Iwasaki, T., Shiobara, H., Nishizawa, A., Kanazawa, T., Suyehiro, K., Hirata, N., Urabe, T., and Shimamura, H., A detailed subduction structure in the Kurit trench deduced from ocean bottom seismographic refraction studies, Tectonophysics, 165, 1989, pp. 315-336
  • Nakanishi, A., Smith, A. J., Miura, S., Tsuru, T., Kodaira, S., Obana, K., Takahashi, N., Cummins, P. R., and Kaneda, Y., Structural factors controlling the coseismic rupture zone of the 1973 Nemuro-Oki earthquake, the southern Kuril Trench seismogenic zone, J. Geophys. Res., 109, B05305, DOI:10.1029/2003JB002574, 2004.
  • Schnurle, P. , Lallemand, S. E., von Huene, R., and Klaeschen, D., Tectonic regime of the southern Kurile Trench as revealed by multichannel seismic lines, Tectonophysics, 241, 1995, pp. 259-277
Kermadec-Tonga-New Zealand
  • Melhuish, A., Sutherland, R., Davey, F. J., Lamarche, G., Crustal structure and neotectonics of the Puysegur oblique subduction zone, New Zealand, Tectonophysics, 313, 1999, pp. 335-362.
  • Sutherland, R., Stagpoole, V., Uruski, C., Kennedy, C., Bassett, D., Henrys, S., Scherwath, M., Kopp, H., Field, B., Toulmin, S., Barker, D., Bannister, S., Davey, F., Stern, T., Flueh, E. R., Reactivation of tectonics, crustal underplating, and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec fore arc, New Zealand: Implications for global growth and recycling of continents, Tectonics, 28, TC5017, DOI:10.1029/2008TC002356, 2009.
Lesser Antilles
  • Christeson, G. L., Bangs, N. L., Shipley, T. H., Deep structure of an island arc backstop, Lesser Antilles subduction zone, J. Geophys. Res., 108(B7), 2327, DOI:10.1029/2002JB002243, 2003.
  • Magnani, M. B., Zelt, C. A., Levander, A., and Schmitz, M., Crustal structure of the South American-Caribbean plate boundary, J. Geophys. Res., 114, BO2312, DOI: 10.1029/2008JB005817, 2009.
  • SE Caribbean OBS Cruise Report April 19th-June 2, 2004 IFM-GEOMAR
  • Shipley, T. H., Moore, G. F., Bangs, N. L., Moore, J. C., Stoffa, P. L., Seismically inferred dilatancy distribution, northern Barbados Ridge decollment: Implications for fluid migration and fault strength, Geology, 22, 1994, p. 411-414.
  • Weinzierl, W. Kopp, H. Flueh, E., Klaeschen, D., and THALES Working Group, A seismic wide angle profile across the Lesser Antilles Arc south of Guadeloupe, Geophysical Research Abstracts, 11, 2009.
  • Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., and Klaeschen, D., Structure of the Makran subduction zone from wide-angle and reflection seismic data, Tectonophysics, 329, 2000, pp. 171-191.
  • Bohnhoff, M., Makris, J., Stavrakakis, G., and Papanikolaou, D., Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics, 343, 2001, pp. 239-262.
  • Gutscher, M. A., Malod, J., Rehault, J. P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., and Spakman, W., Evidence for active subduction beneath Gibraltar, Geology, 30, 2002, pp. 1071-1074.
Middle America
  • Campos-Enriques, J. O., and Sanchez-Zamora, O., Crustal structure across southern Mexico inferred from gravity data, Journal of South American Earth Sciences, 13, 2000, pp. 479-489.
  • Christensen, G. L., Mcintosh, K. D., Shipley, T. H., Flueh, E. R., and Goedde, H., Structure of the Costa Rica convergent margin, offshore Nicoya Peninsula, J. Geophys. Res., 104(B11), 1999, pp. 25, 443-25, 468
  • McIntosh, K. D., Silver, E. A., Ahmed, I., Berhorst, A., Ranero, C. R., Kelly, R. K., and Flueh, E. R., The Nicaragua convergent margin; seismic reflection imaging of the source of a tsunami earthquake, MARGINS theoretical and experimental earth science series, Columbia University Press, United States (USA), 2007, pp. 257-287.
  • Ranero, C., R. von Huene, E. Flueh, M. Duarte, D. Baca, and K. Mclntosh, A cross section of the convergent Pacific margin of Nicaragua, Tectonics, 19(2), 2000, pp. 335-357.
  • Ranero, C. R., Marone, C., Bilek, S., Barckhausen, U., Charvis, P., Collot, J-Y, DeShon, H., Di Toro, G., Dixon, T., Dorman, L., Galeotti, S., Grevenmeyer, I., Harris, R., Husen, S., Kastner, M., Kinoshita, M., Kuramoto, S., Matsumoto, T., McIntosh, K., Morgan, J., Morris, J., Mueller, C., Neben, S., Reichert, C., Scholl, D., Saito, S., Schwartz, S., Spiess, V., Suess, E., Vannucchi, P., Villinger, H., Vinciguerra, S., von Huene, R., Wallmann, W., CRISP Program B: The Transition from Stable to Unstable Slip at Erosional Convergent Plate Boundaries, IFM-GEOMAR, 2006.
  • Ranero, C. R., and von Huene, E., Subduction erosion along the Middle America convergent margin, Nature, 404, 2000.
  • Sallares, V., and Danobeitia, J. J., Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau, J. Geophys Res., 106(B1), 2001, pp. 621-643.
  • von Huene, E., Ranero, C. R., and Watts, P., Tsunamigenic slope failure along the Middle America Trenchin two tectonic settings, Marine Geology, 203, DOI:10.1016/S0025-3227(03)00312-8, 2004, pp. 303-317.
  • Walther, C. H. E., Flueh, E. R., Ranero, C. R., von Huene, R., and Strauch, W., Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver, Geophys. J. Int., 141, 2000, pp. 759-777.
  • Ye, S., Bialas, J., Flueh, E. R., Stavenhagen, A., and von Huene, R., Crustal structure of the Middle American Trench off Costa Rica from wide-angle seismic data, Tectonics, 15(5), 1996, pp. 1006-1021.
  • Hayes, D., and Lewis, S., A Geophysical Study of the Manila Trench, Luzon, Philippines, Crustal Structure, Gravity, and Regional Tectonic Evolution, J. Geophys. Res., 89(B11), 1984, pp. 9171-9195.
Sandwich - Shetland
  • Jin, Y. K., Kim, Y., Nam, S. H., Lee, D. K., and Lee, K., Gravity models for the South Shetland Trench and the Shackleton Fracture Zone, Antarctica, Geosciences Journal, 1 (2), DOI: 10.1007/BF02910480, 1997, pp. 89-98.
  • Vanneste L. E., and Larter, R. D., Sediment subduction, subduction erosion, and strain regime in the northern South Sandwich forearc, J. Geophys. Res., 107 (B7), 2149, DOI:10.1029/2001JB000396, 2002
Solomon Islands
  • Fisher, M. A., Geist, E. L., Sliter, R. W., Wong, F. L., Reiss, C., and Mann, D., Preliminary analysis of the earthquake (Mw 8.1) and tsunami of April 1, 2007, in the Solomon Islands, southwestern Pacific Ocean, Geological Society of America, 39 (6), 2007, p. 157.
  • Miura, S., Suyehiro, K., Shinohara, M., Takahashib, N., Araki, E., and Taira, A., Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer airgun data, Tectonophysics, 389, 2004, pp. 191-220.
South America
  • Agudelo, W., Ribodetti, A., Collot, J. Y., and Operto, S., Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador-south Colombia convergent margin, J. Geophys. Res., 114, B02306, DOI:10.1029/2008JB005690, 2009.
  • Calahorrano, A., Sallarès, V., Collota, J. Y., Sagea, F., and Raneroc, C. R., Nonlinear variations of the physical properties along the southern Ecuador subduction channel: Results from depth-migrated seismic data, Earth and Planetary Science Letters, 267, DOI:10.1016/j.epsl.2007.11.061, 2008, pp. 453-467.
  • Gailler, A., Charvis, P., and Flueh, E. R., Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth and Planetary Science Letters, 260, DOI:10.1016/j.epsl.2007.05.045, 2007, pp. 444-464.
  • Graindorge, D., Calahorrano, A., Charvis, P., Collot, J. Y., and Bethoux, N., Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval, Geophys. Res. Letters, 31, L04603, DOI:10.1029/2003GL018803, 2004.
  • Hampel, A., Kukowski, N., Bialas, J., Huebscher, C., and Heinbockel, R., Ridge subduction at an erosive margin: The collision zone of the Nazca Ridge in southern Peru, J. Geophys. Res., 109, B02101, DOI:10.1029/2003JB002593, 2004.
  • Krabbenhoft, A., Bialas J., Kopp, H., Kukowski, N, and Hubscher, C., Crustal structure of the Peruvian continental margin from wide-angle seismic studies, Geophys. J. Int., 159, DOI: 10.1111/j.1365-246X.2004.02425.x, 2004, pp. 749-764.
  • Krawczyk, C. M., Mechie, J., Lüth, S., Tasarova, Z., Wigger, P., Stiller, M., Brasse, H., Echtler, H. P., Araneda, M., and Bataille, K., Geophysical Signatures and Active Tectonics at the South-Central Chilean Margin, The Andes, DOI: 10.1007/978-3-540-48684-8_8, 2006, pp. 171-192.
  • Loreto, M. F., Tinivella, U., and Ranero, C. R., Evidence for fluid circulation, overpressure and tectonic style along the Southern Chilean margin, Tectonophysics, 429, DOI:10.1016/j.tecto.2006.09.016, 2007, pp. 183-200.
  • Patzwahl, R., Mechie, J., Schulze, A., and Giese, P., Two-dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA95 project, J. Geophys. Res., 104 (B4), DOI:0148-0227/99/1999JB900008509.00, 1999, pp. 7293-7317.
  • Rubio, E., Torne, M., Vera, E., Diaz, A., Crustal structure of the southernmost Chilean margin from seismic and gravity data, Tectonophysics, 323, 2000, pp. 39-60.
  • Sage, F., Collot, J. Y., and Ranero, C. R., Interplate patchiness and subduction-erosion mechanisms: Evidence from depth-migrated seismic images at the central Ecuador convergent margin, Geological Society of America, 34 (12), DOI: 10.1130/G22790A.1, 2006, pp. 997-1000.
  • Sallares, V. and Ranero, C. R., Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23°30'S), J. Geophys. Res., 110, B06101, doi:10.1029/2004JB003418, 2005.
  • Scherwath, M., Contreras-Reyes, E., Flueh, E. R., Grevemeyer, I., Krabbenhoeft, A., Papenberg, C., Petersen, C. J., and Weinrebe, R. W., Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling, Geophys. J. Int., 179, DOI: 10.1111/j.1365-246X.2009.04298.x, 2009, pp. 579-600.
  • Scherwath, M., Flueh, E., Grevenmeyer, I., Tilmann, F., Contreras-Reyes, E., and Weinrebe, W., Investigating Subduction Zone Processes in Chile, EOS, Transactions, AGU, 87 (27), 2006, pp. 265-272.
  • von Huene, R., Corvalan, J., Flueh, E. R., Hinz, K., Korstgard, J., Ranero, C. R., Weinrebe, W., and the CONDOR Scientists, Tectonic control of the subducting Juan Fernandez Ridge on the Andean margin near Valparaiso, Chile, Tectonics, 16 (3), 1997, pp. 474- 488.
  • Franke, D., Schnabel a, M., Ladage, Tappin, D. R., Neben, S., Djajadihardja, Y. S., Müller, C., Kopp, H., and Gaedicke, C., The great Sumatra-Andaman earthquakes -Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes, Earth and Planetary Science Letters, 269, 2008, pp. 118-130.
  • Grevemeyer, I., and Tiwari, V. M., Overriding plate controls spatial distribution of megathrust earthquakes in the Sunda-Andaman subduction zone, Earth and Planetary Science Letters, 251, DOI:10.1016/j.epsl.2006.08.021, 2006, pp. 199-208.
  • Kopp, H., Flueh, E. R., Klaeschen, D., Bialas, J. and Reichert, C., Crustal structure of the central Sunda margin at the onset of oblique subduction, Geophys. J. Int., 147, 2001, pp. 449-474.
  • Kopp, H., Klaeschen, D., Flueh, E. R., Bialas, J., and Reichert, C., Crustal structure of the Java margin from seismic wide-angle and multichannel reflection data, J. Geophys. Res., 107 (B2), 2034, DOI:10.1029/2000JB000095, 2002.
  • Lüschen, E., Müller, C., Kopp, H., Engels, M., Lutz. R., Planert, L., Shulgin, A., and Djajadihardja, L.S., Structure, Evolution and Tectonic Activity of the Eastern Sunda Forearc, Indonesia, Marine Seismic Investigations, 2009.
  • Shulgin, A., Kopp, H., Mueller, C., Lueschen, E., Planert, L., Engels, M., Flueh, E. R., Krabbenhoeft, A., and Djajadihardja, Y., Sunda-Banda arc transition: Incipient continent-island arc collision (northwest Australia), Geophys. Res. Letters, 36, L10304, DOI:10.1029/2009GL037533, 2009.
  • Simoes, M., Avouac, J. P., Cattin, R., and Henry, P., The Sumatra subduction zone: A case for a locked fault zone extending into the mantle, J Geophys. Res., 109, B10402, DOI:10.1029/2003JB002958, 2004.

The individual event pages linked below describe our procedure to constrain the two-dimensional geometry of subduction interfaces at the locations of recent, moderate-to-large earthquakes that occurred on or near the subduction thrust. The 3D models provided in the "models" tab are built from a suite of similar 2D cross-sections made at regularly sampled intervals along the strike of each subduction zone.




Santa Cruz Islands/Vanuatu/Loyalty Islands

South America